氧化锆工作原理

合集下载

氧化锆氧气传感器工作原理

氧化锆氧气传感器工作原理

氧化锆氧气传感器工作原理
氧化锆氧气传感器是一种用于测量氧气浓度的传感器,在工业自动化控制、燃气检测等领域得到广泛应用。

其工作原理主要基于氧化锆电解池的化学反应和电化学性质。

氧化锆氧气传感器由氧化锆电解池和测量电路组成。

在氧化锆电解池中,气体与电解液接触后,氧气被还原,并在电极上发生氧化反应。

这些反应会导致氧化锆电解池的电势发生变化。

测量电路通过测量电势差来确定氧气浓度。

在工作时,传感器将所测气体通入氧化锆电解池中,并在电解池内施加电压。

由于氧化锆电解池的化学反应,电极上会产生一定的电势差。

传感器会将这个电势差转换成电信号,然后通过放大、滤波和反馈控制等环节,最终得到可靠的氧气浓度值。

氧化锆氧气传感器的工作原理有一定的局限性。

这种传感器只能测量氧气浓度,不适用于其它气体。

传感器的测量精度也会受到诸如温度、湿度等环境因素的影响。

在具体应用中,需要根据实际情况选取合适的传感器,并针对具体应用场景进行相应的校准和调试。

氧化锆分析仪工作原理

氧化锆分析仪工作原理

1、氧化锆工作原理及特性:氧化锆陶瓷是一种固体电介质,它具有离子导电性质,是测量装置中将烟气氧浓度转换成电信号的关键元件。

在一定温度下,氧化锆测量管内外两侧通以氧浓度的气体,例如内侧通空气,作为参比气体,外则通过被测烟气。

当内外两侧气体的氧浓度不同时,氧化锆测管内外两侧将产生氧浓度差电势,内侧多孔性铂参比电势为正极,外侧多孔性铂电极为负极。

两根引线将氧浓差电势送至二次仪表进行放大显示,也可转换为标准信号用作其他控制。

在高温600℃以上时,氧化锆管的高氧分压面(通空气的氧化锆管内壁)发生还原反应:O2+4e→2O2- 管内壁氧化锆给出电子而带正电,生成的O2-通过氧化锆空穴到达低氧分界面。

低氧分压在氧化锆管外侧.,它的表面发生氧化反应:2O2-→O2+4e氧化反应生成电子,使管外壁电极带负电,从而产生浓差电势E。

氧浓差电势E的大小,不仅与参比气体氧分压(一般用空气,值为20.6)和烟气中的氧分压有关,还和氧化锆的工作温度有关,更为重要的是氧化锆的导电特性和温度有直接关系。

对氧化锆的导电特性——工作温度关系,一般情况下:氧化锆的导电特性——工作温度关系测试结果氧化锆工作温度/0℃ 300 350 400 450 500 550 600 650 700 750氧化锆电极内阻/Ω 136k 23k 18k 13k 8k 2.8k 400 123 44 19由此可见,温度过低时,氧化锆探头巨大的内阻影响了它的导体特,二次分析仪已无法得到准确的氧浓差电势。

为此,通常把氧化锆的理想工作温度定在650~800℃之间。

2、氧化锆氧量计的主要部件:氧化锆氧量计是由防尘装置、氧化锆管元件 ( 固体电解质元件 ) 、热电偶、加热器、校准气体导管、接线盒以及外壳壳体等主要部件组成。

整个装置采用全封闭型结构,以增加整个装置的密封性能。

材料采用耐高温、耐腐蚀的不锈钢材料制作,以提高使用寿命。

防尘装置由防尘罩和过滤器组成,能防止烟气中的灰尘进入氧化锆锆管内部,使锆管元件免受污染,并能起到缓冲气样的作用。

氧化锆氧量分析仪的工作原理

氧化锆氧量分析仪的工作原理

氧化错氧量分析仪的工作原理氧化锆氧量分析仪的工作原理自然界的氧化锆(ZrO2)矿物原料,主要有斜锆石和锆英石。

锆英石系火成岩深层矿物,颜色有淡黄、棕黄、黄绿等,比重 4.6-4.7,硬度7.5,具有强烈的金属光泽。

纯的氧化锆是一种高级耐火原料,其熔融温度约为2900 C。

纯净的氧化锆是白色固体,含有杂质时会显现灰色或淡黄色,添加显色剂还可显示各种其它颜色。

纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715 C。

氧化锆有三种晶体形态:单斜、四方、立方晶相。

常温下氧化锆只以单斜相出现,加热到1100 C左右转变为四方相,加热到更高温度会转化为立方相。

由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。

但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。

由于氧化锆材料具有高硬度,高强度,高韧性, 极高的耐磨性及耐化学腐蚀性等等优良的物化性能,氧化锆已经在陶瓷、耐火材料、机械、电子、光学、航空航天、生物、化学等等各种领域获得广泛的应用。

1989年能斯特(Nernst )发现稳定氧化锆在高温下呈现的离子导电现象。

从此氧化锆成为研究和开发应用最普遍的一种固体电解质,它已在高温技术,特别是高温测试技术上得到广泛应用。

由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1s〜0.2s),测量范围宽(从ppm到百分含量),使用温度高(600 C〜1200 °C ),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。

