光纤特性及传输试验
光纤的传输特性
![光纤的传输特性](https://img.taocdn.com/s3/m/410d9c4a964bcf84b9d57b97.png)
光纤的传输特性光纤的传输特性包括损耗、色散、衰减、偏振和非线性效应等,其中,损耗和色散是光纤最重要的传输特性。
损耗限制系统的传输距离,色散限制系统的传输容量。
(1)光纤的损耗特性。
在光发射机和接收机之间由光缆吸收、反射、散射和辐射的信号功率被认为是损耗。
光纤损耗是光纤传输系统中限制中继距离的主要因素之一。
下表列出了3种石英光纤的典型损耗值。
(2)光纤的色散特性。
色散是光纤的一个重要参数,它会引起传输信号的畸变,使通信质量变差,限制通信容量与距离,特别是对高速和长距离光纤通信系统的影响更为突出。
光纤色散的产生涉及多方面的原因,这里只介绍模式色散、材料色散和波导色散。
①模式色散。
模式色散是指光在多模光纤中传输时会存在许多种传播模式,因为每种传播模式在传输过程中都具有不同的轴向传输速度,所以虽然在输入端同时发送光脉冲信号,但光脉冲信号到达接收端的时间却不同,于是产生了时延,使光脉冲发生展宽与畸变。
②材料色散。
材料色散是由构成纤芯的材料对不同波长的光波所呈现的不同折射率造成的,波长短则折射率大,波长长则折射率小。
就目前的技术水平而言,光源尚不能达到严格单频发射的程度,因此无论谱线宽度多么狭窄的光源器件,它所发出的光也会包含多根谱线(多种频率成分),只不过光波长的数量以及各光波长的功率所占的比例不同而已。
每根谱线都会受到光纤色散的作用,而接收端不可能对每根谱线受光纤色散作用所造成的畸变进行理想均衡,故会产生脉冲展宽现象。
③波导色散。
波导色散是指由光纤的波导结构对不同波长的光产生的色散作用。
波导结构是指光纤的纤芯与包层直径的大小、光纤的横截面折射率分布规律等。
这种色散通常很小,可以忽略不计。
光纤通信中光纤特性分析
![光纤通信中光纤特性分析](https://img.taocdn.com/s3/m/60543bc9dd36a32d727581d1.png)
光纤通信中光纤特性分析光纤通信技术自1970年在我国开始用于通信传输,发展到现在只有短短的三十年时间,但是却已经取得了极其惊人的发展。
由于光纤通信较之其他通信方式具有通信容量大、中继距离长、保密性好且适应能力强等优点,且是选用带宽极宽的光波作为传送信息的载体,为光纤通信技术在我国的推广和使用提供了必要的前提条件。
为了能够更好的认识光纤通信技术,让光纤通信技术向着更高水平的、更高阶段的方向发展,我们可以从光纤的几个特性开始入手。
经过多年的研究和发展,相关工作人员发现光纤的特性主要体现在三个方面,分别是在几何方面的特性、光学方面的特性与传输方面的特性,这三方面特性中又有着极具代表性的特性,分别是非线性特性、色散以及衰耗系数。
一、光纤通信技术第一,光纤通信技术的概述。
从光纤通信的组成结构上来看,主要是由光纤、光源和光检测器这三种通信的基本物质要素构成的,由于是以一种光导纤维为传输媒介的“有线”光通信,所以又可以称之为光导纤维通信。
其中光纤又是包含了内芯和包层两个主要部分。
内芯一般为几十微米直至几微米,所占用的体积非常小,而外面层主要是起保护光纤的作用,因为光纤通信系统所使用的光缆不同于普通的使用单根的光纤的光缆,它使用的是由许多光纤聚集在一起的组成的一组光缆,很有效的杜绝了信息在传播过程中出现信息泄露的现象。
其中在实际应用中,不仅根据光纤自身的制造工艺进行分类,还可以按照光纤的组成材料和光学特性进行分类。
总之,光纤通信技术在我国的发展正在不断的完善过程中。
第二,光纤通信技术的特点:首先是拥有相比于铜线或电缆的极宽频带和超大容量的通信存储空间,科学技术快速发展的今天,我们已经能够使用密集波分复用技术最大化地增添了了光纤的传输容量,解决因终端设备的电子瓶颈效导致光纤自身的巨大优势未被使用的问题,尤其是对于单波长光纤通信系统。
然后是合适的长中继距离,传输损耗比其它任何传输介质的损耗都要低出很多,而且如果将来能够采用非石英系统极低损耗光纤,将让光纤通信技术的低损耗更上一层楼。
光纤特性及传输试验
![光纤特性及传输试验](https://img.taocdn.com/s3/m/004b19f9c67da26925c52cc58bd63186bceb9282.png)
光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进 行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。
不管用什么方式调制,调制后 的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹 的带宽。
载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。
能够用作无线电通信的频率 资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。
通 信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波 和亚毫米波时遇到了困难。
光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信 无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。
与用电缆传输电信号相比,光纤通信具有通信容量大、传输距离长、价格低廉、重量轻、易敷 设、抗干扰、保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信 息社会。
实验目的1 . 了解光纤通信的原理及基本特性。
2 .测量半导体激光器的伏安特性,电光转换特性。
3 .测量光电二极管的伏安特性。
4 .基带(幅度)调制传输实验。
5 .频率调制传输实验。
6 .音频信号传输实验。
7 .数字信号传输实验。
