热电偶与热电阻测温原理

合集下载

电子测温测温度的原理

电子测温测温度的原理

电子测温测温度的原理电子测温是通过电子传感器来测量物体的温度。

电子测温的原理有很多种,下面就介绍其中几种常见的原理。

1. 热电效应原理:热电效应是指在两种不同金属导体交接处形成热电动势。

根据热电效应的原理,可以制造出热电偶和热电阻等传感器来测量温度。

热电偶由两种不同金属导线焊接而成,当热电偶的两个焊点温度不同时,就会产生热电动势,通过测量热电动势的大小,可以计算出环境温度。

热电阻则是利用金属或半导体材料的电阻随温度变化的特性来测量温度。

2. 热敏电阻原理:热敏电阻是指电阻值随温度变化的材料。

常用的热敏电阻材料有铂、镍、铜等。

热敏电阻的电阻值与温度之间存在一定的函数关系,可以根据电阻的变化来测量温度。

通常使用桥式电路来测量电阻值的变化,进而得到温度。

3. 热传导原理:热传导是指物体在温度梯度下热能从高温区传递到低温区的过程。

根据热传导的原理,可以使用热敏电阻阵列或红外热像仪等传感器来测量温度。

热敏电阻阵列通过将多个热敏电阻排列在一个芯片上,测量不同位置的温度并通过插值算法计算出物体的温度分布。

红外热像仪则利用物体发射的红外辐射与温度成正比的关系,通过测量红外辐射的强度来反推物体的温度。

4. 声波测温原理:声波测温是利用声速与温度之间的关系来测量温度。

声速是在特定介质中声波传播的速度,它与介质的密度和温度有关。

通过测量声音在介质中传播的时间和距离,可以计算出介质的声速。

通过了解介质的声速和温度之间的关系,可以推算出介质的温度。

5. 热辐射原理:热辐射是指物体因温度而发射出的电磁波辐射。

根据热辐射的原理,可以使用红外线传感器来测量物体的温度。

红外线传感器能够感知物体发出的红外辐射,并根据辐射的强度和频率来计算物体的温度。

以上是一些常见的电子测温原理,不同的原理适用于不同的测温需求。

电子测温技术的应用非常广泛,包括工业自动化、医疗设备、消费电子、温度控制等领域。

随着科技的发展和创新,电子测温技术不断地得到改进和完善,使得温度测量更加准确、可靠和便捷。

测温元件的种类和工作原理简述

测温元件的种类和工作原理简述

测温元件的种类和工作原理简述测温元件是一种用于测量温度的设备,广泛应用于工业、农业、医疗、环境监测等各个领域。

根据其工作原理和结构特点的不同,测温元件可以分为多种类型,常见的包括热电阻、热电偶、红外线测温仪和温度传感器等。

1.热电阻:热电阻是利用电阻随温度的变化而变化的原理进行测温的元件。

具体而言,热电阻是由一种温度敏感的材料制成的,例如常见的铂电阻(PT100)、铂-铑电阻(PtRh10-Pt)等。

当热电阻材料受到热量作用后,其电阻值随之发生变化,通过测量电阻值的变化就可以推算出温度的变化。

热电阻具有较高的测温精度和较长的使用寿命,广泛应用于各个领域。

2.热电偶:热电偶是另外一种测温原理,其基本原理是利用两种不同材料之间的热电效应来测量温度。

常见的热电偶主要有铂-铑热电偶(PtRh30-PtRh6)、铜-铜镍热电偶(Copper-Constantan)等。

热电偶的工作原理是当两种不同的金属被加热时,它们之间会产生热电势,热电势的大小与温度有关,通过测量热电势的变化就可以得到温度的变化。

热电偶具有较高的温度测量范围和一定的测温精度,常用于高温和特殊环境的温度测量。

3.红外线测温仪:红外线测温仪是一种通过接收目标物体发射的红外辐射来测量其表面温度的设备。

它利用了物体与周围环境之间的热辐射特性,根据辐射能量的强度和频率分布推算出目标物体的温度。

红外线测温仪具有无接触、快速、准确的优点,在工业、医疗等领域中得到广泛应用,尤其适用于远距离、高温、易爆等特殊环境下的温度监测。

4.温度传感器:温度传感器是一类基于物理效应进行温度测量的装置,常见的包括热敏电阻、热敏电容、温度敏感场效应晶体管(ISFET)等。

温度传感器的工作原理多样,以热敏电阻为例,它是一种温度敏感的电阻,当受热时电阻值发生变化,通过测量电阻值的变化即可得到温度的变化。

温度传感器具有快速、准确测量的特点,广泛应用于温度监控、气象、仪器仪表等领域。

热电偶和热电阻的知识

热电偶和热电阻的知识

热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。

它被广泛用于测量-200~1300℃范围内的温度。

在特殊情况下,可测至2800℃的高温或4K 的低温。