来自海洋兴业仪氧化锆氧探头的测氧原理氧化锆的导电机理:电解质溶液靠离子导电,具有离子导电性质的固体物质称为固体电解质。

氧化锆工作原理

氧化锆工作原理

氧化锆工作原理氧化锆是一种具有广泛应用的陶瓷材料,其优异的机械性能、热稳定性和化学稳定性使其成为许多领域的理想选择。

氧化锆的工作原理主要涉及其晶体结构和特殊的电学性质。

本文将介绍氧化锆的工作原理及其在不同领域的应用。

1. 氧化锆的晶体结构氧化锆具有稳定的晶体结构,其最常见的结构是立方晶系,也有其他变种,如四方晶系。

氧化锆的晶体结构决定了其优异的机械性能和热稳定性。

晶体结构中的离子排布对氧化锆的性能有重要影响。

2. 氧化锆的电学性质氧化锆具有高介电常数和低损耗角正切值的特殊电学性质。

这使得氧化锆成为电介质和电学器件中的重要材料。

高介电常数意味着氧化锆能够存储大量电荷,并具有很高的电容性能。

而低损耗角正切值则表示氧化锆在电场作用下几乎不吸收能量,能够实现高效的能量转换。

3. 氧化锆的热稳定性氧化锆具有出色的热稳定性,能够在高温下保持其机械性能和电学性质。

这得益于其稳定的晶体结构和高熔点。

氧化锆可以耐受高温腐蚀和氧化环境,适用于许多高温工艺和应用。

4. 氧化锆的应用领域氧化锆具有广泛的应用领域,下面将介绍其中几个典型的应用:4.1 陶瓷材料由于氧化锆具有优异的机械性能和热稳定性,它被广泛应用于陶瓷制品的制造。

氧化锆陶瓷具有高硬度和耐磨性,在工业和医疗领域中被用作零件和工具的材料。

4.2 电子器件氧化锆的特殊电学性质使其成为电子器件中的重要组成部分。

氧化锆被用作电容器、电阻器、电感器和绝缘材料。

其高介电常数和低损耗角正切值使得电子器件具有更高的性能和效率。

4.3 燃料电池氧化锆也被用作燃料电池中的电解质材料。

其高离子传导性能和化学稳定性使得燃料电池能够更高效地转化能源并减少能量损失。

4.4 催化剂支撑材料氧化锆具有高比表面积和化学稳定性,适用于作为催化剂的支撑材料。

氧化锆的表面能提供更多的活性位点,促进催化反应的进行。

总结氧化锆的工作原理主要涉及其晶体结构和特殊的电学性质。

它具有稳定的晶体结构、高介电常数、低损耗角正切值和出色的热稳定性。

氧化锆工作原理

氧化锆工作原理

氧化锆氧量分析仪工作原理及维护使用:一、前言1989年能斯特(Nernst)发现稳定氧化锆在高温下呈现的离子导电现象。

从此氧化锆成为研究和开发应用最普遍的一种固体电解质,它已在高温技术,特别是高温测试技术上得到广泛应用。

由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1s~0.2s),测量范围宽(从ppm到百分含量),使用温度高(600℃~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。

二、氧探头的测氧原理在氧化锆电解质(ZrO2管)的两侧面分别烧结上多孔铂(Pt)电极,在一定温度下,当电解质两侧氧浓度不同时,高浓度侧(空气)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧的Pt电极上放出电子,转化成氧分子,使该电极带负电。

两个电极的反应式分别为:参比侧:O2+4e——2O2-测量侧:2O2--4e——O2这样在两个电极间便产生了一定的电动势,氧化锆电解质、Pt电极及两侧不同氧浓度的气体组成氧探头即所谓氧化锆浓差电池。

两级之间的电动势E由能斯特公式求得:可E= (1)式中,EmV―浓差电池输出,n 4―电子转移数,在此为R理想气体常数,8.314 W·S/mol —T (K)F96500 C;PP1——待测气体氧浓度百分数0——参比气体氧浓度百分数—法拉第常数,—绝对温度该分式是氧探头测氧的基础,当氧化锆管处的温度被加热到600℃~1400℃时,高浓度侧气体用已知氧浓度的气体作为参比气,如用空气,则P,将此值及公式中的常数项合并,又实际氧化锆电池存在温差电势、接触电势、参比电势、极化电势,从而产生本地电势CmV)实际计算公式为:(0 =20.6% EmV)=0.0496Tln(0.2095/P1)±CmV)((C本地电势(新镐头通常为±1mV) =可见,如能测出氧探头的输出电动势E和被测气体的绝对温度T,即可算出被测气体的氧分压(浓度)P1 ,这就是氧化锆氧探头的基本检测原理。

an-0043, 氧化锆传感器工作原理与安装指南

an-0043, 氧化锆传感器工作原理与安装指南

an-0043, 氧化锆传感器工作原理与安装指南嘿!今天咱们来聊聊“an-0043, 氧化锆传感器工作原理与安装指南”!这可真是个超棒的话题呀!
首先呢,咱们得搞清楚这个氧化锆传感器到底是咋工作的!哎呀呀,其实它的工作原理说起来还挺有趣的呢!简单来讲,它是通过检测气体中的氧含量来发挥作用的。

当气体接触到传感器的探头时,里面的氧化锆材料就会发生一些神奇的化学反应,从而产生电信号!哇!是不是很神奇呀?这电信号的强度就和气体中的氧含量成正比,这样咱们就能准确地知道氧的含量啦!
那接下来,咱们再说说这安装指南!哎呀呀,这安装可不能马虎哟!在安装之前,咱们得好好准备一下工具,像螺丝刀、扳手这些可都不能少呢!然后呢,要找一个合适的安装位置,这位置可重要啦!得保证能准确检测到气体,还不能受到其他干扰,你说对不对呀?安装的时候,一定要小心谨慎,按照说明书上的步骤一步一步来,千万别着急!要是装错了,那可就麻烦啦!
还有还有呀,安装完之后,别忘了进行测试和调试!看看传感器工作是不是正常,数据是不是准确。

要是有问题,得赶紧解决,不能拖着呢!
总之,这个an-0043 氧化锆传感器的工作原理和安装指南,咱们可得好好掌握!这样才能让它发挥出最大的作用,为咱们的工作和生活带来便利!哇,是不是感觉收获满满呀!。

