计算机组成原理知识点
计算机组成原理基础知识梳理
计算机组成原理基础知识梳理计算机组成原理是计算机科学与技术领域中的一个重要课程,涉及了计算机的硬件和软件方面的基础知识。
本篇文章将从计算机的五大基本组成部分入手,对计算机组成原理的基础知识进行梳理。
一、中央处理器(CPU)中央处理器是计算机的大脑,负责执行所有计算机指令和控制计算机操作的过程。
它由运算器、控制器和寄存器等部件组成。
运算器负责进行数据运算和逻辑操作,控制器负责解析和执行指令,寄存器用于存储数据和指令。
1. 运算器:运算器主要包括算术逻辑单元(ALU)和累加寄存器(AC)。
ALU负责进行算术和逻辑操作,比如加法、减法、与、或等。
AC是一个特殊的寄存器,用于存放操作数和运算结果。
2. 控制器:控制器负责解析指令、产生控制信号和协调各个部件的工作。
它通过时钟信号来同步各个部件的操作,确保指令的顺序执行。
3. 寄存器:寄存器是一种高速存储器件,用于存储数据和指令。
它们与CPU更为接近,可以快速访问。
常见的寄存器包括程序计数器(PC)、指令寄存器(IR)、数据寄存器(DR)等。
二、存储器存储器是计算机用于存储数据和指令的设备,分为主存储器和辅助存储器两种。
1. 主存储器:主存储器是计算机中数据和程序的主要存放地点,也是CPU能直接访问的存储器。
常见的主存储器包括随机存储器(RAM)和只读存储器(ROM)两种。
- RAM:RAM是一种易失性存储器,即断电后数据会丢失。
它具有读写功能,用于临时存储数据和程序。
RAM可以按字节寻址,可以被CPU任意读写。
- ROM:ROM是一种只读存储器,其中存放的是永久性数据和程序,不会因为断电而丢失。
ROM的内容只能被读取,不能被修改。
2. 辅助存储器:辅助存储器是一种用于扩展计算机存储容量的设备,如硬盘、光盘和闪存等。
辅助存储器的容量大、速度慢,主要用于长期存储数据和程序。
三、输入输出设备输入输出设备用于实现计算机与外部环境之间的数据交互。
1. 输入设备:输入设备用于将外部信息输入计算机,如键盘、鼠标、扫描仪等。
计算机组成原理知识点总结
计算机组成原理知识点总结第一章一、数字计算机的五大部件(硬件)及各自主要功能(P6)计算机硬件组成:存储器、运算器、控制器、输入设备、输出设备。
1、存储器(主存)主要功能:保存原始数据和解题步骤。
包括:内存储器(CPU 直接访问),外存储器。
2、运算器主要功能:进行算术、逻辑运算。
3、控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。
包括:计算程序和指令(指令由操作码和地址码组成)。
4、输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。
5、输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。
注:1、冯诺依曼结构:存储程序并按地址顺序执行。
2、中央处理器(CPU):运算器和处理器的结合。
3、指令流:取指周期中从内存读出的信息流,流向控制器。
数据流:在执行器周期中从内存读出的信息流,由内存流向运算器。
二、数字计算机的软件及各自主要功能(P11)1、系统软件:包括服务性程序、语言程序、操作程序、数据库管理系统。
2、应用程序:用户利用计算机来解决某些问题而设计。
三、计算机的性能指标。
1、吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,用bps度量。
2、响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。
3、利用率:在给定的时间间隔内,系统被实际使用的时间所在的比率,用百分比表示。
4、处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机。
5、总线宽度:一般指CPU从运算器与存储器之间进行互连的内部总线一次操作可传输的二进制位数。
6、存储器容量:存储器中所有存储单元(通常是字节)的总数目,通常用KB、MB、GB、TB来表示。
7、存储器带宽:单位时间内从存储器读出的二进制数信息量,一般用B/s(字节/秒)表示。
8、主频/时钟周期:CPU的工作节拍受主时钟控制,按照规定在某个时间段做什么(从什么时候开始、多长时间完成),主时钟不断产生固定频率的时钟信号。
计算机组成原理知识点总结
计算机组成原理知识点总结一、存储系统(一)存储器的基本概念1.分类a)作用(层次):CACHE 主存辅存b)存储介质:磁半导体光c)存取方式●随机存取:RAM ROM●串行访问●顺序存取:磁带●直接存取:磁盘d)信息可保存性--易失性破坏性读出非2.性能指标a)存储容量字b)单位成本每位成本c)存储速度(数据传输率主存带宽)3.层次化结构a)Cache-主存层次:硬件实现,解决速度不匹配问题b)主存-辅存层次:硬件+操作系统实现,解决容量问题,逐渐形成虚拟存储系统(二)半导体存储器1.存储器芯片的基本结构a)译码驱动电路(译码器:扩充容量)b)存储矩阵c)读写电路d)地址线,数据线,片选线,读写控制线2.半导体存储器RAM(易失性存储器)a)SRAM:触发器存储信息,速度快成本高集成度低,用于高速缓存b)DRAM:电容存储信息,需要刷新,速度慢成本低,集成度高,用于主存SDRAMc)DRAM的刷新:集中刷新,分散刷新,●异步刷新●不需要CPU控制●行为单位,仅需要行地址●存储器中所有芯片同时刷新d)RAM的读写周期3.ROM(非易失性存储器)a)特点:结构简单,位密度比RAM高,非易失性,可靠性高b)类型:MROM,PROM,EPPROM,FLASH MEMORY,SSD(三)存储器与CPU的协同工作(提高存储系统的工作速度)1.主存与CPU的连接a)字扩展b)位扩展●线选法●译码片选法●译码器的使用●分析地址空间c)字位同时扩展●选择存储器芯片●与CPU进行连接2.双口RAM和多模块存储器a)多模块存储器●单体多字●多体并行●低位交叉编址●高位交叉编址b)双端口RAM3.高速缓冲存储器a)CACHE局部性原理和性能分析●局部性原理●空间局部性●时间局部性●性能分析●命中率和失效率●CACHE----主存体系的平均访问时间b)CACHE工作原理●地址映射方式●全相联●直接相联●组相联●替换算法●RAND随机●FIFO先入先出●LRU最近最少使用●LFU最不经常使用●写策略●命中●全写法●写回法●不命中●写分配法●非写分配法4.虚拟存储器(主存和辅存共同构成)(增加存储系统的容量)a)基本概念:虚地址(逻辑地址)映射到实地址(物理地址)b)解决问题:进程并发问题和内存不够用问题c)类型●页式●段式●段页式d)虚实地址转换(提高速度)●快表TLB●慢表Page二、指令系统(一)指令格式1.操作码和地址码组成一条指令2.操作码a)定长操作码和扩展操作码b)操作码类型(二)指令寻址方式1.指令寻址(通过PC)a)顺序寻址b)跳跃寻址2.数据寻址a)隐含寻址b)立即寻址:给寄存器赋初值c)直接寻址d)间接寻址:扩大寻址范围,便于编制程序e)寄存器寻址:指令执行速度更快f)寄存器间接寻址g)偏移寻址(各寄存器内容+形式地址):基址寻址,变址寻址(处理数组,编制循环程序),相对寻址h)堆栈寻址(三)CISC和RISC1.CISC复杂指令系统计算机(用微程序控制器)a)更多更复杂,一般为微程序控制,用于计算机系统2.RISC精简指令系统计算机(用硬布线控制器)a)指令数目少,字长固定,寻址方式少,寄存器数量多,一般为组合逻辑控制,用于手机三、中央处理器(一)CPU的功能和基本结构1.CPU的功能:指令控制,操作控制,时间控制,数据加工,中断处理2.运算器a)功能:对数据进行加工b)基本结构:●算术逻辑单元ALU●暂存寄存器●通用寄存器组●累加寄存器ACC●程序状态字寄存器PSW●移位器,计数器3.控制器a)功能:取指令,分析指令,执行指令b)控制器的基本结构●程序计数器PC●指令寄存器IR●指令译码器,时序系统,微操作信号发生器●存储器地址寄存器MAR●存储器数据寄存器MDR4.数据通路的基本结构a)专用通路b)内部总线(二)指令执行过程1.指令周期a)构成:机器周期、CPU周期——CPU时钟周期、节拍b)类型:取指周期,间址周期,执行周期,中短周期c)标志触发器FE,IND,EX,INT:区别工作周期2.数据流a)取指周期:根据PC取出指令代码存放在IRb)间址周期:根据IR中指令地址码取出操作数的有效地址c)执行周期:根据指令字的操作码和操作数进行相应操作d)中断周期:保存断点,送中断向量,处理中断请求3.执行方案a)单指令周期:串行,指令相同执行时间b)多指令周期:串行,指令不同执行时间c)流水线方案:隔一段时间启动一条指令,多条指令处于不同阶段,同事并行处理(三)数据通路的功能和基本结构(连接路径)1.CPU内部总线a)单总线b)多总线2.专用数据通路:多路选择器和三态门3.了解各阶段微操作序列和控制信号(四)控制器的功能和工作原理1.控制器的结构和功能a)计算机硬件系统连接关系b)控制器的功能:取指令,分析指令,执行指令c)控制器的输入和输出2.硬布线控制器a)硬布线控制单元图:组合逻辑电路+触发器b)设计步骤(了解)●分析每个阶段的微操作序列●选择CPU的控制方式●安排微操作序列●电路设计3.