热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。

1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。

热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。

热电势由温差电势与接触电势组成。

温差电势:是指一根导体上因两端温度不同而产生的热电动势。

同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。

该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。

温差电势的方向:由低温端指向高温端。

温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。

可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。

热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。

A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。

热电阻和热电偶的测温原理

热电阻和热电偶的测温原理

热电阻和热电偶的测温原理热电阻和热电偶是广泛应用于测量温度的两种传感器,这两种传感器都能够通过电阻或电压的变化来反映被测物体的温度变化。

下文将分步骤阐述热电阻和热电偶的测温原理。

一、热电阻的测温原理热电阻通过材料的电阻率随温度变化来测量温度。

一般情况下,热电阻传感器使用的材料是铂金(PT100)、镍铬合金(KTY81)和铜等导体,这些材料在不同温度下的电阻值都是不同的。

因此,在通过不同温度下的电阻值来确定温度之前,需要先获得不同温度下的电阻值。

接下来,我们将热电阻传感器固定在需要测量温度的物体上,并通过电路让电流经过该传感器。

当电流经过传感器时,电阻会产生一定的压降。

通过测量这一压降的大小,我们就能得到热电阻的电阻值。

在获得不同温度下的电阻值后,我们可以建立起电阻值和温度之间的对应关系,这样当需要测量温度时,只需要通过测量热电阻的电阻值,就可以得到相应温度值。

二、热电偶的测温原理热电偶通过两个不同的导体形成热电偶电路,当热电偶的两个端口之间存在温度差异时,就会产生电动势。

一个端口连接到被测温度的物体上,我们称其为热电偶的测量端,另一个端口连接到需要监测温度的电子设备上,我们称其为热电偶的接口端。

热电偶分为不同类型,每个类型都有其对应的热电势和温度之间的关系,这些关系通过国际标准进行规定。

常用的热电偶有铜-铜镍、铬-铝-铁等不同组合的导体。

当热电偶与被测物体相连接时,两端口之间的电动势会随着温度的变化而变化。

传感器的接口端会将这一变化的电动势转化为电压信号,以数字信号的形式反馈给接收电气信号的电子设备,从而获得相应温度值。

总之,热电阻和热电偶都能够通过改变电阻或电动势来反映被测物体的温度变化。

这两种类型的传感器在不同的应用场景中具有各自的优势,我们需要选择合适的传感器来获得高精度的温度数据。

实验三,热电偶与热电阻的温度测量

实验三,热电偶与热电阻的温度测量

实验三热电偶与热电阻的温度测量一、实验目的:1、了解热电偶测量温度的原理与应用。

2、了解热电偶冷(自由)端温度补偿的原理与方法。

3、了解热电阻的测温原理与特性。

二、实验原理:将两种不同的金属丝组成回路,如果二种金属丝的两个接点有温度差,在回路内就会产生热电势,这就是热电效应,热电偶就是利用这一原理制成的一种温差测量传感器,置于被测温度场的接点称为工作端,另一接点称为冷端(也称自由端),冷端可以是室温值也可以是经过补偿后的0℃、25℃的模拟温度场。

热电偶是一种温差测量传感器。

为直接反映温度场的摄氏温度值,需对其自由端进行温度补偿。

热电偶冷端温度补偿的方法有:冰水法、恒温槽法、自动补偿法、电桥法,常用的是电桥法(图3-2),它是在热电偶和测温仪表之间接入一个直流电桥,称冷端温度补偿器,补偿器电桥在0℃时达到平衡(亦有20℃平衡)。

当热电偶自由端(a、b)温度升高时(>0℃)热电偶回路的电势Uab下降,由于补偿器中PN结呈负温度系数,其正向压降随温度升高而下降,促使Uab上升,其值正好补偿热电偶因自由端温度升高而降低的电势,达到补偿目的。