氧化锆工作原理

氧化锆工作原理

氧化锆工作原理
氧化锆具有良好的电绝缘性能,其工作原理主要包括以下几个方面:
1. 高介电常数:氧化锆的介电常数较高,可达到10-30之间。

这使得氧化锆可以在电子元件中作为电介质使用,用于隔离和保护电子元件。

此外,氧化锆的高介电常数也使其可以用作电容器的一种材料。

2. 耐高温性能:氧化锆具有较高的熔点和热稳定性,能够在高温环境下工作。

这使得氧化锆可以广泛应用于各种高温设备和元件中。

例如,氧化锆可用作耐高温电子陶瓷材料,用于制造热电偶、传感器等。

3. 低热导率:氧化锆的热导率相对较低,具有较好的隔热性能。

这使得氧化锆可以用作热障涂层材料,用于降低机械设备的热损失和保护元件。

4. 耐腐蚀性能:氧化锆在大多数酸、碱介质中具有良好的耐腐蚀性能。

这使得氧化锆可以用于制造化工设备中的腐蚀性介质接触部件。

此外,氧化锆还可用作腐蚀性气体分离膜的材料。

综上所述,氧化锆通过其良好的电绝缘性能、耐高温性能、低热导率和耐腐蚀性能,在各种领域都有广泛的应用。

氧化锆工作原理

氧化锆工作原理

氧化锆工作原理
氧化锆是一种重要的功能陶瓷材料,具有优异的物理化学性能和广泛的应用前景。

其工作原理主要包括晶格结构、晶相变化、导电性能和热稳定性等方面。

首先,氧化锆的晶格结构对其性能具有重要影响。

氧化锆具有多种晶型,其中
立方相和四方相是最常见的两种。

立方相氧化锆具有高密度、高硬度和良好的热稳定性,因此在高温环境下具有较好的稳定性和耐磨性;而四方相氧化锆具有较高的离子传导性能,因此在固体氧化物燃料电池等领域具有重要应用价值。

其次,氧化锆的晶相变化是其工作原理的关键。

氧化锆在不同温度下会发生晶
相变化,从而影响其物理化学性能。

例如,氧化锆在1200摄氏度以上会发生相变,从立方相转变为四方相,这种相变会导致氧化锆的离子传导性能大幅提高,因此在固体氧化物燃料电池等高温电化学器件中具有重要应用。

另外,氧化锆的导电性能也是其工作原理的重要方面。

氧化锆在高温下具有较
高的离子传导性能,可以作为固体氧化物燃料电池和固体氧化物电解池的电解质材料,实现氧离子或质子的传输。

同时,氧化锆在常温下也具有一定的导电性能,可用作氧化锆陶瓷传感器、氧化锆陶瓷加热器等应用。

最后,氧化锆的热稳定性也是其工作原理的重要方面。

氧化锆具有较高的熔点
和热稳定性,可以在高温环境下保持稳定的物理化学性能,因此在航空航天、石油化工等领域具有重要应用。

总之,氧化锆作为一种重要的功能陶瓷材料,其工作原理涉及晶格结构、晶相
变化、导电性能和热稳定性等多个方面,具有广泛的应用前景和重要的科学研究价值。

希望本文对氧化锆工作原理的理解有所帮助,同时也能够促进氧化锆材料的进一步研究和应用。

氧化锆

氧化锆
O2 4e 2O 2 (还原反应)
到达电极2后,在电极2上(阳极——进行氧化反应的电极)将产生下列反应:
2O 2 O2 4e (氧化反应)
这样在电极上产生了电荷的积累,从而在两极板间建立了电场,此电场将阻止这种 迁移的进一步进行,直至达到动态平衡状态,此时在两极板间形成电势。
氧浓差电势的大小可由能斯特(Nerenst)公式计算得出:
二、氧化锆探头
氧化锆测量含氧量的基本原理是利用所谓的“氧浓差电势”,即在一 块氧化锆两侧分别附以多孔的铂电极(又称“铂黑”),并使其处于高 温下。如果两侧气体中的含氧量不同,那么在两电极间就会出现电动 势。此电动势是由于固体电解质两侧气体的含氧浓度不同而产生的, 故叫氧浓差电势,这样的装置叫做氧浓差电池。
E RT ln p2 / p
由于在混合气体中nF,某气p体1 组/ p分的分压力由与上式总可压知,力当氧之比等 浓差电池工作温度T
,某气由体于在组混分合的气体分中压,力某与气体总组压分力的分之压比力等与于总压该力组之分比一等的定于,体该以积及组参分浓比度气 ,即
的体积浓度,即
p / p p , 体的氧浓度一定时, 1 电池1 产生的氧浓差2
以(6—则 2)式可写1 为p1 / p ,2 p2 / p
电势与被测气体的 含氧浓度(即含氧 量)成单值函数关
系。通过测量氧浓
RT ln 2
E RT ln 2 nF 1
差电势E就可以得到 被测气体的含氧量。
(6—3)
由于空气的含氧量为20.8%,且成本低廉,所以在分析炉烟中的 含氧量时,一般常用空气作为参比气体。下图是以空气作为参比气体 的情况下,不同温度下,氧浓差电势与被测气体的含氧量之间的关系。
p1
p2> p1