微程序控制器a)基本结构●微地址形成部件●微地址寄存器CMAR●控制存储器CM●微指令寄存器CMDRb)微指令的格式●水平型:并行操作●字段直接编码方式●直接编码方式●字段间接编码方式●垂直型:类似机器指令c)微指令的地址形成方式●下地址字段指出:断定方式●根据机器指令的操作码形成d)基本概念●微命令和微操作●微指令和微周期●主存储器和控制存储器●程序和微程序●寄存器:MAR和CMAR,IR和CMDRe)硬布线和微程序的比较(微操作控制信号的实现形式)(五)指令流水线1.指令流水线的概念a)指令执行过程划分为不同阶段,占用不同的资源,就能使多条指令同时执行b)表示方法●指令流程图:分析影响流水线的因素●时空图:分析性能2.性能指标a)吞吐率TPb)加速比Sc)效率E3.影响流水线的因素a)结构相关(资源冲突)b)数据相关(数据冲突)c)控制相关(控制冲突)4.流水线的分类a)按使用级别:部件功能级,处理机级,处理机间b)按完成功能:单功能,多功能c)按连接方式:动态,静态d)按有无反馈信号:线性,非线性5.多发技术a)超标量流水线技术b)超流水线技术c)超长指令字技术四、总线(一)总线概念和分类1.定义:一组能为多个部件分时共享的公共信息传送线路2.分类a)按数据传输格式●串行,并行b)按功能●片内总线●系统总线●数据总线,地址总线,控制总线●通信总线c)按时序控制方式●同步,异步3.总线结构a)单总线结构——系统总线b)双总线结构(通道)●主存总线●IO总线c)三总线结构●主存总线●IO总线●DMA总线(二)总线的性能指标1.总线传输周期(总线周期)2.总线带宽3.总线宽度(位宽)4.总线复用:一种信号线传输不同信息(三)总线仲裁1.集中仲裁方式a)链式查询方式b)计数器定时查询方式c)独立请求方式2.分布仲裁方式(四)总线操作和定时1.总线传输的四个阶段a)申请分配阶段●传输请求●总线仲裁b)寻址阶段c)传输阶段d)结束阶段2.定时a)同步定时方式(同步通信)b)异步定时方式(异步通信)●不互锁●半互锁●全互锁c)半同步通信d)分离式通信(五)总线标准五、IO系统(一)IO系统基本概念1.演变过程a)早期:分散连接,CUP与IO串行,程序查询方式b)接口模块和DMA阶段:总线连接,cpu与io并行,中断方式及DMA方式c)具有IO通信结构的阶段d)具有IO处理机的阶段2.IO系统的基本组成a)IO软件——IO指令和通道指令b)IO硬件——外设,设备控制器和接口,IO总线等3.IO方式简介a)程序查询方式:IO与CPU串行,CPU有“踏步等待”现象(由程序控制)b)程序中断方式:IO准备数据时CPU继续工作,在指令执行结束时响应中断(由程序控制)c)DMA方式:主存与IO交换信息时由DMA控制器控制,在存取周期结束时响应DMA请求(由硬件控制)d)通道方式:通过IO指令启动通道,通道程序放在主存中(由硬件控制)(二)外部设备1.输入设备——键盘,鼠标2.输出设备a)显示器●分类●阴极射线管(CRT)●液晶(LCD)●发光二极管(LED)●参数●屏幕大小,分辨率,灰度级,刷新频率●显示存储器(VRAM)●容量=分辨率*灰度级位数●带宽=容量*帧频●打印机3.外存储器a)磁盘存储器●组成●存储区域:磁头,柱面,扇区●硬盘存储器:磁盘驱动器,磁盘控制器,盘片●工作过程:寻址,读盘,写盘对应的控制字,串行读写●性能指标●容量●记录密度●平均存取时间●数据传输率b)磁盘阵列RAID——利用磁盘廉价的特点提高存储性能,可靠性和安全性c)光盘存储器d)固态硬盘SSD——采用FLASH Memory记录数据(三)IO接口1.主要功能a)设备选址功能:地址译码和设备选择b)传送命令c)传送数据:实现数据缓冲和格式转换d)反应IO设备的工作状态2.基本结构a)设备选择电路,命令寄存器和命令译码器,数据缓冲寄存器DBR,设备状态标记,控制逻辑电路b)内部接口和外部接口3.编址a)统一编址——与存储器共用地址,用访存命令访问IO设备b)独立编址:单独使用一套地址,有专门的IO指令4.分类a)数据传送方式:并行接口,串行接口b)主机访问IO设备的控制方式●程序查询接口●中断接口●DMA接口c)功能选择的灵活性●可编程接口●不可编程接口(四)IO方式1.程序查询方式:CPU与IO串行工作,鼠标,键盘2.程序中断方式a)中断系统●中断的基本概念●工作流程●中断请求●分类●中断请求标记触发器INTR●中断响应●中断响应的条件●中断判优●软件:查询程序●硬件:排队器●优先级的设置●中断处理●中断隐指令●关中断●保存断点PC●引出中断服务程序●中断服务程序●单重中断与多重中断●中断服务程序的具体步骤●中断屏蔽技术●屏蔽字●程序执行轨迹b)程序中断方式●工作流程●CPU占用情况●中断响应(隐指令)●中断服务程序3.DMA方式a)DMA控制器●组成●主存地址计数器:存放要交换数据的主存地址●传送长度计数器:记录传送数据的长度●数据缓冲寄存器:暂存每次传送的数据●DMA请求触发器:设备准备好数据后将其置位●控制/状态逻辑:由控制和时序电路及状态标志组成●中断机构:数据传送完毕后触发中断机构,提出中断请求●主要功能●传送前:接受外设的DMA请求,向CPU发出总线请求,接管总线控制权●传送时:管理总线,控制数据传送,确定主存单元地址及长度,能自动修改对应参数●传送后: 向CPU报告DMA操作的结束b)传送过程●预处理:CPU完成寄存器初值设置等准备工作●数据传送:CPU继续执行主程序,DMA控制器完成数据传送●后处理:CPU执行中断服务程序做DMA结束处理。
计算机组成原理知识点
计算机组成原理知识点1. 冯·诺依曼体系结构:计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。
2. 运算器:计算机的核心部分,负责执行各种算术运算和逻辑运算。
3. 控制器:负责控制指令的执行次序和操作,包括指令的获取、解码和执行。
4. 存储器:用于存储计算机程序和数据,包括主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)。
5. 输入设备:用于将外部数据或指令输入到计算机,包括键盘、鼠标、扫描仪等。
6. 输出设备:用于将计算机处理后的结果输出到外部,包括显示屏、打印机、音响等。
7. 指令集:计算机能够执行的全部指令的集合。
8. 指令的执行过程:指令的获取、解码、操作和存储四个步骤。
9. 计算机的时钟:用于统一各个部件的工作节奏。
10. 运算器的设计:包括算术逻辑单元(ALU)和寄存器的设计。
11. 控制器的设计:包括指令寄存器、程序计数器和指令译码器的设计。
12. 存储器的分类:根据访问方式可以分为随机存储器(RAM)和只读存储器(ROM)。
13. 存储器的层级结构:由高速缓存、主存储器和辅助存储器组成,速度逐级递减,容量逐级递增。
14. 输入输出控制方式:包括程序控制方式、中断方式和直接存储器访问方式。
15. 总线的作用:用于数据和控制信息在计算机各个部件之间传输。
16. 总线的分类:根据传输数据的方式可以分为数据总线、地址总线和控制总线。
17. 中央处理器(CPU)的功能:包括指令的获取、解析、运算和存储。
18. 中央处理器的核心部分:由运算器和控制器组成。
19. 中央处理器的指令周期:包括取指周期、执行周期和存储周期。
20. 中央处理器的性能指标:包括时钟频率、主频和执行速度。
21. 程序和指令:程序是指一系列有序的指令集合,指令是计算机能够识别和执行的最小指令单元。
22. 计算机的存储方式:包括字节顺序、地址分配和寻址方式。
23. 输入输出设备的原理:包括数据传输、数据缓冲和数据控制。
计算机组成原理总结精选全文完整版
可编辑修改精选全文完整版第一章计算机系统概论1. 什么是计算机系统、计算机硬件和计算机软件?硬件和软件哪个更重要?解:P3计算机系统:由计算机硬件系统和软件系统组成的综合体。
计算机硬件:指计算机中的电子线路和物理装置。
计算机软件:计算机运行所需的程序及相关资料。
硬件和软件在计算机系统中相互依存,缺一不可,因此同样重要。
5. 冯•诺依曼计算机的特点是什么?解:冯•诺依曼计算机的特点是:P8●计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成;●指令和数据以同同等地位存放于存储器内,并可以按地址访问;●指令和数据均用二进制表示;●指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;●指令在存储器中顺序存放,通常自动顺序取出执行;●机器以运算器为中心(原始冯•诺依曼机)。
7. 解释下列概念:主机、CPU、主存、存储单元、存储元件、存储基元、存储元、存储字、存储字长、存储容量、机器字长、指令字长。
解:P9-10主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。
CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;(早期的运算器和控制器不在同一芯片上,现在的CPU内除含有运算器和控制器外还集成了CACHE)。
主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取;由存储体、各种逻辑部件及控制电路组成。
存储单元:可存放一个机器字并具有特定存储地址的存储单位。
存储元件:存储一位二进制信息的物理元件,是存储器中最小的存储单位,又叫存储基元或存储元,不能单独存取。