热电阻用于测温时利用了导体电阻率随温度变化这一特性,对于热电阻要求其材料电阻温度系数大,稳定性好、电阻率高,电阻与温度之间最好有线性关系。

常用的有铂电阻和铜电阻,热电阻阻值Rt与温度t的关系为:Rt=R0(1+At+Bt2)本实验采用的是Pt100铂电阻,它的R0=100Ω,A=3.9684×10-2/℃,B=5.847×10-7/℃2,铂电阻采用三线连接法,其中一端接二根引线主要为了消除引线电阻对测量的影响。

三、需用器件与单元:K型、E型热电偶、温度源、温度控制仪表、温度控制测量仪(9000型)。

温度传感器实验模板、冷端温度补偿器、直流±15V、外接+5V电源适配器。

Pt100铂热电阻。

四、实验步骤:1、将热电偶插到温度源两个传感器插孔中任意一个插孔中,(K型、E型已装在一个护套内),K型热电偶的自由端接到主控箱面板上温控部分的Ek端,用它作为标准传感器,配合温控仪表用于设定温度,注意识别引线标记,K型、E型及正极、负极不要接错。

热电偶热电阻测温应用原理

热电偶热电阻测温应用原理

热电偶热电阻测温应用原理热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。

热电偶和热电阻热敏电阻的区别

热电偶和热电阻热敏电阻的区别

热电偶和热电阻、热敏电阻的区别热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。

当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

热电偶和热电阻

热电偶和热电阻

度梯度导致金属在一定方向上被磁化,而 用铂和铂合金制作的热电偶温度计,甚至
非形成了电流。科学学会认为,这种现象 可以测量高达+2800℃的温度!
是因为温度梯度导致了电流,继而在导线
第一部分 热电偶
热电偶 简单介绍
热电现象 热电偶 热电偶的优缺点
目录
热电偶 的基本定律
均质导体定律 中间导体定律 中间温度定律
贝壳的实验仪器,加热其中一端时,指针 来测量温度。只要选用适当的金属作热电
转动,说明导线产生了磁场。塞贝克确实 偶材料,就可轻易测量到从-180℃到+
已经发现了热电效应,但他却做出了错误 2000℃的温度,如此宽泛测量范围,令酒
的解释:导线周围产生磁场的原因,是温 精或水银温度计望尘莫及。现在,通过采
结论:
(1)热电偶必须由两种不同性质的材料构成。 (2)若热电极本身的材质不均匀,由于温度差的存在,将会产生 附加热电势,造成测量误差。 (3)由一种材料组成的闭合回路存在温差时,回路如产生热电势, 便说明该材料是不均匀的。据此可检查热电极材料的均匀性,衡量热 电偶质量的优劣。
第一部分 热电偶
热电偶基本定律
(2)如果两种导体A和B对另一种参考导体C热电势已知,则这两种导 体组成的热电偶的热电势是它们对参考导体热电势的代数和,即
EAB(t,to)=EAC(t,to)+ECB(t, to) 参考导体亦称标准电极,一般选用铂制成,若已知各种电极与标准电 极配成热电偶的热电特性,便可按此结论计算出任意两电极A、B配成热电 偶后的热电特性,这样大大简化了热电偶的选配工作。
第一部分 热电偶
热电偶补偿导线
冷端补偿方法
2、仪表机械零点调整法 仪表的机械零点为仪表输入电势为零时,指针停留的刻度点,也就

热电偶与热电阻区别对比

热电偶与热电阻区别对比

热电偶与热电阻区别对比热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于:一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热偶,是产生感应电压的变化,他随温度的改变而改变。

二、两种传感器检测的温度范围不一样,热阻一般检测-250至500度温度范围,最高测量范围可达600度左右。

热偶可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。

三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热偶是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。

1.热电偶的测量原理:热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。

将它插入待测温度的介质中;而热电偶的另一端(参比端或自由端)则与显示仪表相连。

如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。

2.热电阻的测量原理:热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。

当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。

3.如何选择热电偶和热电阻?根据测温范围选择:500℃以上一般选择热电偶,500℃以下一般选择热电阻;,根据测量精度选择:对精度要求较高选择热电阻,对精度要求不高选择热电偶;根据测量范围选择:热电偶所测量的一般指“点”温,热电阻所测量的一般指空间平均温度;4.热电偶和热电阻优劣对比热电偶对温度较敏感,响应速度快。