实验原理1.光纤光纤是由纤芯、包层、防护层组成的同心圆柱体,横 截面如图1所示。
纤芯与包层材料大多为高纯度的石英玻 璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光 波导效应,使大部分的光被束缚在纤芯中传输。
若纤芯的 折射率分布是均匀的,在纤芯与包层的界面处折射率突变, 称为阶跃型光纤:若纤芯从中心的高折射率逐渐变到边缘 与包层折射率一致,称为渐变型光纤。
若纤芯直径小于 1011m ,只有一种模式的光波能在光纤中传播,称为单模光纤。
若纤芯直径5011m 左右,有多个模式的光波能在光纤中传播,称为多模光纤。
防护层由缓冲涂层、加强材料涂覆层及套塑层组成。
光纤布拉格光栅传输特性理论分析及其实验研究共3篇
![光纤布拉格光栅传输特性理论分析及其实验研究共3篇](https://img.taocdn.com/s3/m/f0f8ccdf112de2bd960590c69ec3d5bbfc0ada50.png)
光纤布拉格光栅传输特性理论分析及其实验研究共3篇光纤布拉格光栅传输特性理论分析及其实验研究1光纤布拉格光栅传输特性理论分析及其实验研究随着通信技术的不断发展,人们对高速、宽带、低衰减的光纤通信系统的需求越来越强烈。
在新型光纤通信系统中,光纤布拉格光栅逐渐成为一种广泛应用的光纤分布式传感技术。
本文将分析光纤布拉格光栅的传输特性,并通过实验验证分析结果的准确性。
光纤布拉格光栅是一种基于光纤中的光学衍射现象的光学器件。
在光纤中加入一定周期的光折射率折变结构,就能形成光纤布拉格光栅。
在光纤中传输的光波,经过布拉格光栅时,会出现衍射现象,产生反射、透射和反向散射,这些效应是产生传输特性的基础。
光纤布拉格光栅的传输特性主要表现在其反射光频谱和传输带宽两个方面。
反射光频谱是指光波经过光纤布拉格光栅后,由栅中反射的光波在谱域的表现。
反射光频谱可以通过反射率、衰减率、相位等参数来描述。
光纤布拉格光栅的反射带宽会随着栅体的折射率调制以及周期变化而发生变化。
而传输带宽则是指光波通过光纤布拉格光栅后的传输性能表现,其传输性能主要由栅体的反射率和传播损耗来决定。
传统的光纤布拉格光栅的制备方法主要有激光干涉、可调光束、干涉光阴影和相位掩膜等方法。
一般情况下,涉及到光纤布拉格光栅的应用,需要随时监测栅体的传输特性。
为了准确地监测光纤布拉格光栅的传输特性,通常采用光谱光学方法来进行反射光频谱的测量。
根据光谱光学方法,可以直接测量出光纤布拉格光栅的反射率和反射带宽,同时还能进一步计算出光纤布拉格光栅的传输损耗和传输带宽。
为了验证理论分析的正确性,本文进行了一系列光纤布拉格光栅的实验研究。
实验采用了对光纤布拉格光栅进行反射光频谱的测量,并通过计算反射光频谱的反射率和反射带宽,得出光纤布拉格光栅的传输损耗和传输带宽。
实验结果表明,本文理论分析的光纤布拉格光栅传输特性是可靠的,能够为光纤布拉格光栅在光纤通信系统中的应用提供有效的理论基础。
光纤特性实验研究实验报告
![光纤特性实验研究实验报告](https://img.taocdn.com/s3/m/f00bc122561252d381eb6e2f.png)
光纤特性实验研究一、光纤耦合及光纤器件传输效率测试实验光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
前香港中文大学校长高锟和George A. Hockham首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖A】实验原理1.光纤的结构纤芯材料的主体是二氧化硅,里面掺极微量的其他材料,例如二氧化锗、五氧化二磷等。
掺杂的作用是提高材料的光折射率。
纤芯直径约5~~75μm(芯径一般为50或62.5μm)。
光纤外面有低折射率包层,包层有一层、二层(内包层、外包层)或多层(称为多层结构),但是总直径在100~200μm上下(直径一般为125μm)。
包层的材料一般用纯二氧化硅,也有掺极微量的三氧化二硼,最新的方法是掺微量的氟,就是在纯二氧化硅里掺极少量的四氟化硅。
掺杂的作用是降低材料的光折射率。
这样,光纤纤芯的折射率略高于包层的折射率。
两者折射率的区别,保证光主要限制在纤芯里进行传输。
包层外面还要涂一种涂料,是加强用的树脂涂层,可用硅铜或丙烯酸盐。
涂料的作用是保护光纤不受外来的损害,增加光纤的机械强度。
光纤的最外层是套层,它是一种塑料管,也是起保护作用的,不同颜色的塑料管还可以用来区别各条光纤。
2.光纤的数值孔径概念:入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。
这个角度就称为光纤的数值孔径。
光纤的数值孔径大些对于光纤的对接是有利的。
不同厂家生产的光纤的数值孔径不同。
3.光纤的种类:A.按光在光纤中的传输模式可分为:单模光纤和多模光纤。
多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:6 00MB/KM的光纤在2KM时则只有300MB的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。
光纤通信的传输特性及应用探析
![光纤通信的传输特性及应用探析](https://img.taocdn.com/s3/m/e6d87842f7ec4afe04a1df2e.png)
光纤通信的传输特性及应用探析摘要:光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传输工具。
本文作者针对光纤通信的传输特性及应用进行简单的探析。
关键词:光纤通信传输1 光纤通信技术简介光纤即为光导纤维的简称。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。
光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