存储字:一个存储单元所存二进制代码的逻辑单位。
存储字长:一个存储单元所存二进制代码的位数。
存储容量:存储器中可存二进制代码的总量;(通常主、辅存容量分开描述)。
机器字长:指CPU一次能处理的二进制数据的位数,通常与CPU的寄存器位数有关。
指令字长:一条指令的二进制代码位数。
计算机组成原理知识点汇总
计算机组成原理知识点汇总
计算机组成原理是一门计算机科学基础课程,它主要涉及计算机硬件结构和系统软件两个方面。
以下是一些知识点的汇总:
1. 计算机的基本组成:包括运算器、控制器、存储器和输入输出设备。
2. 计算机的存储器层次结构:主要包括寄存器、高速缓存、内存和外存,每一级存储器速度和价格都有所不同。
3. CPU的工作原理:CPU主要由控制器和ALU两部分组成,通过不同的指令和数据进行运算和控制,实现程序的执行。
4. 指令系统和编程:计算机执行的所有程序都是由一系列指令组成的,不同的指令可以执行不同的操作。
5. 总线和I/O系统:总线是连接不同部件的主要通道,而I/O系统则负责计算机与外部设备的数据传输和控制。
6. 中断和异常:计算机系统在执行程序时可能会遇到不正常的情况,这时就需要通过中断和异常机制来处理。
7. 计算机系统的性能分析与优化:通过各种性能指标和分析方法,可以对计算
机系统的性能进行评估和优化,以实现更高效的计算。
以上是计算机组成原理中的一些重要知识点,掌握它们对于理解计算机硬件和系统软件的设计和优化有重要的作用。
大学计算机科学知识点归纳
大学计算机科学知识点归纳1. 计算机科学基础1.1 计算机组成原理- 计算机硬件:CPU、内存、I/O设备、存储器等- 计算机指令:机器指令、汇编指令、高级指令等- 计算机体系结构:冯诺依曼结构、哈佛结构等1.2 数据结构与算法- 线性结构:数组、链表、栈、队列、串等- 非线性结构:树、图、哈希表等- 算法:排序算法、查找算法、图算法等1.3 计算机网络- 网络结构:OSI七层模型、TCP/IP四层模型等- 网络设备:交换机、路由器、网关等1.4 操作系统- 进程管理:进程、线程、进程调度、死锁等- 内存管理:内存分配、回收、虚拟内存等- 文件系统:文件、目录、文件系统结构等- 设备管理:设备驱动、I/O调度等2. 编程语言与编译原理2.1 编程语言- 高级语言:C、C++、Java、Python等- 低级语言:汇编、机器码等2.2 编译原理- 词法分析:词法单元、词法分析器等- 语法分析:语法规则、语法分析树、分析算法等- 中间代码生成与优化:三地址码、SSA等- 目标代码生成:汇编代码、机器代码等3. 软件工程- 软件开发过程:需求分析、设计、编码、测试、维护等- 软件设计模式:面向对象设计模式、架构模式等- 软件项目管理:项目计划、进度控制、风险管理等- 软件质量保证:代码审查、测试策略等4. 数据库系统- 数据库概念:数据模型、实体-关系模型、关系模型等- 数据库设计:范式、E-R图、SQL等- 数据库查询:SQL查询、视图、索引等- 数据库事务:ACID属性、并发控制、故障恢复等5. 人工智能与机器- 人工智能基础:知识表示、推理、搜索算法等- 机器算法:线性回归、决策树、神经网络等- 自然语言处理:分词、词性标注、命名实体识别等- 计算机视觉:图像处理、目标检测、人脸识别等6. 计算机科学其他领域- 并行与分布式系统:进程并发、分布式算法、云计算等- 网络安全:加密算法、防火墙、入侵检测等- 物联网:传感器、嵌入式系统、物联网协议等- 人机交互:用户界面设计、交互技术、虚拟现实等以上是对大学计算机科学知识点的简要归纳,希望对您有所帮助。
计算机组成原理-知识点汇总
《计算机组成原理》80个重要知识点汇总1、硬件包括中央处理器、存储器、外部设备和各类总线等。
1)中央处理器(处理器/CPU):核心部件,用于执令的执行。
2)存储器:内存和外存3)外部设备(简称外设,也称I/O设备):输入、输出设备。
4)总线:用于在部件之间传输信息。
2、软件1)系统软件: 操作系统(O/S)2)应用软件: 电子邮件、文字表格软件等。
3、计算机层次结构指令集体系结构ISA(简称体系结构或系统结构):连接软件和硬件的一个“桥梁”,是一台计机可以执行的所有指令集合。
微体系结构(简称微架构):具体实现的组织。
是由逻辑电路实现的,而逻辑电路又是按照特定的器件技术实现的。
编程语言低级语言:和运行计算机底层结构密切相关。
例:机器语言汇编语言:是一种机器语言的符号表示语言,通过用简短的英文符号和二进制代码建立对应关系。
高级语言:和底层计算机结构关联不大,大部分编程语言都是高级语言。
翻译程序:源程序→目标程序。
汇编程序:也称汇编器,将汇编语言源程序翻译成机器语言目标程序。
解释程序(解释器):将源程序中的语句逐条解释,转换成机器指令执行。
编译程序(编译器):将高级语言源程序翻译成汇编或机器语言目标程序。
4、冯诺依曼结构基本思想(1)采用“存储程序”工作方式。
存储程序: 指将编好的程序和原始数据送入主存并能自动执行的过程。
(2)计算机由运算器、控制器、存储器、输入设备和输出设备五个基本部件组成。
运算器:进行算术和逻辑运算。
控制器:自动执行指令。
存储器:存放数据和指令输入、输出设备:便于操作人员使用计算机。
(3)计算机内部以二进制形式表示指令和数据。
5、冯诺依曼结构模型机通用寄存器组:由若干个通用寄存器组成,用于存放操作数或操作数的地址。
标志寄存器:用来存放ALU运算得到的一些标志信息。
程序计数器(PC):用来存放将要执行的下一条指令的地址。
指令寄存器(IR):用于存放从主存储器读出的指令。
主存地址:每个存储单元的唯一编号。
(完整版)计算机组成原理知识点总结(唐朔飞版)
1、硬件:输入输出设备,控制器,存储器,运算器。
2、计算机技术指标:机器字长、存储容量、运算速度。
3、多总线结构的原理:双总线结构特点是将速度较低的I/O设备从单总线上分离出来,形成主存总线和I/O总线分开的结构。
三总线1由主存总线用于CPU与主存之间的传输,I/O总线供CPU与各类I/O 设备之间传递信息,DMA总线用于高速IO设备与主存之间直接交换信息,任意时刻只能用一种总线,主存总线与DMA总线不能同时对主存进行存取。
三总线2CPU与Cache之间构成局部总线,而且还直接连到系统总线上,cache可通过系统总线与主存传输信息,还有一条扩展总线可以连接IO设备。
四总线由局部总线,系统总线,告诉总线,扩展总线构成。
4、总线判优分为集中式和分布式两种,集中式分为链式查询、计数器定时查询、独立请求方式(排队器)5、总线通信控制的四种方式:同步通信,异步通信,半同步通信,分离式通信。
6、波特率是每秒传输的位数,比特率是每秒传输的有效数据位数(bps)7、存储器技术指标:存储速度,存储容量和位价。
8、存储器分为主存,闪存,辅存和缓存。
9、分层原因:1缓存-主存层解决CPU与主存速度不匹配问题;2主存-辅存层解决系统存储容量的问题。
10、主存的技术指标:存储容量,存储速度(存取时间和存取周期表示)。
11、存储器带宽的计算方法:如存取周期为500ns,每个存取周期可访问16位,则带宽为32M位/秒。
带宽是衡量数据传输率的重要技术指标。
12、动态RAM的刷新方式:集中刷新(是在规定的一个刷新周期内,对全部存储单元集中一段时间逐行进行刷新,此刻必须停止读写操作‘死时间’)分散刷新(指对每行存储单元的刷新分散到每个存取周期内完成。
不存在死时间,整个系统速度降低)异步刷新(前两种方式的结合,即可缩短死时间,又充分利用最大刷新间隔为2ms的特点)。
13、动态RAM集成度远高于静态RAM;动态RAM行列地址按先后顺序输送,减少了芯片引脚,封装尺寸也减少;动态RAM功耗比静态RAM小;动态RAM的价格比静态RAM便宜;由于使用动态元件,因此速度比静态RAM低;动态RAM需要再生,需配置再生电路,也需要消耗一部分功率。
计算机组成原理知识点总结
计算机组成原理知识点总结1.计算机系统结构:计算机系统由硬件和软件两个部分组成。
硬件包括中央处理器(CPU)、内存、存储、输入输出设备等;软件包括系统软件和应用软件。
计算机的基本组成包括控制器、运算器、存储器和输入输出设备。
2.布尔代数和逻辑运算:布尔代数是一种逻辑运算的数学体系,计算机的工作原理是基于逻辑运算的。
布尔代数的基本运算有与、或、非、与非等。
逻辑电路是基于这些布尔运算的组合与设计电路,并且逻辑门是构成逻辑电路的基本元件,包括与门、或门和非门等。
3. 数据表示和编码方式:计算机内部使用二进制表示和存储数据。
十进制数可以转换为二进制数,通过位于和非显示十进制数。
计算机采用不同的编码方式来表示字符和数据,例如ASCII码、Unicode等。
4.计算机中的算术运算:计算机进行算术运算包括加法、减法、乘法和除法等。
算术运算是通过逻辑运算和位操作实现的,例如加法器、乘法器和除法器。
5.存储器层次结构:存储器是计算机中用于存储和访问数据的设备。
存储器层次结构包括寄存器、高速缓存、主存储器和辅助存储器等。
存储器的访问速度和容量呈反比,存储器层次结构的设计目标是在速度和容量之间找到一个平衡点。
6.输入输出设备:计算机通过输入输出设备与外部世界交互,包括键盘、鼠标、显示器、打印机等。
输入输出设备通过中断机制和设备控制器实现与CPU的数据交换。
7.中央处理器:中央处理器是计算机的核心,执行指令并控制计算机的运行和运算。