但因自身特性所限,测温时对外在条件要求较高,如:线径变化、稳定的冷端等。

温度测量实验报告分析

温度测量实验报告分析

一、实验目的本次实验旨在通过实践操作,了解温度测量原理,掌握温度传感器的使用方法,并对不同类型温度传感器的性能进行比较分析。

通过实验,加深对温度测量基础知识的理解,提高实际操作能力。

二、实验原理温度测量是科学研究、工程应用和日常生活中不可或缺的环节。

本实验采用多种温度传感器进行温度测量,主要包括热电偶、热电阻和热敏电阻等。

1. 热电偶测温原理:热电偶由两种不同材料的导体组成,当其两端处于不同温度时,会产生热电势。

根据热电势与温度之间的关系,可测量温度。

2. 热电阻测温原理:热电阻的电阻值随温度变化而变化,通过测量电阻值,可得到温度值。

3. 热敏电阻测温原理:热敏电阻的电阻值随温度变化而变化,通过测量电阻值,可得到温度值。

三、实验器材1. 热电偶(K型、E型)2. 热电阻(铂电阻、镍电阻)3. 热敏电阻(NTC、PTC)4. 温度传感器实验模块5. CSY2001B型传感器系统综合实验台6. 温控电加热炉7. 连接电缆8. 万用表:VC9804A、VC9806四、实验步骤1. 将实验模块连接到CSY2001B型传感器系统综合实验台上。

2. 将热电偶、热电阻和热敏电阻分别接入实验模块。

3. 打开实验台,设置实验参数,如温度范围、采样时间等。

4. 启动实验,观察温度传感器的输出信号。

5. 记录实验数据,包括温度值、电阻值等。

6. 分析实验数据,比较不同温度传感器的性能。

五、实验结果与分析1. 热电偶测温实验结果:K型热电偶和E型热电偶在实验温度范围内具有较好的线性度,测量误差较小。

2. 热电阻测温实验结果:铂电阻和镍电阻在实验温度范围内具有较好的线性度,测量误差较小。

3. 热敏电阻测温实验结果:NTC热敏电阻和PTC热敏电阻在实验温度范围内具有较好的线性度,测量误差较小。

4. 性能比较分析:(1)热电偶具有较宽的测量范围,但价格较高,安装和维护较为复杂。

(2)热电阻具有较好的精度和稳定性,但测量范围相对较窄。

热电偶温度传感器、热电阻温度传感器工作原理及特点

热电偶温度传感器、热电阻温度传感器工作原理及特点

-167~40℃ ±2.5℃
-200~-167℃ ±1.5%t
-67~40℃
±1℃

-200~
-67℃
±1.5%t
Φ0.3 700~ 800 Φ0.5 800~ 900 Φ0.8 1.0 900~ 1000 Φ1.2 1.6 1000~ 1100 Φ2.0 2.5 1100~ 1200 Φ3.2 1200~ 1300
□廉金属热电偶丝直径的标准形式(mm)
分度号 保护管
外径
单支式
K 1
20 6 2 . 3.2 5
N 1
20 6 2 . 3.2 5
E 1
20 6 2 . 3.2 0
J 1
20 6 2 . 3.2 5
T 20
3.2
1
1
1
1
双支式 . 2.5 . 2.5 . 2.0 . 2.5
2.5
2
2
2
2
热电偶热电阻保护管 □ 金属保护管材料及特性
□ 置入深度 ●热电偶最小置入深度 对陶瓷保护管而言,应不小于保护管直径的 10~15倍; 对金属及合金保护管,应大于保护管直径的 15~20倍。
□ 热电阻最小置入深度
lmin = ln+15D lmin—最小可用置入深度 ln — 感温元件长度 D — 保护管外径
□ 绝缘电阻
●装配式热电偶绝缘电阻
·适于远距离测量和控制。
·无需参考点。温度值可由测得的电阻值直接求
b、缺点
出。
·测量准确度难以超过0.2℃,
·输出线性好。只用简单的辅助回路就能得到线性
·必须有参考端,并且温度要保持恒定。
输出,显示仪表可均匀刻度。
·在高温或长期使用时,因受被测介质影响或 b、缺点