氧化锆的工作原理

氧化锆的工作原理

氧化锆的工作原理
氧化锆是一种常用的陶瓷材料,具有优良的物理化学性质和工程应用价值。

它的工作原理主要涉及以下几个方面:
1. 高温稳定性:氧化锆具有良好的高温稳定性,能够在高温下保持其完整的晶体结构和力学性能。

这使得氧化锆可以在高温环境下工作,例如用于陶瓷加热元件、高温装备的绝缘材料等。

2. 电绝缘性:氧化锆具有很高的电绝缘性,能够有效地阻止电流的流动。

这使得氧化锆可以用作电气绝缘材料,例如用于电容器、电子元件的绝缘层材料等。

3. 低热导率:氧化锆的热导率很低,能够有效地阻止热量的传导。

这使得氧化锆可以用于制造保温材料、热障涂层等,具有良好的隔热性能。

4. 高硬度:氧化锆具有很高的硬度,接近于金刚石。

这使得氧化锆可以用于制造切削工具、陶瓷轴承等,在高速摩擦、切削等工况下具有较好的耐磨性能。

5. 生物相容性:氧化锆具有良好的生物相容性,不会对人体造成显著的毒副作用。

这使得氧化锆可以用于生物医学领域,例如制造人工关节、牙科修复材料等。

综上所述,氧化锆的工作原理主要包括高温稳定性、电绝缘性、低热导率、高硬度和生物相容性等方面,这些性质使得氧化锆在各个领域具有广泛的应用前景。

sst氧化锆工作原理

sst氧化锆工作原理

sst氧化锆工作原理SST氧化锆工作原理简介SST氧化锆是一种常用于氧气测量的传感器材料。

它具有高温稳定性、良好的选择性和快速响应等特点,广泛应用于工业领域。

本文将从浅入深地解释SST氧化锆的工作原理。

氧化锆基础知识在介绍SST氧化锆工作原理之前,我们先了解一些关于氧化锆的基础知识。

1.氧化锆:氧化锆(Zirconia)是一种高温稳定的陶瓷材料,具有优异的机械性能和导电性能。

2.晶体结构:氧化锆晶体结构主要有单斜晶体、立方晶体和脸心立方晶体等多种形式。

其中,脸心立方晶体常用于氧化锆传感器。

3.离子导电性:氧化锆具有高离子导电性,即在高温下,氧离子能够在氧化锆晶体中移动。

SST氧化锆工作原理SST氧化锆传感器利用氧化锆的离子导电性来测量气体中的氧气含量。

其工作原理可归纳为以下几个步骤:1.传感器结构:SST氧化锆传感器通常由两个氧化锆电极及一定厚度的氧化锆电解质组成。

其中,一个电极(称为参比电极)所接触的氧气供应为稳定状态,用于参比;另一个电极(称为测量电极)所接触的氧气供应则为待测状态。

2.导电性差异:由于氧化锆的离子导电性,两个电极间存在差异的电阻和电荷传输。

在稳定状态下,参比电极和测量电极之间的电流差异很小。

3.氧气作用:当氧气与测量电极接触时,氧气分子会被还原成氧离子,并在氧化锆晶体中移动。

4.电导率变化:测量电极及周围的氧化锆电解质区域的电导率会随着氧气浓度的变化而发生改变。

测量电极的电流差异将随之增大,这表明氧气浓度的增加。

5.测量信号:通过测量电流差异的变化,并进行适当的计算,就可以获得氧气含量的测量信号。

结论SST氧化锆传感器利用氧化锆的离子导电性原理,能够快速、准确地测量气体中的氧气含量。

通过对氧气作用下电导率的变化进行测量,可以得出相应的测量信号。

这使得SST氧化锆在工业领域中得到了广泛应用。

注意:本文内容仅供参考,具体的应用需要结合实际情况进行调整。

SST氧化锆的优点SST氧化锆传感器具有以下几个优点,使得其在工业领域中得到广泛应用:1.高温稳定性:氧化锆材料具有出色的高温稳定性,能够在高温环境下正常工作,保证长期稳定的性能。

氧化锆工作原理

氧化锆工作原理

氧化锆工作原理氧化锆是一种重要的功能性材料,具有优异的物理和化学性质,广泛应用于各个领域。

在工业上,氧化锆主要用于制备耐磨材料、耐火材料、陶瓷颗粒、电解质和催化剂等;在医疗领域,氧化锆被用于制备人工关节、牙科材料和医疗器械等。

本文将详细介绍氧化锆的工作原理,以及其在不同领域中的应用。

一、氧化锆的基本性质氧化锆属于金属氧化物,化学式为ZrO2。

它的晶体结构分为立方相和四方相两种形态。

立方相氧化锆常用于高温热电偶和陶瓷领域,而四方相氧化锆则广泛应用于固体氧化物燃料电池、电子陶瓷和医疗领域等。

氧化锆具有许多优异的物理性质,如高熔点、高电阻率、低热膨胀系数和良好的热稳定性。

这些性质使得氧化锆成为一种理想的材料,适用于高温环境和复杂的化学条件。

此外,氧化锆还具有较高的硬度和耐磨性,使其在制备耐磨材料和陶瓷领域中有广泛应用。

二、氧化锆的工作原理1. 电学性质氧化锆是一种电绝缘体,具有较高的电阻率和电介质常数。

在电磁场作用下,氧化锆会发生极化现象,形成电偶极矩。

这种极化作用使得氧化锆在电子器件中具有电学隔离和绝缘的作用。

因此,氧化锆广泛应用于电子器件的绝缘层和电隔离材料。

2. 热学性质氧化锆具有较低的热导率和较高的热膨胀系数。

这使得氧化锆能够在高温环境下稳定工作,不易出现热失控和热损坏。

因此,氧化锆常用于高温热电偶、热保护装置和高温陶瓷领域。

3. 化学性质氧化锆属于惰性金属氧化物,具有较高的化学稳定性。

氧化锆能够与许多化学物质发生化学反应,形成稳定的化合物。

这种化学性质使得氧化锆在催化剂、电解质和酸碱传感器等领域有广泛应用。

三、氧化锆的应用领域1. 医疗领域由于氧化锆具有良好的生物相容性和耐腐蚀性,它被广泛应用于医疗领域。

氧化锆可用于制备人工关节、牙科材料和医疗器械等,具有优异的力学性能和生物相容性,可提供良好的治疗效果和生活质量。

2. 陶瓷领域氧化锆具有良好的热稳定性、机械强度和耐磨性,常用于制备陶瓷颗粒。

氧化锆工作原理

氧化锆工作原理

氧化锆氧量分析仪工作原理及维护使用:一、前言1989年能斯特(Nernst)发现稳定氧化锆在高温下呈现的离子导电现象。

从此氧化锆成为研究和开发应用最普遍的一种固体电解质,它已在高温技术,特别是高温测试技术上得到广泛应用。

由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1s~0.2s),测量范围宽(从ppm到百分含量),使用温度高(600℃~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。