中央处理器由控制器和运算器组成,控制器负责解释和执行指令,运算器负责算术和逻辑运算。
8.指令的执行过程:计算机按照程序顺序依次执行指令,指令的执行过程包括取指令、解码、执行和访存。
指令集架构是计算机硬件和软件交互的接口。
9.总线和IO结构:总线是计算机内部各个部件之间传输数据和信号的通道,包括地址总线、数据总线和控制总线。
IO结构包括存储器映射IO和端口映射IO两种方式。
10.中断和异常处理:计算机中断是指暂停当前程序的执行,转而执行其他程序或处理异常情况。
计算机组成原理详解,掌握计算机核心知识
计算机组成原理详解,掌握计算机核心知识计算机组成原理是计算机科学中的重要基础知识,它涉及到计算机的硬件和软件组成部分,关系到计算机如何工作和运行。
在计算机科学与技术领域,计算机组成原理是必备的核心知识点。
本文将对计算机组成原理进行详细的解析,帮助读者全面了解计算机的核心构成和工作原理。
一、计算机组成原理概述计算机组成原理研究的是计算机硬件系统的组成和运行原理,涉及到电子学、计算机结构、操作系统和编程语言等诸多领域。
计算机组成原理主要包括计算机的基本组成、数据的表示和操作、指令的执行过程、存储器系统、输入输出系统等方面的内容。
1.1 计算机的基本组成计算机的基本组成包括中央处理器(CPU)、存储器和输入输出设备。
中央处理器负责执行指令和进行数据处理,存储器用于存储程序和数据,输入输出设备用于与外部环境进行信息交互。
1.2 数据的表示和操作计算机中的数据以二进制形式表示,包括整数、实数、字符、图像等。
计算机通过运算器执行算术运算和逻辑运算,实现对数据的处理和操作。
1.3 指令的执行过程计算机的指令是由一系列二进制代码表示的,指令的执行过程包括指令的取指、指令的解码和指令的执行三个步骤。
计算机通过控制器对指令进行解码和执行,完成程序的运行。
1.4 存储器系统计算机的存储器系统包括主存储器和辅助存储器。
主存储器用于存储程序和数据,辅助存储器用于扩展存储容量和数据的备份。
1.5 输入输出系统计算机的输入输出系统用于与外部设备进行数据交换,包括输入设备和输出设备。
输入设备将外部信息转换为计算机可识别的形式,输出设备将计算机处理结果转换为人类可理解的形式。
二、计算机硬件的工作原理计算机硬件是计算机组成原理研究的核心内容,它包括中央处理器、存储器、输入输出设备等,这些硬件协同工作,完成各种计算任务。
2.1 中央处理器(CPU)中央处理器是计算机的核心部件,它包括算术逻辑单元(ALU)、控制单元(CU)和寄存器等。
计算机组成原理详解,掌握计算机核心知识
计算机组成原理详解,掌握计算机核心知识计算机组成原理是指计算机内部各个组成部分的结构和工作原理。
它是计算机科学与技术领域的基础课程之一,对于理解计算机的工作原理以及能够进行计算机系统的设计和优化具有重要意义。
本文将为您详细解析计算机组成原理的核心知识。
一、计算机的基本组成部分计算机由五大基本部件组成:运算器、控制器、存储器、输入设备和输出设备。
其中,运算器和控制器合称为中央处理器(CPU),负责计算和控制;存储器用于保存数据和指令;输入设备用于接收外部数据;输出设备用于显示计算结果或将结果输出至外部。
这五个部件相互协作,实现计算机的各项功能。
二、运算器的功能和结构运算器是计算机的核心部件,用于进行算术和逻辑运算。
它由算术逻辑单元(ALU)和寄存器组成。
ALU负责实现各种运算操作,如加减乘除、与或非等逻辑运算;寄存器用于暂存数据和中间结果。
运算器的工作方式是先将数据从存储器中取出放入寄存器,然后通过ALU进行运算,最后将结果存回寄存器或存储器。
三、控制器的功能和原理控制器是计算机的指挥部,负责控制计算机各个部件的协调工作。
它通过解析指令并发出相应的控制信号来完成任务。
控制器主要由时序逻辑电路和指令寄存器组成。
时序逻辑电路确定各个部件的工作顺序和时序,确保计算机的稳定运行;指令寄存器存储当前正在执行的指令,并将指令送给运算器进行执行。
四、存储器的类型和层次结构存储器用于存储数据和指令。
根据存储介质和访问方式不同,存储器可以分为主存储器和辅助存储器。
主存储器是计算机的内存,通常采用半导体存储器,如随机存取存储器(RAM)和只读存储器(ROM);辅助存储器用于大容量数据的长期存储,如硬盘、固态硬盘和光盘。
存储器按照容量从小到大可以划分为寄存器、缓存、内存、磁盘等不同的层次。
五、输入输出设备的功能和接口输入设备用于向计算机输入数据和指令,输出设备用于显示计算结果或将结果输出至外部。
常见的输入设备有键盘、鼠标、扫描仪等;输出设备有显示器、打印机、音频设备等。
知识点整理----计算机组成原理
一、系统概述(一)计算机发展历程(二)计算机系统层次结构1.计算机硬件的基本组成2.计算机软件的分类3.计算机的工作过程(三)性能指标1.吞吐量对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。
2.响应时间3.CPU时钟周期(Clock Cycle):又称节拍没冲或T周期,是处理操作的最基本单位,是计算机中最基本的、最小的时间单位。
主频的倒数4.主频: 即CPU内核工作的时钟频率(CPU ClockSpeed)。
CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。
5.CPI (Clock cycle Per Instruction)表示每条计算机指令执行所需的时钟周期。
6.CPU执行时间7.MIPS(Million Instruction per second)每秒执行百万条指令某机器每秒执行300万条指令,则记作3 MIPS8.MFLOPS (Million Floationg-point Operations perSecond,每秒百万个浮点操作)衡量计算机系统的主要技术指标之一。
对于一给定的程序,MFLOPS的定义为:MFLOPS=操作浮点数/(执行时间*10E6)(10E6位10的6次方)。
1.指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成,是从取指令、分析指令到执行完所需的全部时间。
2.机器周期:(又称cpu周期)在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
通常用内存中读取一个指令字的最短时间来规定因而又称总线周期3.在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。
脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。
(完整版)计算机组成原理知识点总结
第2章数据的表示和运算主要内容:(一)数据信息的表示1.数据的表示2.真值和机器数(二)定点数的表示和运算1.定点数的表示:无符号数的表示;有符号数的表示。
2.定点数的运算:定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法。
(三)浮点数的表示和运算1.浮点数的表示:浮点数的表示范围;IEEE754标准2.浮点数的加/减运算(四)算术逻辑单元ALU1.串行加法器和并行加法器2.算术逻辑单元ALU的功能和机构2.3 浮点数的表示和运算2.3.1 浮点数的表示(1)浮点数的表示范围•浮点数是指小数点位置可浮动的数据,通常以下式表示:N=M·RE其中,N为浮点数,M为尾数,E为阶码,R称为“阶的基数(底)”,而且R为一常数,一般为2、8或16。
在一台计算机中,所有数据的R都是相同的,于是不需要在每个数据中表示出来。
浮点数的机内表示浮点数真值:N=M ×2E浮点数的一般机器格式:数符阶符阶码值 . 尾数值1位1位n位m位•Ms是尾数的符号位,设置在最高位上。
•E为阶码,有n+1位,一般为整数,其中有一位符号位EJ,设置在E的最高位上,用来表示正阶或负阶。
•M为尾数,有m位,为一个定点小数。
Ms=0,表示正号,Ms=1,表示负。
•为了保证数据精度,尾数通常用规格化形式表示:当R=2,且尾数值不为0时,其绝对值大于或等于0.5。
对非规格化浮点数,通过将尾数左移或右移,并修改阶码值使之满足规格化要求。
浮点数的机内表示阶码通常为定点整数,补码或移码表示。
其位数决定数值范围。
阶符表示数的大小。
尾数通常为定点小数,原码或补码表示。
其位数决定数的精度。
数符表示数的正负。
浮点数的规格化字长固定的情况下提高表示精度的措施:•增加尾数位数(但数值范围减小)•采用浮点规格化形式尾数规格化:1/2≤M <1 最高有效位绝对值为1浮点数规格化方法:调整阶码使尾数满足下列关系:•尾数为原码表示时,无论正负应满足1/2 ≤M <1即:小数点后的第一位数一定要为1。
计算机组成原理知识点总结
计算机组成原理知识点总结1. 引言计算机组成原理是计算机科学和工程领域的基础学科,它涉及计算机系统的设计和功能实现。
本文档旨在总结计算机组成原理的核心知识点,为读者提供一个清晰的学习框架。