热电偶 热电阻

热电偶 热电阻

热电偶热电阻
热电偶是一种传感器,它的原理是根据电池现象来工作的,也就是说,当它接触到一段温度时,它就会由电池现象产生出一种电压。

两个热电偶连接起来,形成一个叫做“热电阻”的组件。

热电阻的特点是可以根据温度的变化而产生电流,并且把这些电流传输给仪表显示,可以精确地衡量温度。

热电阻可以分为两种:阻性热电阻和变送热电阻。

阻性热电阻是一种固定负载电阻,它把温度变化转换成电阻变化,这种转换在技术上只能控制在一定范围内,但是比较准确和可靠,可以用来测量温度。

变送热电阻是一种新型的测温工具,它可以通过改变负载电阻的值来改变传送的信号的大小,以此来调整温度的大小,比较灵敏准确。

热电阻在工业领域有着广泛的应用。

它可以用来测量温度,并用来控制和维护机器的温度,以防止过热或者溢出。

它也可以用来检测液体的温度,比如汽车润滑油的温度,并用来控制机械的运行温度,来避免损坏。

另外,它也可以用来检测温度变化,来控制环境温度,如:室温控制、空调温度控制、家用微波炉的温度控制等等。

热电阻的优点有很多,它的大小尺寸小,重量轻;它能够迅速检测到被测物体的温度,准确性高;它具有低成本、高效率、稳定可靠等优点;它也具有耐高温耐低温及耐腐蚀等特性,可以在汽车、船舶、发动机、电力发电机组等恶劣环境中工作。