2 光纤通信的传输特性光纤传输特性主要是指光纤的损耗特性和带宽特性(即色散特性),光纤特性的好坏直接影响光纤通信的中继距离和传输速率(或脉冲展宽),因此它是设计光纤系统的基本出发点。
2.1 光纤的损耗特性光波在光纤传输过程中,其强度随着传输距离的增加逐渐减弱,光纤对光波产生的衰减作用称为光纤损耗。
使用在系统中的光纤传输线,其损耗产生的原因,一方面是由于光纤本身的损耗,包括吸收损耗、瑞利散射损耗、以及因结构不完善引起的散射损耗;另一方面是由于作为系统传输线引起的弯曲损耗等。
2.1.1 吸收损耗吸收损耗意味光波传输过程中,有一部分光能量转变为热能。
包括光纤玻璃材料本身的固有吸收损耗,以及因杂质引起的吸收损耗。
光纤材料的固有吸收又叫本征吸收,在不含任何杂质的纯净材料中也存在这种吸收。
固有吸收有两个吸收带,一个吸收带在红外区,吸收峰在波长8mm~12mm范围,它的尾部拖到光通信所要用的波段范围,但影响不大;另一个吸收带在紫外区,吸收峰在0.1mm附近,吸收很强时,它的尾巴会拖到0.7mm~1.1mm波段里去。
对物质固有吸收来说,在远离峰值区域的1.0mm~1.6mm波段范围内,固有吸收损耗为低谷区域。
光纤-光缆及其传输特性
![光纤-光缆及其传输特性](https://img.taocdn.com/s3/m/4b4c34fd4693daef5ef73df0.png)
光纤\光缆及其传输特性摘要:在广播电视传输网中,同轴电缆传输系统具有设备简单投资少,接入用户方便,因此它在广播电视传输网的接入网部分和小区域的用户中得到了广泛的应用。
但对于远距离传输而言,同轴电缆传输系统就曝露出致命的弱点。
而光纤的出现恰好弥补了这一缺陷,由于光信号在光缆中的传输衰减极小,很小的光功率便可以在光缆中将其传到很远的地方。
因此光纤在现代社会中被广泛应用。
现就光纤、光缆的概念及其传输特性做一介绍。
关键词:光纤、光缆、传输损耗、传输带宽、光纤性能参数1、光纤光纤是用于传导光的介质光波导。
为了能对光信号进行远距离传输,光纤必须具有两个功能:(1)必须具有较低损耗。
(2)必须满足光波导条件。
为了实现这一功能,光纤通常由纤芯和包层两个二氧化硅层组成,包层的折射率必须小于纤芯的折射率,这样在包层与限制你的临界面便形成一个封闭的全反射面,保证了从纤芯向外射出的光能被完全反射回纤芯。
光纤按其传输光波的模式,可分为多模光纤和单模光纤。
光信号是一种特殊的电磁波,它在光纤中传播与电磁波在电波导中传输一样,同样存在着模式的问题。
多模光纤可以允许光信号以多模式传播,而单模光纤只允许光以基模一种模式传播。
多模光纤中,由于多种模式的光信号传播速度不同,而引起时域脉冲展宽,使其信道带宽受到限制。
由于单模光纤只能传输一种单一模式,所以具有很大的信道带宽。
因此,单模光纤被广泛应用于现代通讯系统中。
2、光缆若将若干根光纤并行使用把它们以一定的形式组合到一起,在其外部加以各种保护套便形成了光缆。
通常使用的架空和直埋式光缆有两种结构形式:中心束管式和层绞式。
中心束管式光缆,使用于光纤芯数较少的场合。
通常12 芯以下光缆使用这种结构形式。
中心束光缆就是将所需数量的光纤并行装入充满纤膏的束管内,形成中心束管。
束管内的光纤可以在纤膏内活动,这样的结构称为松套式结构。
3、光纤的传输特性光纤的传输特性包括传输损耗、光纤的传输带宽以及光纤传输性能参数。
光在光纤中的传播特性如何?
![光在光纤中的传播特性如何?](https://img.taocdn.com/s3/m/9b1ed29bab00b52acfc789eb172ded630a1c987f.png)
光在光纤中的传播特性如何?在我们的日常生活和现代通信领域中,光纤扮演着至关重要的角色。
它是信息高速传输的通道,使得我们能够快速地进行语音通话、观看高清视频、传输大量数据等等。
而要理解光纤通信的神奇之处,就必须深入探究光在光纤中的传播特性。
首先,让我们来了解一下光纤的基本结构。
光纤通常由纤芯、包层和涂覆层三部分组成。
纤芯是光传播的核心区域,其折射率较高;包层则围绕着纤芯,折射率相对较低。
这种折射率的差异是实现光在光纤中有效传播的关键。
光在光纤中传播的一个重要特性是全反射。
当光从折射率高的纤芯射向折射率低的包层时,如果入射角足够大,光就会在纤芯和包层的界面上发生全反射。
这就好比光在一个光滑的镜子里来回反射,而不会“逃出”镜子。
由于这种全反射现象,光能够在光纤中沿着纤芯持续传播,从而实现远距离的传输。
为了更好地理解全反射,我们可以想象一下在游泳池底部的灯光。
当灯光从水(相当于纤芯)射向空气(相当于包层)时,如果角度合适,光线会在水面上完全反射回来,而不会折射到空气中去。
在光纤中,光就是以这样的方式被“束缚”在纤芯内部,不断地进行全反射,从而实现了高效的传输。
光在光纤中的传播还具有低损耗的特点。
这意味着光信号在经过长距离传输后,其强度衰减相对较小。
光纤的材料选择和制造工艺对降低损耗起着关键作用。
高质量的光纤材料能够减少光在传播过程中的吸收和散射,从而保证光信号能够在数千公里甚至更远的距离上保持较好的强度和质量。
另外,光在光纤中的传播速度也是一个重要的特性。
光在真空中的传播速度是恒定的,但在光纤中,由于光纤材料的折射率,光的传播速度会变慢。
不过,尽管速度有所降低,光纤仍然能够实现高速的数据传输,这是因为光的频率极高,即使速度略有降低,在短时间内也能够传输大量的信息。
光纤的带宽也是其传播特性中的一个重要方面。
带宽决定了光纤能够传输的信息量和传输速度。
较高带宽的光纤可以同时传输更多的波长和频率的光,从而实现更高的数据传输速率。
光纤的基本特性及测试5
![光纤的基本特性及测试5](https://img.taocdn.com/s3/m/de47198ae53a580216fcfe63.png)
Ey Ex
ay ax
exp( j z)
(7.5.3)
两个基模的合成模电矢量的末端轨迹表示了模的偏振态, 同时唯一地取决于两个基模的相位差 。 z