2. 计算机系统概述2.1 计算机的定义与分类2.2 计算机的发展历程2.3 计算机系统的组成3. 数据的表示与处理3.1 数制与编码3.2 定点数与浮点数的表示3.3 数据的运算方法3.4 逻辑运算与逻辑电路4. 指令系统4.1 指令格式与指令类型4.2 指令的执行过程4.3 指令集体系结构4.4 程序的编写与执行5. 存储系统5.1 存储器的层次结构5.2 主存储器与辅助存储器5.3 缓存存储器5.4 虚拟存储器6. 中央处理器(CPU)6.1 CPU的功能与组成6.2 时钟与同步6.3 算术逻辑单元(ALU)6.4 控制单元(CU)6.5 寄存器与寄存器组7. 输入/输出系统7.1 I/O接口的作用与分类7.2 轮询与中断7.3 直接内存访问(DMA)7.4 人机交互设备8. 总线与互连网络8.1 总线的概念与分类8.2 总线协议与标准8.3 互连网络的设计9. 并行组织与流水线9.1 并行处理的概念9.2 流水线的基本原理9.3 超标量与超级流水线9.4 并行处理的挑战10. 性能评估10.1 性能指标10.2 阿姆达尔定律10.3 性能提升策略10.4 能效比的重要性11. 结论本文档总结了计算机组成原理的关键知识点,旨在为读者提供一个全面的理解框架。
通过掌握这些知识点,读者将能够更好地理解计算机系统的工作原理和设计原则。
12. 参考文献[1] Patterson, D. A., & Hennessy, J. L. (2017). Computer Organization and Design MIPS Edition: The Hardware/Software Interface. Morgan Kaufmann.[2] Stallings, W. (2015). Computer Organization and Architecture. Pearson Education.[3] Tanenbaum, A. S., & Austin, T. (2012). Structured Computer Organization. Pearson.请注意,本文档是一个简化的总结,实际的计算机组成原理课程可能会包含更多的细节和深入的讨论。
计算机组成原理知识点总结
计算机组成原理白中英复习第一章计算机系统概论电子数字计算机的分类P1通用计算机超级计算机、大型机、服务器、工作站、微型机和单片机和专用计算机;计算机的性能指标P5数字计算机的五大部件及各自主要功能P6五大部件:存储器、运算器、控制器、输入设备、输出设备;存储器主要功能:保存原始数据和解题步骤;运算器主要功能:进行算术、逻辑运算;控制器主要功能:从内存中取出解题步骤程序分析,执行操作;输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式;输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式;计算机软件P11系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类P65按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关随机访问:随机存储器RAM——在程序的执行过程中可读可写只读存储器ROM——在程序的执行过程中只读存取时间与物理地址有关串行访问:顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM——静态RAM、动态RAM只读存储器ROM——MROM、PROM、EPROM、EEPROMFlash Memory高速缓冲存储器Cache辅助存储器——磁盘、磁带、光盘存储器的分级P66存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器cache、主存储器、外存储器;主存储器的技术指标P67存储容量:存储单元个数M×每单元位数N存取时间:从启动读写操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间 ,时间单位为ns;存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标;SRAM存储器P67基本存储元:用一个锁存器触发器作为存储元;基本的静态存储元阵列P68双译码方式P68读周期、写周期、存取周期P70DRAM存储器P70基本存储元:由一个MOS晶体管和电容器组成的记忆电路;存储原理:所存储的信息1或0由电容器上的电荷量来体现充满电荷:1;没有电荷:0;一个DRAM存储元的写、读、刷新操作P71DRAM的刷新:集中式刷新和分散式刷新P73存储器容量的扩充P73位扩展——增加存储字长P73字扩展——增加存储字的数量P73字、位扩展P74例题P73只读存储器ROM P80掩模ROM、PROM、EPROM、EEPROM、Flash 存储器P80-86并行存储器P86双端口存储器:指同一个存储器具有两组相互独立的读写控制线路;多模块交叉存储器:连续地址分布在相邻的不同模块内,同一个模块内的地址都是不连续的;对连续字的成块传送可实现多模块流水式并行存取,大大提高存储器的带宽; cache基本原理P92避免 CPU“空等”现象CPU 和主存DRAM的速度差异程序访问的局部性原理cache由高速的SRAM组成cache的基本原理P93命中、未命中、命中率P93例题P94cache与主存的地址映射P94全相联映像:主存中的任一块可以映象到缓存中的任一块;直接映像:每个缓存块可以和若干个主存块对应;每个主存块只能和一个缓存块对应;组相联映像:某一主存块 j 按模 u 映射到缓存的第i 组中的任一块;替换算法P98先进先出算法FIFO:把一组中最先调入cache的块替换出去,不需要随时记录各个块的使用情况,所以实现容易,开销小;近期最少使用算法LRU:将近期内长久未被访问过的行块换出;每行设置一个计数器,cache每命中一次,命中行计数器清零,其它各行计数器增1;当需要替换时,比较各特定行的计数值,将计数值最大的行换出;最不经常使用LFU:被访问的行计数器增加1,换值小的行,不能反映近期cache的访问情况;随机替换:从特定的行位置中随机地选取一行换出; cache的写操作策略P99写回法、全写法、写一次法P99-100第四章指令系统指令系统P103程序、高级语言、机器语言、指令、指令系统、复杂指令系统计算机CISC、精简指令系统计算机RISCP103指令格式P105操作码:指令操作性质的二进制数代码地址码:指令中的地址码用来指出该指令的源操作数地址一个或两个、结果地址及下一条指令的地址;三地址指令、二地址指令、一地址指令、零地址指令;三种二地址指令SS、RR、RSP106指令字长度、机器字长P107例题P110操作数类型P110地址数据、数值数据、字符数据、逻辑数据寻址方式P112确定本条指令的操作数地址,下一条欲执行指令的指令地址指令寻址顺序寻址——PC+1跳跃寻址——转移类指令数据寻址P112-116立即寻址——形式地址就是操作数直接寻址——有效地址由形式地址直接给出隐含寻址——操作数地址隐含在操作码中间接寻址——有效地址由形式地址间接提供寄存器寻址——有效地址即为寄存器编号寄存器间接寻址——有效地址在寄存器中基址寻址——有效地址=形式地址+基地址变址寻址——有效地址=形式地址+变址寄存器的内容相对寻址——有效地址=PC的内容+形式地址堆栈寻址——栈顶指针段寻址例题P118指令的分类119数据处理、数据存储、数据传送、程序控制RISC技术P121RISC——精简指令系统计算机CISC——复杂指令系统计算机RISC指令系统的特点P121第五章中央处理器CPU的功能P127指令控制、操作控制、时间控制、数据加工CPU的基本组成P127控制器、运算器、cacheCPU中的主要寄存器P128数据缓冲寄存器DR、指令寄存器IR、程序计数器PC、数据地址寄存器AR、通用寄存器、状态字寄存器PSW操作控制器的分类P130时序逻辑型:硬布线控制器存储逻辑型:微程序控制器指令周期P131取出并执行一条指令所需的全部时间;指令周期、机器周期、时钟周期P131一个指令周期含若干个机器周期一个机器周期包含若干个时钟周期取指周期数据流P132执行周期数据流P133—138时序信号的作用和体制P141时序信号的基本体制是电位—脉冲制;数据加在触发器的电位输入端D ,打入数据的控制信号加在触发器的时钟脉冲输入端 