热电偶和热电阻作为一种普通的测温工具,已经被众多行业使用了很多年,当前也被广泛用于工业、实验室和质量控制的过程中。


电阻的准确性和可靠性得到了工业界的认可,它可以根据温度的变化而产生电流,让仪表读数更加准确。

热电阻技术的发展,将为工业部门的测温提供更加有效的参考依据。

热电阻热电偶测温原理

热电阻热电偶测温原理

热电阻热电偶测温原理嗨,小伙伴们!今天咱们来唠唠热电阻和热电偶测温的原理,这可是个超有趣的事儿呢!先来说说热电阻吧。

热电阻啊,就像是一个对温度特别敏感的小机灵鬼。

你可以把热电阻想象成一条小小的金属丝,这个金属丝可有大本事啦。

一般常见的热电阻材料有铂呀、铜呀这些。

当温度发生变化的时候,这个金属丝的电阻值就会跟着变哦。

就好像金属丝在跟温度玩一个你变我也变的游戏。

温度升高的时候呢,金属丝里面的原子啊、电子啊就变得活跃起来了,它们在金属丝里跑来跑去就没那么顺畅了,这就导致电阻值增大啦。

相反,温度降低的时候,原子和电子就相对老实一点,电阻值就会变小。

我们就是利用这个特性来测量温度的。

我们有专门的仪器去测量这个热电阻的电阻值变化,然后根据事先知道的热电阻电阻值和温度的关系,就能算出现在的温度是多少啦。

比如说铂热电阻,它的电阻和温度之间有一个比较准确的数学关系,只要测量出电阻值,就像解开一个小谜题一样,能轻松知道温度。

这热电阻测温可真是又简单又巧妙呢。

再聊聊热电偶吧。

热电偶呀,就像是一对默契十足的小搭档。

它是由两种不同的金属材料组成的。

这两种金属材料就像两个性格不同的小伙伴,当它们的连接点处在不同的温度环境下的时候,就会发生很奇妙的事情哦。

你看,在这个连接点上,因为两种金属的电子活跃度不一样,就会产生一个小小的电势差,就像它们之间有了一个小小的电力竞赛。

这个电势差就和温度有关啦。

温度越高,这个电势差就越大。

我们把这个连接点叫做热端,然后再把另外一端(两端温度相同的地方)叫做冷端。

通过测量冷端和热端之间的电势差,就可以知道温度是多少啦。

不同的金属组合成的热电偶,它们的电势差和温度的关系也不一样呢。

比如说,常用的K型热电偶,是镍铬 - 镍硅这种金属组合,它在很宽的温度范围内都能比较准确地测量温度。

这就像是每一对热电偶小搭档都有自己独特的技能,专门用来感知不同范围的温度。

你知道吗?热电阻和热电偶在我们的生活和工业生产中可都是大功臣呢。

热电偶和热电阻测温原理

热电偶和热电阻测温原理

热电偶和热电阻测温原理热电偶和热电阻是常见的温度测量装置,主要应用于工业控制、实验室研究和医疗设备等领域。

本文将从热电偶和热电阻的原理、特点以及应用方面进行介绍。

一、热电偶的原理和特点热电偶是利用两种不同金属导线的热电势差来测量温度的装置。

其原理是基于热电效应,即当两种不同金属导线的两端温度不一致时,会在导线间产生一定的电势差。

这种电势差与温差成正比,通过测量电势差即可得到温度值。

热电偶的特点主要包括以下几个方面:1. 宽温度测量范围:热电偶可在-200℃至+1600℃的温度范围内进行测量,适用于各种温度环境。

2. 快速响应:热电偶的响应速度快,可以迅速反应温度变化,对于实时性要求较高的场合非常适用。

3. 高精度:热电偶可以达到较高的测温精度,一般可达到±0.5℃,在一些精密测量场合可以达到更高的精度要求。

4. 耐用性强:由于热电偶的结构简单,没有易损件,具有较强的耐用性,可以在恶劣的工作环境下正常工作。

二、热电阻的原理和特点热电阻是利用电阻值随温度变化而变化的特性来测量温度的装置。

其原理是通过测量电阻值的变化来推算温度值。

常见的热电阻材料有铂电阻、镍电阻等。

热电阻的特点主要包括以下几个方面:1. 稳定性高:热电阻的电阻值与温度呈线性关系,稳定性较好,可以达到较高的测温精度。

2. 精度高:热电阻的测温精度较高,一般可达到±0.1℃,在一些对温度要求较高的领域有着广泛应用。

3. 长期稳定:热电阻的使用寿命长,长期稳定性较好,不易受外界干扰。

4. 抗干扰能力强:热电阻的信号传输比较稳定,对电磁干扰的抗干扰能力较强。

三、热电偶和热电阻的应用1. 工业控制:热电偶和热电阻广泛应用于工业生产过程中的温度控制和监测,如炉温控制、液位控制、加热控制等。

2. 实验室研究:热电偶和热电阻在科学研究中被广泛应用,如化学反应过程中的温度测量、材料性能测试等。

3. 医疗设备:热电偶和热电阻用于医疗设备中的体温测量,如体温计等。

测温元件的种类和工作原理简述

测温元件的种类和工作原理简述

测温元件的种类和工作原理简述测温元件是一种用于测量温度的装置,常见于各种温度测量设备中。

根据其工作原理的不同,测温元件可以分为多种类型。

本文将简要介绍几种常见的测温元件及其工作原理。

1. 热电偶热电偶是一种常用的测温元件,它基于热电效应来测量温度。

热电偶由两种不同材料的导线组成,两个导线的接触点称为热电接头。

当热电接头处于不同温度时,两个导线之间会产生热电势差,即热电偶电动势。

通过测量热电偶电动势的大小,可以推算出温度值。

2. 热电阻热电阻也是一种常用的测温元件,它的工作原理基于电阻与温度之间的关系。

热电阻一般由纯金属或合金材料制成,其电阻值随温度的变化而变化。

根据材料的不同,常见的热电阻有铂电阻(PT100、PT1000)和镍电阻(Ni100、Ni1000)等。

通过测量热电阻的电阻值,可以推算出温度值。

3. 温度传感器温度传感器是一种常见的测温元件,它可以通过不同的物理原理来测量温度。

常见的温度传感器有热敏电阻、热电偶、半导体传感器等。

其中,热敏电阻的电阻值随温度的变化而变化,通过测量其电阻值可以推算出温度值;热电偶的工作原理前文已述;半导体传感器则利用半导体材料的电性质随温度变化的特点来实现温度测量。