显然,相位差 不是一个固定常数,而是传输距离z的函数。 随着z的增加, 不断变大,因而合成模的偏振态也不断变化。 下面详细分析合成模的以下几种偏振态: (1)线偏振模 (2)右旋正椭圆偏振模 (3)左旋正椭圆偏振模 (4)椭圆偏振模
由上述讨论可知,当两个基模的相位 从0到2π之间变 化时,合成模偏振态将按线偏振( =0)→右旋椭圆偏振(0< <π)→左旋椭圆偏振(π< <2π) →线偏振( =2π)的 顺序,周期性地重复演变。 拍长:在偏振态的一个重复演变周期内,模式传输所走过的距 离Λ。显然一个拍长Λ可由下式表示:
式中 xy , yx 为两模式间互耦合系数,这里取的是虚数; 两模的自耦合系数 k , k
xx
yy
k k
dCx ( z ) jk xx Cx ( z ) jk xy C y ( z ) dz dC y ( z ) (7.5.13) jk yy C y ( z ) jk yx Cx ( z ) dz ' k yy y k yy
7.5.1
单模光纤的偏振
1.偏振演变
Hale Waihona Puke 设单模光纤中,有一个线偏振的入射波E0 激励起两个正交的基模HE11(x)和HE11(y), 并分别沿着两个特定的主轴ox、oy方向振动 。它们的横电场幅度 ax 、 y 由下式表示: a
ax E0 cos a y E0 sin
式中 是入射波E0与x轴的夹角。
如果入射模E0与x轴夹角 =±π /4,则ax= ay,这时上面的偏振模变成右旋圆偏振模:
光纤测试的步骤
![光纤测试的步骤](https://img.taocdn.com/s3/m/94a190d6195f312b3169a5bb.png)
对光纤参数的测试方法参照国标中相关的试验方法进行,下面列举出一些光纤基本参数的测试方法。
光纤的特性参数中,几何特性参数对光纤的包层直径、包层不圆度、芯/包层同心度误差的测试方法做出相关说明;光学特性参数对模场直径、单模光纤的截止波长、成缆单模光纤的截止波长的测试方法做出相关说明;传输特性参数对光纤的衰减、波长色散的测试方法做出相关说明。
2.1、光纤几何特性参数测试光纤的折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试方法。
测量包层直径、包层不圆度、芯/包层同心度误差的测试方法是折射近场法、横向干涉法和近场光分布法(横截面几何尺寸测定)。
光纤的折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试方法有三种。
●折射近场法折射近场法是多模光纤和单模光纤折射率分布测定的基准试验方法(RTM),也是多模光纤尺寸参数测定的基准试验方法和单模光纤尺寸参数测定的替代试验方法(ATM)。
折射近场测量是一种直接和精确的测量。
它能直接测量光纤(纤芯和包层)横截面折射率变化,具有高分辨率,经定标可给出折射率绝对值。
由折射率剖面图可确定多模光纤和单模光纤的几何参数及多模光纤的最大理论数值孔径。
●横向干涉法横向干涉法是折射率剖面和尺寸参数测定的替代试验方法(ATM)。
横向干涉法采用干涉显微镜,在垂直于光纤试样轴线方向上照明试样,产生干涉条纹,通过视频检测和计算机处理获取折射率剖面。
●近场光分布法这种方法是多模光纤几何尺寸测定的替代试验方法(ATM)和单模光纤几何尺寸(除模场直径)测定的基准试验方法(RTM)。
通过对被测光纤输出端面上近场光分布进行分析,确定光纤横截面几何尺寸参数。
可以采用灰度法和近场扫描法。
灰度法用视频系统实现两维(x-y)近场扫描,近场扫描法只进行一维近场扫描。
由于纤芯不圆度的影响,近场扫描法与灰度法得出的纤芯直径可能有差别。
纤芯不圆度可以通过多轴扫描来确定。
一般商用仪表折射率分布的测试方法是折射近场法。
光纤光缆(实验报告)
![光纤光缆(实验报告)](https://img.taocdn.com/s3/m/58d7822d590216fc700abb68a98271fe910eaf3f.png)
光纤光缆技术实验报告书指导教师:刘孟华、魏访报告人:吴宁峰组员:吴思童李金活姜峰曹健保王鹏实验时间:2014.06.08光缆的接续一、实验目的:通过接续盒将光缆接续。
二、实验仪器:准备工具、材料(接续盒、环割刀、光缆、工具、以表齐全,摆放整齐)。
三、操作步骤:1、光缆开剥:在开剥前检查光缆是否损坏,清洁光缆的端头,在光缆端头约1m处用割刀环切光缆外护套,割断外护套之后将外护套抽离(注意切伤光纤),剥去内护套露出加强芯、光纤束管。
依次用棉纱、酒精加强芯、光纤束管擦拭干净。
2、光缆端头及加强芯的固定安装将光缆端头正确放到接续盒固定处,固定。
3、光纤束管开剥理顺光纤束管,确定光纤束管的拨开位置。
用专用束管刀或钳使束管外部受伤,切勿伤及光纤。
去掉束管时,顺着束管方向用力,剥除后用脱脂棉将光纤上的油膏轻轻擦拭干净,放在干净的作业台上。
4、光纤预留盘:把束管放入收容盘内,收容盘两端用尼龙扎带将束管固定在收容盘内,注意扎带不要太紧使光纤变形增加损耗。
5、用相同的方法使另一个光缆接头同样处理。
6、光纤熔接保持作业台和熔接机的清洁,并打开熔接机设定好参数、预热。
光纤接续要按顺序一一对应接续,不得交叉错接。
7、光纤的盘纤每接一管光纤要将接好的光纤编号收入收容盘内,收容时可从一端或两端向光纤保护管方向收容,将光纤保护管安全牢固的固定在光纤保护管的固定槽内。
确认无误后盖上盘盖并测试。
8、光纤接头盒的封装:在进行光缆与接头盒的密封时,要先进行密封处的光缆护套的打磨工作,用纱布在外护套上垂直光缆轴向打磨,以使光缆和密封胶带结合得更紧密,密封得更好。
接头盒上下盖板之间的密封,主要是注意密封胶带要均匀地防止在接头盒的密封槽内,将螺丝拧紧,不留缝隙四:实验感想通过这次实验我们初步了解到了光纤光缆的内部结构及各部分结构的作用,初步了解到了光缆的连续。
光纤的熔接一、实验目的:通过熔接的方法使光纤无缝的接续在一起。
二、实验仪器:光纤熔接机、剥纤钳、光纤切割刀、清洁棉等。
光纤通信实验报告