CP;电位高低表示数据是1还是0,要求打入数据的控制信号来之前电位信号必须已稳定;节拍电位、节拍脉冲P142控制器的控制方式P144同步控制方式:即固定时序控制方式,各项操作都由统一的时序信号控制,在每个机器周期中产生统一数目的节拍电位和工作脉冲;异步控制方式:不受统一的时钟周期节拍的约束;各操作之间的衔接与各部件之间的信息交换采取应答方式;联合控制方式:同步控制和异步控制相结合的方式,大部分指令在固定的周期内完成,少数难以确定的操作采用异步方式;微程序控制原理P145微程序控制是指运行一个微程序来实现一条机器指令的功能;微程序控制的基本思想:仿照计算机的解题程序,把微操作控制信号编制成通常所说的“微指令”,再把这些微指令按时序先后排列成微程序,将其存放在一个只读存储器里,当计算机执行指令时,一条条地读出这些微指令,从而产生相应的操作控制信号,控制相应的部件执行规定的操作;微程序、微指令、微命令、微操作P145机器指令与微指令的关系P150微命令的编码方法P151直接表示法:微指令的每一位代表一个微命令,不需要译码;编码表示法:把一组相斥性的微命令信号组成一个小组即一个字段,然后通过小组字段译码器对每一个微命令信号进行译码,译码输出作为操作控制信号;混合表示法:把直接表示法与字段编码表示法混合使用,以便能综合考虑微指令字长、灵活性、速度等方面的要求;微指令格式P153水平型微指令:是指一次能定义并能并行执行多个微命令的微指令;垂直型微指令:微指令中设置微操作码字段,采用微操作码编译法,由微操作码规定微指令的功能,称为垂直型微指令;垂直型微指令的结构类似于机器指令的结构;硬连线控制器P155基本思想:通过逻辑电路直接连线而产生的,又称为组合逻辑控制方式;这种逻辑电路是一种由门电路和触发器构成的复杂树形逻辑网络;三个输入:来自指令操作码译码器的输出;来自执行部件的反馈信息;来自时序产生器的时序信号,包括节拍电位信号M和节拍脉冲信号T;一个输出:微操作控制信号硬布线控制器的基本原理:某一微操作控制信号C用一个逻辑函数来表达;并行处理技术P161并行性的概念:问题中具有可以同时进行运算或操作的特性;时间并行:让多个处理过程在时间上相互错开,轮流使用同一套硬件设备的各个部件,以加快硬件周转而赢得速度,实现方式就是采用流水处理部件;空间并行:以数量取胜;它能真正的体现同时性时间+空间并行:综合应用;Pentium中采用了超标量流水线技术;流水线的分类P163指令流水线:指指令步骤的并行;将指令流的处理过程划分为取指令、译码、取操作数、执行、写回等几个并行处理的过程段;算术流水线:指运算操作步骤的并行;如流水加法器、流水乘法器、流水除法器等;处理机流水线:是指程序步骤的并行;由一串级联的处理机构成流水线的各个过程段,每台处理机负责某一特定的任务;流水线中的主要问题P164资源相关:指多条指令进入流水线后在同一机器时钟周期内争用一个功能部件所发生的冲突;数据相关:在一个程序中,如果必须等前一条指令执行完毕后,才能执行后一条指令;解决数据相关冲突的办法:为了解决数据相关冲突,流水CPU的运算器中特意设置若干运算结果缓冲寄存器,暂时保留运算结果,以便于后继指令直接使用,称为“向前”或定向传送技术;控制相关:由转移指令引起的;解决控制相关冲突的办法:延迟转移法、转移预测法;例题P165第六章总线系统总线的概念P184总线是构成计算机系统的互联机构,是多个系统功能部件之间进行数据传送的公共通路;总线的分类P184内部总线——CPU内部连接各寄存器及运算部件之间的总线;系统总线——CPU和计算机系统中其他高速功能部件相互连接的总线;按系统传输信息的不同,又可分为三类:数据总线,地址总线和控制总线;I/O总线——中、低速I/O设备之间互相连接的总线;总线性能指标P185总线宽度:指数据总线的根数;寻址能力:取决于地址总线的根数;PCI总线的地址总线为32位,寻址能力达4GB;传输率:也称为总线带宽,是衡量总线性能的重要指标;例题P193总线上信息传送方式P190串行传送:使用一条传输线,采用脉冲传送有脉冲为1,无脉冲为0;连续几个无脉冲的处理方法:位时间;并行传送:每一数据位需要一条传输线,一般采用电位传送电位高为1,电位低为0;分时传送:总线复用、共享总线的部件分时使用总线;总线接口P192I/O接口,也叫适配器,和CPU数据的交换一定是并行的方式,和外设数据的交换可以是并行的,也可以是串行的;总线的仲裁P193集中式仲裁:有统一的总线仲裁器;链式查询方式、计数器定时查询方式、独立请求方式P193—195分布式仲裁:不需要中央仲裁器,每个潜在的主方功能模块都有自己的仲裁器和仲裁号;P195总线的定时P196同步定时:事件出现在总线上的时刻由总线时钟信号来确定;异步定时:后一事件出现在总线上的时刻取决于前一事件的出现,即建立在应答式或互锁机制基础上;PCI总线P200PCI:外围设备互连,PCI总线:连接各种高速的PCI设备;PCI是一个与处理器无关的高速外围总线,又是至关重要的层间总线;它采用同步时序协议和集中式仲裁策略,并具有自动配置能力;PCI总线支持无限的猝发式传送;即插即用;第七章外围设备外围设备的定义和分类P209除了CPU和主存外,计算机系统的每一部分都可作为一个外围设备来看待;外围设备可分为输入设备、输出设备、外存设备、数据通信设备和过程控制设备几大类;磁记录原理P210计算机的外存储器又称磁表面存储设备;所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息;磁盘存储器、磁带存储器均属于磁表面存储器;磁性材料上呈现剩磁状态的地方形成了一个磁化元或存储元,是记录一个二进制信息位的最小单位;磁表面存储器的读写原理P211在磁表面存储器中,利用一种称为磁头的装置来形成和判别磁层中的不同磁化状态;通过电-磁变换,利用磁头写线圈中的脉冲电流,可把一位二进制代码转换成载磁体存储元的不同剩磁状态;通过磁-电变换,利用磁头读出线圈,可将由存储元的不同剩磁状态表示的二进制代码转换成电信号输出;磁盘的组成和分类P213硬磁盘是指记录介质为硬质圆形盘片的磁表面存储设备; 它主要由磁记录介质、磁盘控制器、磁盘驱动器三大部分组成;温彻斯特磁盘简称温盘,是一种采用先进技术研制的可移动磁头固定盘片的磁盘机;它是一种密封组合式的硬磁盘,即磁头、盘片、电机等驱动部件乃至读写电路等组装成一个不可随意拆卸的整体;磁盘上信息的分布P215记录面、磁道、扇区P215磁道编号P215磁盘地址由记录面号也称磁头号、磁道号和扇区号三部分组成;磁盘存储器的技术指标P216存储密度:存储密度分道密度、位密度和面密度;道密度:沿磁盘半径方向单位长度上的磁道数,单位道/英寸;位密度:磁道单位长度上能记录的二进制代码位数,单位为位/英寸;面密度:位密度和道密度的乘积,单位为位/平方英寸;平均存储时间=寻道时间+等待时间+数据传送时间P216数据传输率P217例题P217磁盘cacheP218磁盘cache是为了弥补慢速磁盘和主存之间速度上的差异;磁盘阵列RAIDP218RAID:独立磁盘冗余阵列廉价冗余磁盘阵列,或简称磁盘阵列;简单的说, RAID 是一种把多块独立的硬盘物理硬盘按不同方式组合起来形成一个硬盘组逻辑硬盘,从而提供比单个硬盘更高的存储性能和提供数据冗余的技术;组成磁盘阵列的不同方式成为 RAID 级别;RAID 0 提高存储性能的原理是把连续的数据分散到多个磁盘上存取, 这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求;这种数据上的并行操作可以充分利用总线的带宽,显着提高磁盘整体存取性能;第八章输入输出系统外围设备的速度分级P236在CPU和外设之间数据传送时加以定时:速度极慢或简单的外设:CPU只需要接受或者发送数据即可;慢速或者中速的设备:可以采用异步定时的方式;高速外设:采用同步定时方式;I/O和主机信息交换方式P237程序查询方式、程序中断方式、直接内存访问DMA方式、通道方式程序查询方式P239数据在CPU和外围设备之间的传送完全靠计算机程序控制;当需要输入/输出时,CPU暂停执行主程序,转去执行设备输入/输出的服务程序,根据服务程序中的I/O指令进行数据传送;这是一种最简单、最经济的输入/输出方式,只需要很少的硬件;但由于外围设备动作很慢,程序进入查询循环时将浪费CPU时间;中断的概念P242中断是指CPU暂时中止现行程序,转去处理随机发生的紧急事件,处理完后自动返回原程序的功能和技术;程序中断方式的原理P242在程序中断方式中,某一外设的数据准备就绪后,它“主动”向CPU发出请求中断的信号,请求CPU暂时中断目前正在执行的程序而进行数据交换;当CPU响应这个中断时,便暂停运行主程序,并自动转移到该设备的中断服务程序;当中断服务程序结束以后,CPU又回到原来的主程序;中断处理过程中的几个问题P243CPU只有在当前一条指令执行完毕后,即转入公操作时才受理设备的中断请求;保存现场P243中断屏蔽P243中断处理过程P243单级中断和多级中断P245单级中断系统中,所有的中断源都属于同一级,所有中断源触发器排成一行,其优先次序是离CPU近的优先权高; 当响应某一中断请求时,执行该中断源的中断服务程序;在此过程中,不允许其他中断源再打断中断服务程序,既使优先权比它高的中断源也不能再打断;多级中断系统是指计算机系统中有相当多的中断源,根据各中断事件的轻重缓急程度不同而分成若干级别,每一中断级分配给一个优先权;优先权高的中断级可以打断优先权低的中断服务程序,以程序嵌套方式工作;一维多级中断是指每一级中断里只有一个中断源,二维多级中断是指每一级中断里又有多个中断源;DMA的基本概念P253直接内存访问DMA是一种完全由硬件执行I/O交换的工作方式;在这种方式中,DMA控制器从CPU完全接管对总线的控制,数据交换不经过CPU,而直接在内存和I/O设备之间进行;DMA方式一般用于高速传送成组数据;DMA方式的优点P253DMA能执行的一些操作P254从外围设备发出DMA请求;CPU响应请求,把CPU工作改成DMA操作方式,DMA控制器从CPU接管总线的控制;由DMA 控制器对内存寻址,即决定数据传送的内存单元地址及数据传送个数的计数,并执行数据传送的操作;发中断,向CPU报告DMA操作的结束;DMA传送方式P254停止CPU访问内存、周期挪用、DMA与CPU交替访内P254 DMA数据传送过程P257传送前预处理;正式传送;传送后处理;P257通道的基本概念P261通道是一个特殊功能的处理器,它有自己的指令和程序专门负责数据输入输出的传输控制,而CPU将“传输控制”的功能下放给通道后只负责“数据处理”功能;这样,通道与CPU 