4. 红外测温仪红外测温仪是一种非接触式的测温元件,它利用物体发射的红外辐射来测量温度。

物体的温度越高,发射的红外辐射越强。

红外测温仪通过接收物体发射的红外辐射,并转换为电信号进行处理,从而得到物体的温度值。

红外测温仪适用于测量高温、移动物体或无法直接接触的物体的温度。

5. 光纤测温传感器光纤测温传感器是一种基于光学原理的测温元件,它通过测量光纤中的光信号变化来推算出温度值。

光纤测温传感器一般由光纤和温度敏感元件组成。

温度敏感元件会随温度变化而引起光的损耗或幅度变化,通过对光信号进行测量,可以得到温度信息。

光纤测温传感器适用于需要长距离传输或复杂环境下的温度测量。

以上所述仅是几种常见的测温元件及其工作原理的简要介绍。

热电阻与热电偶的区别

热电阻与热电偶的区别

热电阻与热电偶的区别
热电阻与热电偶的区别
区别一:测温原理不同
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

它的主要特点是测量精度高,性能稳定。

其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

热电偶将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。


区别二:热电偶与热电阻分类不同
常见的热电阻材质大多是单一金属,目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,超过150易被氧化。

热电阻的分度号有Cu50,Pt100,Pt1000等等,前面的字母是指热电阻的材质,而后面的数字则是该热电阻的电阻值。

热电阻温度计讲稿

热电阻温度计讲稿
R0=100Ω 、电阻温度系数α0=4.28×10-3℃-1分 度的;但实际的R0’=98.6 Ω 、电阻温度系数α0’ =4.25×10-3℃-1 ,求仪表示值为164.27℃ 时 的测温绝对误差为多少℃。 [提示] 利用 R=R0(1+α0t)
13.8033K~961.78℃温域的标准内插仪器
➢ 铂的电阻值与温度的关系 • 在-200~0℃范围内:
Rt R0 1 At Bt2 Ct3(t 100)
• 在0~850 ℃范围内:
Rt R0(1 At Bt2 )
➢ 铂电阻的纯度 通常用R100/R0表示。 ➢ 铂电阻的分度号: Pt 10、Pt 100、Pt 50 Pt10—表示铂电阻在0℃时的电阻值为R0=10Ω
电桥安装在仪表室内的,而热电阻Rt安 装在被测对象中,距仪表室有一定的距
离,由于两根导线电阻Ra及Rb在一个桥 臂内,铜导线电阻受温度影响较大,在
热电阻没有任何变化时,导线电阻变化
会使得平衡电阻RD相应移动,标尺上的 读数改变。
平衡状态下,考虑Ra、 Rc和Rb
Rt+ Rc =(RA+ Ra)RD/RB
(2)三线制 可以消除引出线电阻的影响;工业上多采用。
(3)四线制 不仅可消除引出线电阻的影响,还可消除连接 导线间接触电阻及其阻值变化的影响。多用于 标准铂热电阻的引出线上。
热电阻在使用中的注意事项:
为减小环境温度对线路电阻的影响,工业上常采用 三线制连接,也可以采用四线制连接。
热电阻引入显示仪表的线路电阻必须符合规定值, 否则将产生系统误差。
学习查“铂热电阻分度表” 铂热电阻分度表
(2)铜热电阻 (Cu)
➢ 铜电阻与温度的关系
• 在-50~+150℃范围内: Rt R0 (1 At Bt2 Ct3)