二、氧探头的测氧原理在氧化锆电解质(ZrO2管)的两侧面分别烧结上多孔铂(Pt)电极,在一定温度下,当电解质两侧氧浓度不同时,高浓度侧(空气)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧的Pt电极上放出电子,转化成氧分子,使该电极带负电。

两个电极的反应式分别为:参比侧:O2+4e——2O2-测量侧:2O2--4e——O2这样在两个电极间便产生了一定的电动势,氧化锆电解质、Pt电极及两侧不同氧浓度的气体组成氧探头即所谓氧化锆浓差电池。

两级之间的电动势E由能斯特公式求得:可E= (1)式中,EmV―浓差电池输出,n 4―电子转移数,在此为R理想气体常数,8.314 W·S/mol —T (K)F96500 C;PP1——待测气体氧浓度百分数0——参比气体氧浓度百分数—法拉第常数,—绝对温度该分式是氧探头测氧的基础,当氧化锆管处的温度被加热到600℃~1400℃时,高浓度侧气体用已知氧浓度的气体作为参比气,如用空气,则P,将此值及公式中的常数项合并,又实际氧化锆电池存在温差电势、接触电势、参比电势、极化电势,从而产生本地电势CmV)实际计算公式为:(0 =20.6% EmV)=0.0496Tln(0.2095/P1)±CmV)((C本地电势(新镐头通常为±1mV) =可见,如能测出氧探头的输出电动势E和被测气体的绝对温度T,即可算出被测气体的氧分压(浓度)P1 ,这就是氧化锆氧探头的基本检测原理。

氧化锆式氧传感器传感器的工作原理

氧化锆式氧传感器传感器的工作原理

氧化锆式氧传感器传感器的工作原理氧化锆式氧传感器是一种常见的气体传感器,广泛用于氧气浓度检测、燃烧控制以及空气质量检测等领域。

本文将介绍氧化锆式氧传感器的工作原理。

氧化锆式氧传感器的基本结构氧化锆式氧传感器的主要结构包括探头、氧离子传输管和阴、阳极。

其中,探头由氧化锆陶瓷和铂电极构成,氧离子传输管则是由硅酸盐陶瓷制成,阴、阳极则分别由金属银和金属铂构成。

工作原理首先,氧化锆作为氧离子的传输介质,其极性与氧离子一致,即氧离子在氧化锆中呈现出负电荷。

而在探头上,铂电极对氧气与氧化锆之间的氧离子的输送过程进行检测,通过检测,可以了解氧气的浓度。

简单来说,氧化锆式氧传感器的工作原理使用氧化锆陶瓷充当离子传输介质,通过氧离子在氧化锆中的传输,等效于对氧气进行浓度检测。

在实际应用中,氧化锆式氧传感器需要使用电源进行驱动,并通过接收电极上的反馈信号来计算氧气的浓度,然后再输出结果。

同时,为了保证氧化锆的稳定性和使用寿命,氧化锆式氧传感器还需要进行定期的校准和维护。

氧化锆式氧传感器的优点相较于其他氧气传感器,氧化锆式氧传感器具有许多优点,包括:•灵敏度高:氧化锆式氧传感器对氧气的检测灵敏度非常高,可以检测非常低的氧气浓度。

•反应快:氧化锆式氧传感器的反应速度快,可以在数秒内输出准确的检测结果。

•稳定可靠:氧化锆式氧传感器具有良好的稳定性和可靠性,可以在长时间内稳定地工作。

•体积小:相较于其他氧气传感器,氧化锆式氧传感器体积更小,易于集成和使用。

结论氧化锆式氧传感器是一种常见的气体传感器,具有高灵敏度、快速反应、稳定可靠以及小体积等优点。

其工作原理基于氧离子在氧化锆中的传输过程,通过对氧气浓度的检测,可以在氧气浓度检测、燃烧控制以及空气质量检测等领域中发挥重要的作用。

氧化锆分析仪原理及常见故障处理方法

氧化锆分析仪原理及常见故障处理方法

04 氧化锆分析仪维护与保养
日常维护与保养
清洁
保持仪器表面清洁,避免灰尘和污垢影响仪器 正常工作。
校准
定期进行校准,确保仪器测量准确性和稳定性。
防潮防震
避免仪器长时间处于潮湿环境或受到强烈震动。
定期检查与校准
1 2
检查传感器
定期检查传感器是否正常工作,如有异常及时更 换。
校准气体
定期使用标准气体对仪器进行校准,确保测量准 确性。
定期清洗传感器,保持清洁,避免污染。
传感器损坏
如发现传感器损坏,应及时更换。
电源故障处理方法
01
02
03
电源线接触不良
检查电源线是否接触良好, 如有接触不良,及时修复。
电源故障
如发现电源故障,应及时 检查电源是否正常,如有 异常,及时修复。
电源适配器故障
如发现电源适配器故障, 应及时更换。
数据传输故障处理方法
技术创新与升级
智能化技术
利用人工智能、大数据等技术提升分析仪的自动化和智能化水平, 提高检测精度和效率。
新型传感器技术
研发更灵敏、更稳定的传感器,提高分析仪的响应速度和稳定性。
微型化技术
减小分析仪的体积和重量,使其更便于携带和使用。
应用领域的拓展
环境监测
拓展在空气质量、水质监测等领域的应用,为环境保护提供有力支 持。
03
温度控制是关键,需保持恒温以获得准确测量结果。
氧化锆分析仪的应用领域
工业炉窑
实验室分析
用于监测燃烧过程中气体成分,优化 燃烧效率。
用于科研和实验中气体成分的精确测 量。
环保监测
检测工业废气中的氧含量,控制污染 物排放。
02 氧化锆分析仪常见故障及 原因