分时使用内存,实现了CPU内部运算与I/O设备的平行工作;通道的功能P253通道具有两种类型的总线:存储总线:承担通道与内存、CPU与内存之间的数据传输任务;通道总线即I/O总线,承担外围设备与通道间的数据传送任务;从逻辑结构上讲,I/O系统一般具有四级连接:CPU与内存通道设备控制器外围设备优先级别:由于大多数I/O设备的读写信号具有实时性,不及时处理会丢失数据;所以通道与CPU同时要求访内时,通道优先权高于CPU;CPU对通道的管理P262CPU是通过执行I/O指令以及处理来自通道的中断,实现对通道的管理;来自通道的中断有两种,一种是数据传送结束中断,另一种是故障中断;通道对I/O模块的管理P262通道通过使用通道指令控制I/O模块进行数据传送操作,并以通道状态字接收I/O模块反映的外围设备的状态;通道的类型P262选择通道、数组多路通道、字节多路通道P263第九章操作系统支持虚拟存储器的概念P282虚拟存储器是借助于磁盘等辅助存储器来扩大主存容量,使之为更大或更多的程序所使用;是一个容量非常大的存储器的逻辑模型,不是任何实际的物理存储器;它指的是主存-外存层次;以透明的方式给用户提供了一个比实际主存空间大得多的程序地址空间;实地址:或物理地址,计算机物理内存的访问地址,由CPU引脚送出,是用于访问主存的地址,对应的存储空间——物理存储空间或主存空间;虚地址:或逻辑地址,在编制程序时独立编址,使用的地址,对应的存储空间——虚存空间或逻辑地址空间;虚地址到实地址的转换过程——程序的再定位;虚存的访问过程P283虚拟存储器的用户程序以虚拟地址编址并存放在辅存中;程序运行时CPU以虚地址访问主存,由辅助硬件找出虚地址和物理地址的对应关系,判断这个虚地址指示的存储单元是否已装入主存:如果在主存,CPU就直接执行已在主存的程序;如果不在,要进行辅存向主存的调度;虚存与cache的异同P283几种虚拟存储器P284段式、页式、段页式页式虚拟存储器P284页、页表:页式虚拟存储系统中,虚地址空间被分成等长大小的页,称为逻辑页;主存空间也被分成同样大小的页,称为物理页;相应地,虚地址分为两个字段:高字段为逻辑页号,低字段为页内地址偏移量;实存地址也分两个字段:高字段为物理页号,低字段为页内地址;通过页表可以把虚地址逻辑地址转换成物理地址;页式虚存地址映射:地址变换时,用逻辑页号作为页表内的偏移地址索引页表,并找到相应物理页号,用物理页号作为实存地址的高字段,再与虚地址的页内偏移量拼接,就构成完整的物理地址;虚页内容若没有调入主存,则计算机启动输入输出系统,把虚地址指示的一页内容从辅存调入主存,再提供CPU访问;转换后援缓冲器P285段式虚拟存储器P286段式虚拟存储器,是以程序的逻辑结构所形成的段如主程序、子程序、过程、表格等作为主存分配单位的虚拟存储器管理方式的存储器;每个段的大小可以不相等;每个程序都有一个段表映象表,用于存放该道程序各程序段从辅存装入主存的状况信息;段表一般驻留在主存中;段式虚存地址映射P287段页式虚拟存储器P287把程序按逻辑单位分段以后,再把每段分成固定大小的页;程序对主存的调入调出是按页面进行的,但它又可以按段实现共享和保护,兼备页式和段式的优点;虚存的替换算法P289虚拟存储器中的替换策略一般采用LRU Least Recent1y Used算法、LFU算法、FIFO算法,或将两种算法结合起来使用;例题P289。
计算机组成原理知识点
计算机组成原理知识点第一章:概论1、电子计算机:电子模拟计算机(连续变化的物理量)和电子数字计算机(离散的数字量)。
2、计算机的发展历史:根据电子元器件的不同,分为若干个代:电子管,晶体管,小、中规模的集成电路,大、超大规模的集成电路,甚大规模的集成电路,极大规模的集成电路。
3、冯诺伊曼存储程序的概念:5大组成部分,二进制,存储与程序控制4、计算机的组成框图:5、计算机的主要部件:输入设备,输出设备,存储器,运算器,控制器6、计算机总线结构:单总线和双总线7、计算机系统:硬件和软件8、计算机的主要性能指标:机器字长、数据通路宽度、主存容量、运算速度第二章:数据的机器层次表示1、无符号数和有符号数:2、原码表示法:[X]=X/2n-X;补码表示法:[X]=X/M+X;反码表示法:[X]=X/(2-2-n)+X3、模和同余的概念:4、三种码制之间的相互转换:5、机器数的定点表示法:定点整数和定点小数:6、浮点表示法:N=M×r E;浮点数的表示范围,规格化浮点数。
7、ASCII字符编码,汉字国标码,汉字区位码,汉字机内码8、十进制数的编码:8421码,2421码,余3码9、数据校验码:奇偶校验码,海明校验码,第三章:指令系统1、指令的基本格式:操作码字段+地址码字段(一、二、三、四和零)地址2、指令操作码的定长编码和变长编码:3、编址方式:编址单位:字、字节、位;指令中地址码的位数与主存容量和最小寻址单位有关。
4、指令寻址和数据寻址:分为:顺序寻址和跳跃寻址(直接、相对和间接)。
5、数据寻址的方式:立即寻址(立即数)、寄存器寻址(寄存器地址)、直接寻址(主存中有效地址)、间接寻址(又分一级和多级,需要多次访问主存)、寄存器间接寻址(主存地址放在寄存器中)、变址寻址(变址寄存器与指令给出的形式地址A相加)、基址寻址(基址寄存器的内容与指令给出的位移量D相加)、相对寻址(程序计数器的基准地址与指令给出的位移量D相加)、页面寻址(分为基页寻址:0与给出地址拼接和当前页寻址,PC的高位地址与给出的地址拼接)、自增型寄存器简址和自减型寄存器简址(寄存器内容自动增量修改,指向下一个地址和自动减量修改)、扩展变址方式(变址和间址相结合:一种先进行变址运算,其结果作为间接寻址;先进行间接寻址,然后再与变址值进行运算)、基址变址寻址(基址寄存器中的值、变址寄存器中的值和位移量三者相加得到)6、堆栈分为:硬堆栈和软堆栈7、指令类型:数据传送类指令、运算类指令:算术运算、逻辑运算、移位;程序控制类指令(转移指令、子程序调用指令、返回指令)、输入输出类指令(独立编址、统一编址)第四章:数值的机器运算1、加法器:全加器、进位的产生和传递。
知识点 计算机组成原理
知识点计算机组成原理知识点-计算机组成原理计算机组成原理重要知识点第一章绪论一、冯.诺依曼思想体系――计算机(硬件)由运算器、控制器、存储器、输入输出设备五部分组成,存储程序,按地址出访、顺序继续执行二、总线的概念。
按传送信息的不同如何划分;按逻辑结构如何划分三、冯.诺依曼结构(普林斯顿结构)与哈弗结构的存储器设计思想四、计算机系统的概念,软件与硬件的关系、计算机系统的层次结构(实际机器与交互式机器)五、计算机的主要性能指标的含义(机器字长,数据通路宽度,主存容量,运算速度)六、cpu和主机两个术语的含义,完备的计算机系统的概念,硬件、软件的功能分割七、总线概念和总线分时共享资源的特点、三态门与总线电路第二章数据的机器层次表示一、真值和机器数的概念数的真值变为机器码时存有四种则表示方法:原码表示法,反码表示法,补码表示法,移码则表示码。
其中移码主要用作则表示浮点数的阶码e,以利比较两个指数的大小和对阶操作方式二、一个定点数由符号位和数值域两部分组成。
按小数点位置不同,定点数有纯小数和纯整数两种表示方法。
几种定点机器数的数值则表示范围。
三、浮点数浮点数的标准表示法:符号位s、阶码e、尾数m三个域组成。
其中阶码e通常用移码表示(其值等于指数的真值e加上一个固定偏移值)。
规格化浮点数(原码,补码则表示的规格化浮点数的区别)五、处理字符信息(符号数据即非数值信息),七、常用的bcd码:8421码、2421码、余3码、格雷码(有权码,无权码,特点)八、检错纠错码:奇偶校验(掌握奇偶校验原理及校验位的形成及检测方法),海明码的纠错原理(理解)第三章指令系统一、指令格式:指令的基本格式,指令的地址码结构(3、2、1、0地址指令的区别),非规整型指令的操作码(扩展览会操作码)二、编址方式(位,字节,字…)三、操作数串行方式――立即串行、轻易串行、间接串行、寄存器串行、寄存器间接串行、相对串行、基址寻址、变址寻址、页面寻址四、指令串行方式――顺序对串行方式、弹跳串行方式五、指令类型及功能六、不同的计算机的i/o指令差别很大,通常有两种方式:独立编址方式,统一编址方式第四章数值的机器运算一、为运算器构造的简单性,运算方法中算术运算通常采用补码加减法,原码乘除法或补码乘除法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字逻辑层→微体系结构层→指令系统层→操作系统层→汇编语言层→高级语言层→应用程序层计算机字长:通常用多少个二进制位来表示一个数据或一条指令是一个关键技术指标,例16、32、64,这个位数称为计算机字长.CPU主频:CPU系统使用的时钟脉冲的频率.CPU每一秒钟执行的指令数,单位MIPS.T=CPI*T_IC*IT是执行一个程序占用的全部时间,CPI是执行一条指令平均使用的CPU时钟个数,T_IC是一个CPU时钟的时间长度-CPU主频f倒数1/f,I是这个程序的指令条数.MIPS用来描述整数指令,MFLOPS浮点数指令的执行速度.进制转换:小数点前是除,小数点后是乘.奇偶校验码:一种开销最小,能发现数据代码中一位出错情况的编码.实现原理:使原来合法编码的码距由1增加到2. 数据奇校验的编码偶校验的编码奇1 最高位+0 最高位+1偶1 最高位+1 最高位+0浮点数:小数点在数据中的位置可以左右移动的数据.表示:N=M*(R的E次方) M浮点数的尾数;R为阶码的基数;E阶的阶码.在计算机中表示: Ms E M Ms是尾数的符号位,即浮点数的符号位,安排在最高一位;E是阶码,紧跟在符号位之后,占用m位,含阶码的一符号;M是尾数,在低位部分,占用n位.IEEE标准的浮点数格式:符号位阶码尾数部位数短浮点数(单) 1 8 23 32长浮点数(双) 1 11 52 64临时浮点数 1 15 64 80补码加、减运算中的溢出问题:[X+Y]补=[X]补+[Y]补[X-Y]补=[X]补+[-Y]补1.两个符号相同的补码数相加,如果和的符号与加数的符号相反,或两个符号相反的补码相减,差的符号与减数的符号相同,都属于运算结果溢出.2.两个补码数相加减时,若最高位数值向符号位送的进位与符号位送向更高位的进位值不相同,也是运算结果溢出.3.在采用双符号位运算时,若两个符号位的值不同则是溢出.01表明两个正数相加,结果大于机器所能表示的最大正数,称为"上溢";10表明两个负数相加,结果小于机器所能表示的最小负数,称为"下溢";双符号位的高位符号位,不管结果溢出否,均是运算结果正确的符号值,这个结论在乘法过程中是有实际意义的.CISC是指采用一整套计算机指令进行操作的计算机.RISC是指精简指令系统计算机.在计算机指令系统的优化发展过程中,出现过两个截然不同的优化方向:CISC技术和RISC技术。