![光纤通信实验报告](https://img.taocdn.com/s3/m/37ecf0ceed3a87c24028915f804d2b160a4e867c.png)
光纤通信实验报告
实验目的:通过实际操作,了解光纤通信的基本原理和技术特点,
掌握光纤通信系统的组成和工作过程,以及光纤连接的方法。
实验仪器:光纤通信实验箱、光纤收发器、光纤跳线、示波器、光
功率计等。
实验步骤:
1. 搭建光纤通信实验箱,将光纤收发器连接至实验箱主机。
2. 用光纤跳线将实验箱主机与光功率计连接,以便实时监测光功率
的变化。
3. 调节实验箱主机的光发射功率和接收灵敏度,使其达到最佳状态。
4. 在示波器上观察传输信号的波形,分析信号的稳定性和传输质量。
5. 采用不同的光纤连接方法,比较它们对信号传输的影响,验证光
纤连接的重要性。
实验结果与分析:
经过实验操作,我们可以明显地感受到光纤通信系统的高速传输、
低损耗、抗干扰等优点。
同时,我们也发现光纤连接的质量对信号传
输有着至关重要的影响,需要谨慎处理光纤的清洁、固定和连接方式,以确保信号传输的稳定性和可靠性。
实验总结:
通过本次实验,我们深入了解了光纤通信的基本原理和技术特点,掌握了光纤通信系统的组成和工作过程,以及光纤连接的方法。
同时也加深了对光纤通信技术在现代通信领域中的广泛应用和重要性的认识,为我们今后的学习和研究打下了坚实的基础。
希望通过持续的实践和探索,我们能够进一步提升对光纤通信技术的理解和应用水平,为推动通信技术的发展做出更大的贡献。
多模光纤数值孔径性质及传输损耗特性实验误差分析
![多模光纤数值孔径性质及传输损耗特性实验误差分析](https://img.taocdn.com/s3/m/50a16db7d5d8d15abe23482fb4daa58da0111c8a.png)
多模光纤数值孔径性质及传输损耗特性实验误差分析
多模光纤的数值孔径是一个重要的光学参数,它决定了光在光纤中的传输性能,包括聚焦能力、分布模式和传输损耗等。
在实验中,要精确测量多模光纤的数值孔径和传输损耗,需要考虑以下几个因素可能会导致的误差:
1. 光源的稳定性和波长变化:在实验中使用的光源应具有足够的稳定性和可控性,以确保重复性和准确性。
另外,光源的波长变化也会对测量结果造成影响。
2. 光路对准精度:光纤连接器和接口的几何参数影响光纤的连接质量,影响传输效率和传输损耗。
3. 测量设备的精度:测量数值孔径和传输损耗的仪器应具有足够的精度和分辨率,以减小误差。
4. 光纤的材料和制造工艺:光纤的材料和制造工艺会对其数值孔径和传输损耗带来影响,因此需要注意选择光纤的品质和制造工艺。
综上所述,测量多模光纤的数值孔径和传输损耗需要考虑到多个因素可能会导致的误差,需要精心设计实验和进行数据处理,以获得可靠的结果。
音频信号光纤传输技术实验
![音频信号光纤传输技术实验](https://img.taocdn.com/s3/m/c112ddb33086bceb19e8b8f67c1cfad6185fe96c.png)
音频信号光纤传输技术实验[目的要求]1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法。
2.了解音频信号光纤传输的结构及选配各主要部件的原则。
3.学习分析集成运放电路的基本方法。
4.训练音频信号光纤传输系统的测试技术。
[仪器设备]1.YOF—B型音频信号光纤传输技术实验仪。
2.音频信号发生器。
3.示波器。
4.数字万用表。
[实验原理]一.系统的组成图(1)示给出了一个音频信号直接光强调制光纤传输系统的结构原理图, 它主要包括由LED及其调制、驱动电路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器的三个部分。
图1 音频信号光纤传输实验系统原理图本实验采用中心波长0.85μm附近的GaAs半导体发光二极管(LED)作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。
由于光导纤维对光信号具有很宽的频带, 故在音频范围内, 整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。
二.光导纤维的结构及传光原理光纤按其模式性质通常可以分成两大类①单模光纤②多模光纤。
无论单模或多模光纤, 其结构均由纤芯和包层两部分组成。
纤芯的折射率较包层折射率大, 对于单模光纤, 纤芯直径只有5~10μm, 在一定的条件下, 只允许一种电磁场形态的光波在纤芯内传播, 多模光纤的纤芯直径为50μm或62.5μm, 允许多种电磁场形态的光波传播;以上两种光纤的包层直径均为125μm。
按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤, 对于阶跃型光纤, 在纤芯和包层中折射率均为常数, 但纤芯一包层界面处减到某一值后, 在包层的范围内折射率保持这一值不变, 根据光射线在非均匀介质中的传播理论分析可知: 经光源耦合到渐变型光纤中的某些光射线, 在纤芯内是沿周期性地弯向光纤轴线的曲线传播。
本实验采用阶跃型多模光纤作为信道, 现应用几何光学理论进一步说明这种光纤的传光原理。
光纤特性及传输实验
![光纤特性及传输实验](https://img.taocdn.com/s3/m/9fb186da28ea81c758f57841.png)
光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。
不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。
载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。
能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。
通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。