氧化锆工作原理

氧化锆工作原理

氧化锆工作原理氧化锆是一种非常重要的陶瓷材料,具有优异的耐高温、耐腐蚀和机械性能,因此被广泛应用于各种工业领域。

在了解氧化锆的工作原理之前,我们首先需要了解一些基本的概念和知识。

首先,氧化锆是由氧化锆粉末经过成型、烧结等工艺制成的一种陶瓷材料。

它具有高硬度、高熔点、低热导率等特点,因此在高温、腐蚀性环境下具有良好的稳定性和耐久性。

其次,氧化锆的工作原理主要与其晶体结构和化学性质有关。

氧化锆具有多种晶型,其中最常见的是单斜晶型和立方晶型。

这些晶型的不同会影响氧化锆的物理性能和化学性质,进而影响其在工程领域的应用。

在工程领域中,氧化锆主要用作结构材料、电子材料和功能材料。

作为结构材料,氧化锆常用于制造高温、腐蚀性环境下的零部件,如航空发动机的涡轮叶片、化工设备的耐腐蚀衬里等。

作为电子材料,氧化锆常用于制造高频电容器、介质陶瓷等器件。

作为功能材料,氧化锆常用于制造高温传感器、催化剂载体等产品。

氧化锆的工作原理主要包括以下几个方面:1. 结构特性,氧化锆具有高硬度、高熔点、低热导率等特点,这些特性使其在高温、腐蚀性环境下具有良好的稳定性和耐久性。

2. 化学性质,氧化锆具有良好的化学稳定性,能够抵抗大多数酸碱介质的腐蚀,因此在化工设备、核工程等领域有重要的应用价值。

3. 晶体结构,氧化锆具有多种晶型,不同的晶型会影响其物理性能和化学性质,进而影响其在工程领域的应用。

4. 应用领域,氧化锆在结构材料、电子材料和功能材料方面都有重要的应用价值,不同的应用领域对氧化锆的要求也有所不同。

总的来说,氧化锆的工作原理主要取决于其结构特性、化学性质、晶体结构和应用领域。

了解这些原理,有助于我们更好地理解氧化锆材料的特点和优势,进而更好地应用和推广这一重要的工程材料。

氧化锆氧量计工作原理

氧化锆氧量计工作原理

氧化锆氧量计中的氧化锆有三种晶体形态:单斜、四方、立方晶相,常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,但是如果添加稳定剂,在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。

下面由安徽康斐尔电气有限公司为您介绍氧化锆氧量剂的工作原理,希望给您带来一定程度上的帮助。

1、氧化锆氧探头的测氧原理氧化锆的导电机理:电解质溶液靠离子导电,具有离子导电性质的固体物质称为固体电解质。

固体电解质是离子晶体结构,靠空穴使离子运动导电,与P型半导体空穴导电的机理相似。

纯氧化锆(ZrO2)不导电,掺杂一定比例的低价金属物作为稳定剂,如氧化钙(CaO2)、氧化镁(MgO)、氧化钇(Y2O3),就具有高温导电性,成为氧化锆固体电解质。

为什么加入稳定剂后,氧化锆就会具有很高的离子导电性呢?这是因为,掺有少量CaO2 的ZrO2混合物,在结晶过程中,钙离子进入立方晶体中,置换了锆离子。

由于锆离子是+4价,而钙离子是+2价,一个钙离子进入晶体,只带入了一个氧离子,而被置换出来的锆离子带出了两个氧离子,结果,在晶体中便留下了一个氧离子空穴。

2、氧化锆氧传感器工作原理在氧化锆电解质(ZrO2管)的两侧面分别烧结上多孔铂(Pt)电极,测量电池本体分为3层:铂(电极)─氧化锆(电解质)─铂(电极)。

铂电极是多孔性的。

烟道气体通过过滤器或校验气体通过传导管进入测量电池被测气体一侧,而另一侧为参比空气(含氧20.60%)。

两种含氧浓度不同的气体作用在测量电池,便产生一个以对数为规律的电势(两侧的氧浓度差愈大, 电势信号愈大)。

毫伏信号经氧分析仪转换成0—10mA或4-20mA标准电流。

此电流由氧分析仪接线端子输出。

安徽康斐尔电气有限公司位于长江之滨的的文明城市天长市,是集科技攻关、新品研发、制造营销、出口为一体的生产型企业。

主要产品:电力电缆、控制电缆、计算机电缆、核电站用1E级和非1E 级电力电缆。

仪器仪表系列:压力变送器、压力表系列、双金温度计、无纸记录仪、工业热电偶、仪表保护箱、温度传感器等。

氧化锆氧气传感器工作原理

氧化锆氧气传感器工作原理

氧化锆氧气传感器工作原理
氧化锆氧气传感器是一种常用的氧气检测仪器,它利用氧化锆在一定温度下与氧气发生反应的特性,通过测量氧化锆电极的电压信号来确定氧气浓度。

具体来说,氧化锆电极是由一对氧化锆材料构成的,其中一个氧化锆电极与环境中的氧气反应,另一个氧化锆电极则作为参照电极。

当氧气与氧化锆电极发生反应时,氧化锆电极的电势会发生变化,通过测量这种电势变化,可以计算出氧气浓度。

氧化锆氧气传感器具有响应速度快、高精度、可靠性高等优点,已广泛应用于化工、医疗、环保等领域。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化锆氧量分析仪工作原理及维护使用:一、前言1989年能斯特(Nernst)发现稳定氧化锆在高温下呈现的离子导电现象。