CISC是指复杂指令系统计算机(ComplexInstructionSetComputer);RISC是指精简指令系统计算机(ReducedInstructionSetComputer)。
这里的计算机指令系统指的是计算机的最低层的机器指令,也就是CPU能够直接识别的指令。
随着计算机系统的复杂,要求计算机指令系统的构造能使计算机的整体性能更快更稳定。
最初,人们采用的优化方法是通过设置一些功能复杂的指令,把一些原来由软件实现的、常用的功能改用硬件的指令系统实现,以此来提高计算机的执行速度,这种计算机系统就被称为复杂指令系统计算机,即ComplexInstructionSetComputer,简称CISC。
另一种优化方法是在20世纪80年代才发展起来的,其基本思想是尽量简化计算机指令功能,只保留那些功能简单、能在一个节拍内执行完成的指令,而把较复杂的功能用一段子程序来实现,这种计算机系统就被称为精简指令系统计算机.即ReducedInstructionSetComputer,简称RISC。
RISC技术的精华就是通过简化计算机指令功能,使指令的平均执行周期减少,从而提高计算机的工作主频,同时大量使用通用寄存器来提高子程序执行的速度.指令周期:CPU从内存取出一条指令并执行这条指令的时间总和。
CPU周期:又称机器周期,CPU访问一次内存所花的时间较长,因此用从内存读取一条指令字的最短时间来定义.时钟周期:通常称为节拍脉冲或T周期. 注:一个CPU周期包含若干个时钟周期.指令执行步骤:读取指令→指令译码→ALU执行→内存读写→数据写回1.读取指令是每一条指令必须首先完成的,所完成的功能对所有指令都相同2.指令译码完成的功能对多数的指令是类似的,例如判断指令类型/读寄存器组等3.ALU执行运算所完成的是数据计算或者地址计算功能,对不同指令会有所区别4.读写内存或接口仅出现在读写内存或者接口的指令执行过程中5.数据写回完成把ALU的计算结果或从内存/接口读来的数据写入寄存器组寻址方式:1.立即数寻址-操作数直接给出在指令字中,即指令字中直接给出不再是操作数地址,而是操作数本身.2.直接寻址-在指令中直接给出操作数在存储器中的地址.3.寄存器寻址-在指令字中给出通用寄存器的编号,所访问的寄存器的内容就是运算用到的数据;寄存器间接寻址-在寄存器中给出的不是操作数,而是操作数在存储器中的地址.4.变址寻址-把在指令字中的一个数值(变址偏移量)与一个被称为变址寄存器的内容相加之和作为操作数的地址,用于读写存储器5.相对寻址-把在指令字中给出的一个数值(相对寻址偏移量)与程序计数器PC的内容相加之和作为操作数的地址或转移地址.6.基址寻址-把在程序中所用的地址与一个特定的寄存器(基地址寄存器)的内容相加之和作为操作数的地址或指令的地址.7.间接寻址-在指令字中给出的不是一个操作数的地址,而是一个操作数地址的地址,或一条指令地址的地址.8.堆栈寻址-操作码部分指明一个操作数为堆栈中的一个单元的内容...16.为读写输入/输出设备,通常有哪几种常用的方式用以指定被读写设备?答:设备号,设备入出端口地址和设备映像地址.计算机的核心功能:提供连续执行指令的能力,而每一条指令往往又要分成几个执行步骤才得以完成.计算机控制器的基本功能:依据当前正在执行的指令和它所处的执行步骤,形成并提供出在这一时刻整机各部件要用到的控制信号.硬连线控制器:又称组合逻辑控制器,它的基本运行原理是使用大量的组合逻辑门线路,直接提供出控制计算机各功能部件协同运行所需要的控制信号。
其优点是,形成这些控制信号所必需的信号传输延迟时间短,有利于提高系统运行的速度。
其缺点是,形成控制信号的电路设计比较复杂,再用与、或、非等组合逻辑门电路把设计结果实现出来也相对烦恼,尤其是要变以一些设计时不大方便。
微程序控制器:它的基本运行原理,是用多条微指令"解释执行"每一条指令的功能。
硬件组成中的核心线路是一个被为控制存储器的部件(用ROM芯片实现),用于保存由微指令(指令一个执行步骤用到的控制信号的集合)组成的微程序.其缺点是运行速度慢,难以使用在性能要求特别高的计算机系统中.5.简述计算机的控制器的功能和基本组成,微程序的控制器和组合逻辑的控制器在组成和运行原理方面的相同、不同之处表现在哪里?答:控制器的功能是自动连续地执行指令序列,并依据当前正在执行的指令和它所处的执行步骤,提供出在这一时刻整机各部件要用到的控制信号。
控制器的基本组成包括(1)程序计数器(PC) (2)指令寄存器(IR)(3)脉冲源、启停控制逻辑、指令执行的步骤标记线路(4)全部时序控制信号产生部件微程序的控制器和组合逻辑的控制器在组成同类型的控制器,其共同点是:基本功能都是提供计算机各个部件协同运行所需要的控制信号,组成部分都有程序计数器PC,指令寄存器IR,都分成几个执行步骤完成每一条指令的具体功能;不同点主要表现在:处理指令执行步骤的办法,提供控制信号的方案不一样,组合逻辑控制器是用节拍发生器指明指令执行步骤,用组合逻辑电路直接给出应提供的控制信号,其优点是运行速度明显地快,缺点是设计与实现复杂些,但随着大规模现场可编程集成电路的出现,该缺点已得到很大缓解;微程序的控制器是通过微指令地址的衔接区分指令执行步骤,应提供的控制信号是从控制存储器中读出来的,并经过一个微指令寄存器送到被控制部件的,其缺点是运行速度要慢一些,优点是设计与实现简单些,易于用于实现系列产品的控制器,理论上可实现动态微程序设计.指令:指示计算机硬件系统完成一项最基本的运算或者操作功能的命令,使用的全部指令组成一台计算机的指令系统,用于设计完成各种计算任务或者信息管理等功能的程序,运行中的程序将保存在主存储器中。
指令是程序设计人员与计算机系统沟通和交互的媒介。
微指令:直接控制计算机硬件线路完成指令功能的控制信号的集合,被划分为微指令字段和下地址字段两大部分。
计算机厂家用微指令设计“解释”每一条指令执行过程的微程序,微程序被固化在控制存储器中。
微指令是计算机指令和硬件电路之间建立联系的媒介,计算机的使用人员通常接触不到微程序和微指令的内容。
控制部件通过控制线向执行部件发出各种控制命令,通常这种控制命令叫做微命令执行部件接受微命令后所执行的操作就叫做微操作多级结构存储器系统:采用3种运行原理不同、性能差异很大的存储介质,来分别构建高速缓冲存储器、主存储器和虚拟存储器,再将它们组成通过计算机硬件软件统一管理与调度的3级结构的存储器系统。
程序运行的局部原理体现在:(1)时间方面:在一小段时间内,最近被访问过的程序和数据很可能再次被访问。
(2)空间方面:这些最近被访问过的程序和数据,往往集中在一小片存储器区域中。
(3)指令执行顺序方面:指令顺序执行比转移执行的可能性要大(大约为5:1)。
3级不同的存储器中存放的信息必须满足:一致性原则;包含性原则。
动态存储器的存储原理:刷新方式有两种集中式刷新:指在一个刷新周期内,利用一段固定的时间,依次对存储器的所有行逐一再生,在此期间停止对存储器的读和写。
集中式刷新的缺点是在刷新期间不能访问存储器。
分散式刷新:第一种,把对每一行的再生分散到各个工作周期中去。
第二种,为了提高存储器工作效率,经常采取在2ms时间内分散地将1024行刷新一遍的方法,具体做法是将刷新周期除以行数,得到两次刷新操作之间的时间间隔t,利用逻辑电路每一时间间隔t产生一次刷新请求。
存储器容量扩展: 字*位1.位扩展:加大字长。
拉扩展的连接方式是将多片存储器的地址、片选、读/写端连接在一起,数据端单独引出。
2.字扩展:增加存储器中字的数量。
静态存储器进行字扩展时,将各芯片的地址线、数据线、读/写控制线连接在一起,而由片选信号来区分各芯片的地址范围。
3.字位扩展:字向和位向同时扩充。
例:存储器的容量:M*N位,若使用L*K位存储器芯片,那么共需M/L*N/K个存储器芯片。
1.在计算机中,为什么要采用多级结构的存储器系统?它的应用是建立在程序的什么特性之上的?答:为了缓解主存储器读写速度慢,不能满足CPU运行速度需要的矛盾,另一方面又要解决主存储器容量小,存不下更多的程序和数据的难题,当前计算机系统中,广泛采用了多级结构的存储器系统。