光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。
与用电缆传输电信号相比,光纤通信具有通信容量大,传输距离长,价格低廉,重量轻易敷设,抗干扰,保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信息社会。
【实验目的】1、 了解光纤通信的原理及基本特性。
2、 测量激光二极管的伏安特性,电光转换特性。
3、 测量光电二极管的伏安特性。
4、 音频信号传输实验。
5、数字信号传输实验。
【实验仪器】光纤特性及传输实验仪,示波器【实验原理】1、 光纤光纤是由纤芯,包层,防护层组成的同心圆柱体,横截面如图1所示。
纤芯与包层材料大多为高纯度的石英玻璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光波导效应,使大部分的光被束缚在纤芯中传输。
若纤芯的折射率分布是均匀的,在纤芯与包层的界面处折射率突变,称为阶跃型光纤。
若纤芯从中心的高折射率逐渐变到边缘与包层折射率一致,称为渐变型光纤。
若纤芯直径小于10μm ,只有一种模式的光波能在光纤中传播,称为单模光纤。
若纤芯直径50μm 左右,有多个模式的光波能在光纤中传播,称为多模光纤。
防护层由缓冲涂层,加强材料涂覆层及套塑层组成。
通常将若干根光纤与其它保护材料组合起来构成光缆,便于工程上敷设和使用。
光纤测试报告范文
![光纤测试报告范文](https://img.taocdn.com/s3/m/7e1ce83c1611cc7931b765ce0508763231127401.png)
光纤测试报告范文一、测试目的本次测试的目的是验证光纤的传输质量和性能,并评估其是否符合设计要求和标准,以确保光纤通信系统的正常运行。
二、测试内容1.光纤的物理参数测试:包括光纤的长度、直径、弯曲半径、损耗等参数的测试,以确定光纤的基本物理性能。
2.光纤的传输性能测试:测试光纤的传输衰减、色散、带宽等参数,以评估其传输质量和性能。
3.光纤的可靠性测试:测试光纤在不同工作条件下的可靠性和稳定性,包括温度、湿度、振动等环境因素的影响。
三、测试方法1.光纤的物理参数测试:使用光纤测试仪器对光纤进行长度测量、直径测量、弯曲半径测试等。
2.光纤的传输性能测试:使用光纤光源和光纤功率计进行光纤衰减和色散的测试,使用频谱仪进行光纤带宽的测试。
3.光纤的可靠性测试:将光纤暴露在不同条件下,如高温、低温、高湿度、低湿度、振动等环境下进行测试。
四、测试结果与分析1.光纤的物理参数测试结果如下:-光纤长度为XXX米,符合设计要求。
-光纤直径为XXX微米,符合设计要求。
-光纤弯曲半径为XXX毫米,符合设计要求。
-光纤的损耗为XXX分贝,符合标准要求。
2.光纤的传输性能测试结果如下:-光纤传输衰减为XXX分贝,符合设计要求。
-光纤色散为XXX皮秒/纳米/千米,符合设计要求。
-光纤带宽为XXX千兆赫兹,符合设计要求。
3.光纤的可靠性测试结果如下:-光纤在高温环境下表现稳定,无明显性能下降。
-光纤在低温环境下表现稳定,无明显性能下降。
-光纤在高湿度环境下表现稳定,无明显性能下降。
-光纤在低湿度环境下表现稳定,无明显性能下降。
-光纤在振动环境下表现稳定,无明显性能下降。
五、结论通过对光纤的测试,我们得出以下结论:-光纤的物理参数符合设计要求和标准,具有良好的物理性能。
-光纤的传输性能符合设计要求和标准,具有优秀的传输质量和性能。
-光纤在不同工作条件下表现稳定,具有良好的可靠性和稳定性。
六、建议根据测试结果-继续进行光纤的长期可靠性测试,以进一步验证其稳定性和可靠性。
光纤特性及传输实验
![光纤特性及传输实验](https://img.taocdn.com/s3/m/3248526d0166f5335a8102d276a20029bd646383.png)
光纤特性及传输实验光纤是一种能够将光信号传输的纤维材料,由于其具有高带宽、低衰减等优点,广泛应用于通信、医疗、工业等领域。
本文将介绍光纤的特性以及光纤传输实验。
首先,光纤具有以下几个重要特性:1. 高带宽:光纤的传输速度非常快,可以达到光速的70%以上,因此能够传输大量的数据。
2. 低衰减:光纤的衰减很小,一般在每公里0.2-0.5 dB以内,因此信号的传输损失较小,可以实现长距离的传输。
3. 抗干扰能力强:光纤的信号传输是通过光的全内反射实现的,不会受到电磁干扰的影响,因此具有较高的抗干扰能力。
4. 安全性高:光信号传输不会产生电磁辐射,不易被窃听,因此具有较高的安全性。
光纤传输实验是通过实际操作来验证光纤的传输性能和特性。
下面将介绍一种常见的光纤传输实验方法。
实验材料:1. 光纤:可以使用单模光纤或多模光纤,长度约为几十米至几百米。
2. 光源:可以使用激光器或LED作为光源。
3. 接收器:用于接收光信号的光电二极管或光电探测器。
4. 信号发生器:用于产生测试信号。
实验步骤:1. 将光纤的一端连接到光源,另一端连接到接收器。
2. 设置信号发生器的输出信号,并将信号输入到光源端。
3. 观察接收器的输出信号,并记录下来。
4. 改变光纤的长度、弯曲程度等条件,再次观察并记录输出信号。
5. 根据实验记录,分析光纤在不同条件下的传输性能。
实验结果分析:通过实验可以得到光纤在不同条件下的传输结果。
例如,当光纤长度增加时,输出信号的衰减程度会增加;当光纤弯曲程度增加时,输出信号的衰减程度也会增加。
这些结果验证了光纤的低衰减特性以及对弯曲的敏感性。
此外,实验还可以验证光纤的带宽特性。
可以通过改变信号发生器的频率,观察输出信号的变化。
当信号频率增加时,输出信号的衰减程度会增加,说明光纤的传输带宽有限。
总结:光纤具有高带宽、低衰减、抗干扰能力强和安全性高等特性,在实际应用中具有广泛的应用前景。
通过光纤传输实验,可以验证光纤的传输性能和特性,为光纤通信的设计和应用提供参考。
光纤通信原理实验