从此氧化锆成为研究和开发应用最普遍的一种固体电解质,它已在高温技术,特别是高温测试技术上得到广泛应用。

由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1s~0.2s),测量范围宽(从ppm到百分含量),使用温度高(600℃~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。

二、氧探头的测氧原理在氧化锆电解质(ZrO2管)的两侧面分别烧结上多孔铂(Pt)电极,在一定温度下,当电解质两侧氧浓度不同时,高浓度侧(空气)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧的Pt电极上放出电子,转化成氧分子,使该电极带负电。

两个电极的反应式分别为:参比侧:O2+4e——2O2-测量侧:2O2--4e——O2这样在两个电极间便产生了一定的电动势,氧化锆电解质、Pt电极及两侧不同氧浓度的气体组成氧探头即所谓氧化锆浓差电池。

两级之间的电动势E由能斯特公式求得:可E= (1)式中,EmV―浓差电池输出,n 4―电子转移数,在此为R理想气体常数,8.314 W·S/mol —T (K)F96500 C;PP1——待测气体氧浓度百分数0——参比气体氧浓度百分数—法拉第常数,—绝对温度该分式是氧探头测氧的基础,当氧化锆管处的温度被加热到600℃~1400℃时,高浓度侧气体用已知氧浓度的气体作为参比气,如用空气,则P,将此值及公式中的常数项合并,又实际氧化锆电池存在温差电势、接触电势、参比电势、极化电势,从而产生本地电势CmV)实际计算公式为:(0 =20.6% EmV)=0.0496Tln(0.2095/P1)±CmV)((C本地电势(新镐头通常为±1mV) =可见,如能测出氧探头的输出电动势E和被测气体的绝对温度T,即可算出被测气体的氧分压(浓度)P1 ,这就是氧化锆氧探头的基本检测原理。

三、氧化锆氧探头的结构类型及工作原理按检测方式的不同,氧化锆氧探头分为两大类:采样检测式氧探头及直插式氧探头。

1、采样检测式氧探头采样检测方式是通过导引管,将被测气体导入氧化锆检测室,再通过加热元件把氧化锆加热到工作温度(750℃以上)。

氧化锆一般采用管状,电极采用多孔铂电极。

其优点是不受检测气体温度的影响,通过采用不同的导流管可以检测各种温度气体中的氧含量,这种灵活性被运用在许多工业在线检测上。

其缺点是反应时间慢;结构复杂,容易影响检测精度;在被检测气体杂质较多时,采样管容易堵塞;多孔铂电极容易受到气体中的硫,砷等的腐蚀以及细小粉尘的堵塞而失效;加热器一般用电炉丝加热,寿命不长。

在被检测气体温度较低(0℃~650℃),或被测气体较清洁时,适宜采样式检测方式,如制氮机测氧,实验室测氧等。

2、直插检测式氧探头直插式检测是将氧化锆直接插入高温被测气体,直接检测气体中的氧含量,这种检测方式适宜被检测气体温度在700℃~1150℃时(特殊结构还可以用于1400℃的高温),它利用被测气体的高温使氧化锆达到工作温度,不需另外用加热器(如图3)。

直插式氧探头的技术关键是陶瓷材料的高温密封和电极问题。

以下列举了两种直插式氧探头的结构形式。

(1)整体氧化锆管该形式是从采样检测方式中采用的氧化锆管的形式上发展起来的,就是将原来的氧化锆管加长,使氧化锆可以直接伸到高温被测气体中。

这种结构无需考虑高温密封问题。

(2)直插式氧化锆氧探头由于需要将氧化锆直接插入检测气体中,对氧探头的长度有较高要求,其有效长度在500mm~1000mm左右,特殊的环境长度可达1500mm。

且检测精度,工作稳定性和使用寿命都有很高的要求,因此直插式氧探头很难采用传统氧化锆氧探头的整体氧化锆管状结构,而多采取技术要求较高的氧化锆和氧化铝管连接的结构。

密封性能是这种氧化锆氧探头的最关键技术之一。

目前国际上最先进的连接方式,是将氧化锆与氧化铝管永久的焊接在一起,其密封性能极佳,与采样式检测方式比,直插式检测有显而易见的优点:氧化锆直接接触气体,检测精度高,反应速度快,维护量较小。

四、氧探头的工业应用1、在工业锅炉、加热炉上的应用氧探头使用时,引入被测气体的方式有直插式和采样检测式两种。

直插式响应时间短,不需要加热器,结构简单,小型轻便,但要求同时检测被测气体的温度。

采样检测式由于氧探头的温度由加热器控制,因此测量精度高,工作可靠,但响应时间取决于气体的流量。

直插式氧分析器已广泛应用在锅炉和加热炉的烟气含氧量的测定(如图4),作此用途的氧探头多采用管状结构,此管可以两端开口,也可以单端开口,目前市场出现最多的是后一种。

ZrO2管内外壁上涂有多孔Pt电极,由内外电极分别向管端引伸并在端部接出Ni Cr丝作信号输出用,从而控制燃烧系统实现低氧燃烧,达到降低热能损失,节约能源的目的。

五、氧传感器的安装合理的安装是保证氧传感器可靠运行的关键,许多使用问题均由于氧传感器安装不当造成的,1、采样测量点确定测量点是首要的工作,它应遵循如下几项原则:(1)选择的测量点要求能正确反映所检测的炉内气体,以保证氧传感器输出信号的真实性,尽量避开回风死角;(2)测量点不可太靠近燃烧点或喷头等部位,这些部位的气体处于剧烈反应中,会造成氧传感器检测值剧烈波动失真;也不要过于靠近风机等产气设备,以免电机的震动冲刷损坏传感器;(3)避免放在可能碰撞的位置,以免碰撞损坏探头,保证传感器的安全;2、氧传感器的安装、连接方式(1)氧探头的安装可采用水平或垂直方式,其中垂直安装较理想。