热电偶和热电阻的相同点和不同点

热电偶和热电阻的相同点和不同点

热电偶和热电阻的相同点和不同点热电偶和热电阻是两种常见的温度测量传感器,它们的原理和特点有相同点,也有不同点。

下面将针对这两种传感器,从功能、原理、特点、优缺点等方面进行比较。

相同点:1. 原理相似:热电偶和热电阻都是基于热电效应实现温度测量的。

热电偶是通过不同材质之间的温差产生电势差来测量温度的,而热电阻则是通过电阻随温度变化呈线性关系来测量温度的。

2. 测温范围相似:热电偶和热电阻都可用于测量宽广的温度范围,从超低温度到高温度都可以。

3. 都有工业化应用:两种传感器都有广泛的工业应用,例如汽车、化工、石油、冶金等领域。

不同点:1. 测量精度:热电阻的测量精度比热电偶更高,热电阻的误差通常在±0.1度左右,而热电偶的误差在±1度左右。

因此,在要求高精度测量的场合,热电阻更为优越。

2. 响应速度:热电偶响应速度快,随温度变化的速度也比较快,而热电阻的响应速度则较慢,随温度变化的速度也较慢。

因此,对于需要测量瞬时温度变化的场合,热电偶更适用。

3. 抗干扰性能:热电阻对电磁场干扰比热电偶更弱,具有较好的抗干扰性能,而热电偶对电磁场干扰比较敏感,容易受到外界干扰的影响。

因此,在工业领域中,热电阻通常被用来测量电磁干扰较强的场合。

4. 延伸长度:热电偶可实现一定长度的延伸,可以满足一些需要长距离测量的要求。

而热电阻由于电阻值的变化很小,一般只适用于长度短的测量。

总的来说,热电偶适用于测量范围宽、要求快速响应、价格实惠的场合;而热电阻适用于需要高精度、低干扰、低功耗的场合。

两种传感器各有优缺点,应根据实际应用场合需求选择合适的传感器。

热电偶、热电阻原理简介

热电偶、热电阻原理简介

热电阻、热电偶原理简介
一、测量原理:
热电偶的工作原理是:两种不同成分的导体两端经过焊接、形成回路,直接测温端叫测量端,接线端子端叫参比端。

当测量端和参比端存在温差时,就会在回路时产生热电流,接上显示仪表,仪表上就显示出热电偶所产生的热电动势的对应温度值。

热电偶的热电动势将随着测量端温度升高而增长,热电动势的大小只和热电偶导体材质以及两端温度有关,和热电极的长度、直径无关。

热电阻是利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度的。

热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料制成的骨架上。

当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。

二、热电偶优点:
①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50〜+1600C均可边续测量,某些特殊热电偶最低可测到-269C(如金铁银格),最高可达+2800°C(如鸨-铢)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

三、电气连接方法:
二线制;三或四线制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电偶一般用于中高温的测量,而热电阻主要是低温的测量。

采用何种,具体看看下面的介绍:
热电偶
热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:
①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成
(1)热电偶的种类
常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:
①组成热电偶的两个热电极的焊接必须牢固;
②两个热电极彼此之间应很好地绝缘,以防短路;
③补偿导线与热电偶自由端的连接要方便可靠;
④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿
由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。

因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。

在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

热电阻
热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

1、热电阻测温原理及材料
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

2、热电阻的类型
1)普通型热电阻
从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。

2)铠装热电阻
铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。

与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

3)端面热电阻
端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。

它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。

4)隔爆型热电阻
隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。

隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。

关于温度变送器,您可以看看下面的介绍:
1、温度变送器的用途
温度变送器用于温度测量,本文将温度变送器定义为应用温度传感器进行温度检测,通过转换电路将温度传感器的信号转换为标准电流信号、标准电压信号的温度测量装置。

2、温度变送器的分类
从信号输出接口上分为4~20mA,0~10mA,0~20mA,0~5V,0~10V等,或数字/频率接口和其他接口;
从结构和安装形式上分为壁挂式,风道式,探棒式;
从温度传感器和转换电路的距离上分为一体式或分体式;
还有防爆等类型产品。

3、温度变送器的基本原理
应用温度传感器进行温度检测,其温度传感器通常为热电阻、热敏电阻、集成温度传感器、半导体温度传感器等,然后通过转换电路将温度传感器的信号转换为标准电流信号或标准电压信号。

4、温度变送器的主要技术参数
温度测量范围
温度测量准确度
温度测量信号输出形式
温度变送器的结构形式和安装形式
5、温度变送器的选用
根据测量范围选择
可以参考其使用的温度传感器类型,参见温度传感器选型;
根据精度要求选择
可以参考其使用的温度传感器类型,参见温度传感器选型;
根据信号接口选择
可以选择4~20mA,0~10mA,0~20mA,0~5V,0~10V等,或数字/频率接口和其他接口;
根据结构形式和安装要求选择,如室内安装,选用壁挂型。

工作原理:
热电阻Pt100:通过感应温度变化达到阻值的变化
温度变送器:
1.通过确认阻值的不同计算出当前的温度
2.再根据热电阻的量程变送输出对应的标准信号(4-20mA)值
即:温度变化--热电阻--电阻变化--温度变送器--4~20mA信号
举个例子:Pt100的量程为:-199.9度-600.0度
温度变送器就把这个转化为标准信号后对应的4mA就是-199.9度20mA就是600.0度
通过确认变送器输出的电流大小就可以知道当前的温度值。

希望以上信息可以帮助到您!。

相关文档
最新文档