![光纤通信原理实验](https://img.taocdn.com/s3/m/0dc7ae7708a1284ac85043c5.png)
光纤通信原理实验一、实验目的:1、了解光纤通信系统的工作原理;2、了解光纤通信的基本特点;3、通过波分复用解复用器件(WDM)实现双波长单纤单向音频视频通信传输;二、光纤通信的发展过程:到了20世纪中页,出身上海的英藉华人高锟(K.C.Kao)博士,通过在英国标准电信实验室所作的大量研究的基础上,对光波通信作出了一个大胆的设想。
他认为,既然电可以沿着金属导线传输,光也应该可以沿着导光的玻璃纤维传输。
并大胆地预言,只要能设法降低玻璃纤维的杂质,就有可能使光纤的损耗从每公里1000分贝降低到20分贝/公里,从而有可能用于通信。
从此揭开了光纤通信的帷幕。
光纤通信的发展过程如表1所示。
三、光纤通信优点:1.光波频率很高,光纤传输的频带很宽,故传输容量很大,理论上可通上亿门话路或上万套电视,可进行图像、数据、传真、控制等多种业务;目前的通信材料主要电缆、波导管、微波和光缆,电缆、波导管、微波和光缆通信容量的对比如表2所示。
可以看出光缆的通信容量远远大于其它的通信材料。
表2电缆、波导管、微波和光缆通信容量的对比2.不受电磁干扰,保密性好;损耗小,中继距离远。
光纤是由非金属的石英介质材料构成的,它是绝缘体,不怕雷电和高压,不受电磁干扰,甚至包括太阳风暴也影响不到光纤通信,2000年6月8日的太阳风暴,差点使俄罗斯的一颗导航卫星失去方向。
太阳风暴还会造成人造卫星的短路,许多靠卫星传播的通信业务可能因此停顿。
1998 年5月,美国银河4号卫星因受太阳风暴影响而失灵,造成北美地区80%的寻呼机无法使用,金融服务陷入脱机状态,信用卡交易也中断了,有试验表明,在核爆炸发生时,地球上所有的电通信将中断,而唯有光通信几乎不受影响;光纤中传输的是频率很高的光波,而各种干扰的频率一般都比较低,所以它不能干扰频率比它高的多的光波。
打个比方说,光纤中的光波好比是在万丈高空飞行的飞机,任凭地上行驶的火车、汽车如何得多,也不会影响到它的飞行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。
不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。
载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。
能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。
通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。
光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。
与用电缆传输电信号相比,光纤通信具有通信容量大、传输距离长、价格低廉、重量轻、易敷设、抗干扰、保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信息社会。
实验目的1.了解光纤通信的原理及基本特性。
2.测量半导体激光器的伏安特性,电光转换特性。
3.测量光电二极管的伏安特性。
4.基带(幅度)调制传输实验。
5.频率调制传输实验。
6.音频信号传输实验。
7.数字信号传输实验。
实验原理1.光纤光纤是由纤芯、包层、防护层组成的同心圆柱体,横Array截面如图1所示。
纤芯与包层材料大多为高纯度的石英玻璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光波导效应,使大部分的光被束缚在纤芯中传输。
若纤芯的折射率分布是均匀的,在纤芯与包层的界面处折射率突变,称为阶跃型光纤;若纤芯从中心的高折射率逐渐变到边缘与包层折射率一致,称为渐变型光纤。
若纤芯直径小于10μm,只有一种模式的光波能在光纤中传播,称为单模光纤。
若纤芯直径50μm左右,有多个模式的光波能在光纤中传播,称为多模光纤。
防护层由缓冲涂层、加强材料涂覆层及套塑层组成。
通常将若干根光纤与其它保护材料组合起来构成光缆,便于工程上敷设和使用。
光纤与光纤之间固定连接时,用光纤熔接机进行熔接。
光纤与光纤之间可拆卸(活动)连接,使用光纤连接器。
光纤连接器把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去。
各种光纤连接器结构大同小异,比较常见的有FC、SC、LC、ST等。
一端装有连接器插头的光纤称为尾纤,两端都装上连接器插头的光纤称为光纤跳线。
光在光纤中传输时,由于材料的散射、吸收,使光信号衰减,当信号衰减到一定程度时,就必需对信号进行整形放大处理,再进行传输,才能保证信号在传输过程中不失真,这段传输的距离叫中继距离,损耗越小,中继距离越长。
光纤的损耗与光波长有关,通过研究发现,石英光纤在0.85,1.30,1.55μm 附近有3个低损耗窗口,实用的光纤通信系统光波长都在低损耗窗口区域内。
损耗用损耗系数表示。
光在有损耗的介质中传播时,光强按指数规律衰减,在通信领域,损耗系数用单位长度的分贝值(dB )表示,定义为:110lg P L P α=(dB/km ) (1)已知损耗系数,可计算光通过任意长度L 后的强度:101010LP P α-= (2)上两式中,L 是传播距离,P 0是入射光强,P 1是损耗后的光强。
2. 半导体激光器(LD )光通信的光源为半导体激光器(LD )或发光二极管(LED ),本实验采用半导体激光器。
半导体激光器通过受激辐射发光,是一种阈值器件。
处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。
LD 和LED 都是半导体光电子器件,其核心部分都是P-N 结。
因此具有与普通二极管相类似的I-U 特性,如图 2所示: I(mA)U(v)P(mW)I(mA)I th图 2 左边为半导体激光器I-U 特性示意图,右边为P-I 特性示意图由于发光模式的不同,LD 和LED 的P-I 特性曲线则有很大的差别。