不管采用何种方式,探头采样管引导板的方向应该尽量正对被测气流的方向,在初始安装的时,先通过了解工艺,确定基本方向。

然后在系统通电加热探头以后,旋转采样管方向,使用数字万用表观察输出氧电势的波动情况来最终确定比较好的引导方向。

(2)氧传感器安装所用接头为专用法兰接头,配装石棉垫压接,以确保密封,否则因为一般炉内为负压,该处法兰接头处漏气会影响测量精度或造成信号波动。

(3)氧传感器的信号引出线最好用屏蔽线,以消除干扰。

最佳方式是使用2根2芯电缆,一根2芯屏蔽电缆接氧电势输出信号,一根2芯KVV控制电缆接探头加热连接端;如果现场条件不具备可直接使用一根4芯KVV电缆连接探头氧电势信号和加热端。

(4)氧探头的标气口平时关闭,只在标定气体的时候使用;吹扫气口连接气泵或者压缩空气管路,吹扫口进气一般用一个电磁阀等阀门控制,一定周期开启一次,通入气体吹扫采样管,探头正常检测时阀门关闭,不能有其他气体进入采样管。

使用厂方的压缩空气吹扫探头必须保证压缩空气中不含有水份,即对所采用的压缩空气必须进行气水分离处理。

六、氧传感器的使用和维护1、连接加热控制采样检测式氧探头,只有在氧传感器连接了加热控制以后才能正常工作,冷态下输出的是随机信号,不代表任何意义,氧传感器在接入加热控制以后,在室温条件下既可以开始正常的气体检测。

一般的探头调零就是在室温下,加热探头以后,通过对空气的测量,用数字万用表测量此时探头输出毫伏值,此数值就是该探头的零位偏差数值,在显示仪表中需要加入该零位偏差来修正仪表显示的氧浓度。

2、新装或更换氧传感器时的注意事项新装或更换氧传感器时,均应校正氧分析仪的氧浓度显示值。

不进行此项工作,更换新的传感器后,氧分析仪检测的氧浓度可能会与实际浓度产生偏差,从而影响测量。

3、氧浓度的修正原理及方法氧传感器直接测量输出的是被测气体的浓度与标准空气差电势数值,我们称为氧电势,该电势数值在零点(即空气测量)时不同的探头起始输出电势就存在偏差,而输出电势经过模型转换输出氧浓度时也可能存在误差,因此在氧分析仪中对探头信号进行标定修正就是很必要的工作,否则显示氧浓度与实际被测气体的氧浓度就会存在较大偏差,满足不了现场生产的需要,甚至误导控制影响生产。

具体的修正一般通过标准气体进行标定,方法是将计量核定确认的标准气体通过标气口通入探头,测量此时输出氧电势及仪表显示氧浓度,仪表显示氧浓度应该与标准气体浓度相同,存在偏差则修正仪表线性参数,标准计量要求最少使用三种不同浓度标准气体标定系统,这样经过三次标定重复修正好系统线性,保证系统正常工作。

4、积尘对氧传感器的影响及吹扫清除方法由于氧传感器是长期在线检测测量的器件,锅炉等设备(尤其是煤燃烧炉或者烧粉窑炉等)产生的粉尘会堵塞导气采样管道,造成测量的数值失真甚至无法测量,此时必须定期对采样管中的积尘进行吹扫处理,吹扫时间的长短视积灰程度确定,这种吹扫方法要求氧分析仪具有相应功能或者配套使用氧传感器的维护装置,如果没有这些装置只能安装手动阀门控制压缩空气或气泵定期通入吹扫气口对探头进行除尘工作,但此时必须注意以下情况:(1)由于在吹扫的过程中,氧传感器的氧电势会下降,最低有可能会降到1、2mV,这时检测的氧电势不代表炉内的气氛,此点必须要注意;(2)吹扫空气的流量要保证能够去除积灰,吹扫过程中可注意氧传感器的氧电势输出值,如果氧电势值始终没有下降,表明空气流量太小,积尘没有清理,应予以调节或者检查吹扫管道,可能吹扫管道已经堵死;(3)吹扫口的通道是与炉内直接相通的,每次在吹扫完毕后,应关闭阀门,堵死吹扫孔,防止因炉内负压空气进入,影响氧传感器的检测。

在分析氧传感器的好坏时应将其视为一个单独的检测部件。

在检测氧传感器的氧电势时应把与氧传感器连接的所有导线断开,用高内阻的数字表在氧传感器的输出端直接检测氧电势。

通过检测氧电势,与正常使用时的数值相比较。

七、实际运行情况自2003年以来,我厂裂解炉采用了ZGP2+ZDT高温型直插式氧化锆分析仪,主要用于烟气氧含量测量,参与裂解炉的燃烧控制,运行稳定可靠,2005年5月,发现指示值偏差较大,均为正偏差,判断为气路泄漏,在标准气管路上通零点气,发现转子流量计泄漏,由于测量状态下系统内呈负压而使外界空气进入,因空气中氧的体积分数高,使得测量值偏高,处理后正常。

实践中总结几点注意事项:⑴锆管要求在750℃下才能正常工作,因此仪表应保持恒温;⑵气体管路不得泄漏;⑶保持喷射器气源压力稳定在0.15MPa;⑷标准气校验时应关闭喷射器气源,测量时打开;⑸测量气中存在H2、CO、CH4 等可燃气体会使测量结果偏低。

八、结论氧化锆测氧仪具有结构简单,响应时间短,测量范围宽,使用温度高,运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。

相关文档
最新文档