LED 的P-I 曲线基本上是一条过原点的直线。
而LD 的P-I 曲线如图 2所示,可以看出有一阈值电流I th ,只有在工作电流I>I th 部分,P-I 曲线才近似一根直线。
而在I<I th 部分,激光功率为零。
3. 光电二极管光通信接收端由光电二极管完成光电转换与信号解调。
光电二极管是工作在无偏压或反向偏置状态下的PN 结,反向偏压电场方向与势垒电场方向一致,使结区变宽,无光照时只有很小的暗电流。
当PN 结受光照射时,价电子吸收光能后挣脱价键的束缚成为自由电子,在结区产生电子-空穴对,在电场作用下,电子向N 区运动,空穴向P 区运动,形成光电流。
光通信常用PIN 型光电二极管作光电转换。
它与普通光电二极管的区别在于在P 型和N 型半导体之间夹有一层没有渗入杂质的本征半导体材料,称为I型区。
这样的结构使得结区更宽,结电容更小,可以提高光电二极管的光电转换效率和响应速度。
图3是反向偏置电压下光电二极管的伏安特性。
无光照时的暗电流很小,它是由少数载流子的漂移形成的。
有光照时,在较低反向电压下光电流随反向电压的增加有一定升高,这是因为反向偏压增加使结区变宽,结电场增强,提高了光生载流子的收集效率。
当反向偏压进一步增加时,光生载流子的收集接近极限,光电流趋于饱和,此时,光电流仅取决于入射光功率。
在适当的反向偏置电压下,入射光功率与饱和光电流之间呈较好的线性关系。
图3 光电二极管的伏安特性V+ 图4 简单的光电转换电路图4是光电转换电路,光电二极管接在晶体管基极,集电极电流与基极电流之间有固定的放大关系,基极电流与入射光功率成正比,则流过R的电流与R两端的电压也与光功率成正比,若光功率随调制信号变化,R两端的输出可解调出原调制信号。
4.光源的调制对光源的调制可以采用内调制或外调制。
内调制用信号直接控制光源的电流,使光源的发光强度随外加信号变化,内调制易于实现,一般用于中低速传输系统。
外调制时光源输出功率恒定,利用光通过介质时的电光效应、声光效应或磁光效应实现信号对光强的调制,一般用于高速传输系统。
本实验采用内调制。
V+调制信号图5 简单的调制电路图6 调制原理图图5是简单的调制电路。
调制信号耦合到晶体管基极,晶体管作共发射极连接,流过发光二极管的集电极电流由基极电流控制,R1、R2提供直流偏置电流。
图6是调制原理图,由图6可见,由于光源的输出光功率与驱动电流是线性关系,在适当的直流偏置下,随调制信号变化的电流变化由发光二极管转换成了相应的光输出功率变化。
5.光纤的多路复用为充分发挥光纤通信容量大的优势,传输信号时常采用多路复用方式。
复用是一种将若干个彼此独立的信号,合并为一个可在同一信道上同时传输的复合信号的方法。
常用的多路复用方式有频分复用、时分复用与波分复用等。
按频率区分信号的方法叫频分复用。
即把需要传输的信号用不同的载波频率调制,只要载波的频率间隔大于信号带宽,就能将它们合并在一起而不致相互影响,并能在接收端彼此分离开来。
为区别光载波,把受模拟基带信号预调制的射频电载波称为副载波。
按时间区分信号的方法叫时分复用,时分复用适用于数字信号的传输。
由于信道的传输率超过每一路信号的数据传输率,因此可将信道按时间分成若干片段轮换地给多个信号使用。
每一时间片由复用的一个信号单独占用,在规定的时间内,多个数字信号都可按要求传输到达,从而实现一条信道上传输多个数字信号。
假设每个输入的数据比特率是9.6kbit/s ,线路的最大比特率为76.8kbit/s ,则可传输8路信号。
波分复用是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术。
在接收端,经分波器将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
6. 副载波调频调制对副载波的调制可采用调幅、调频等不同方法。
调频具有抗干扰能力强、信号失真小的优点,本实验采用调频法。
图7是副载波调制传输框图。
图7 副载波调制传输框图如果载波的瞬时频率偏移随调制信号m(t)线性变化,即:()()d f t k m t ω=(3)则称为调频,k f 是调频系数,代表频率调制的灵敏度,单位为2π赫兹/伏。
调频信号可写成下列一般形式:()cos[()]tf u t A t k m d ωττ=+⎰ (4)式中ω为载波的角频率,0()]t fk m d ττ⎰为调频信号的瞬时相位偏移。
下面考虑两种特殊情况:假设m(t)为电压为V 的直流信号,则(4)式可以写为:()cos[()]f u t A k V t ω=+(5)(5)式表明直流信号调制后的载波仍为余弦波,但角频率偏移了f k V 。
假设m(t)=Ucos Ωt ,则(4)式可以写为:()cos[sin ]f k U u t A t t ω=+ΩΩ(6)可以证明,已调信号包括载频分量ω和若干个边频分量ω±n Ω,边频分量的频率间隔为Ω。
任意信号可以分解为直流分量与若干余弦信号的叠加,则(5),(6)两式可以帮助理解一般情况下调频信号的特征。
7. 数字信号传输若需传输的信号本身是数字形式,或将模拟信号数字化(模数转换)后进行传输,称为数字信号传输,数字传输具有抗干扰能力强,传输质量高;易于进行加密和解密,保密性强;可以通过时分复用提高信道利用率;便于建立综合业务数字网等优点,是今后通信业务的发展方向。
仪器介绍整套实验系统由光纤发射装置、光纤接收装置、光纤跳线、电源线与测试连接线、示波器组成。
图8 光纤发射装置面板图图9 光纤接收装置面板图光纤发射与接收装置面板如图8、图9所示。
光纤发射装置可产生各种实验需要的信号,通过发射管发射出去。
发出的信号通过光纤传输后,由接收管完成光电转换。
接收装置将信号处理后,通过仪器面板显示或者示波器观察传输后的各种信号。
发射系统中的信号源模块部分由电压源、音频信号、脉冲信号、方波信号、正弦波信号等组成。
这些信号可以通过信号切换键来选择调整参数。
当对应信号源的指示灯亮起时,表示可以对该信号进行幅度/电压调节和频率调节了。