小学六年级奥数题集锦(全面)
小学六年级奥数题集锦(全面)
小学六年级奥数题集锦搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48则丙一天做:1/16-1/72-1/48=1/36则余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案(100+40)/2.8=50本100/50=2 150/(2+0.5)=60本60*80%=48本48*2.8+2.8*50*12-150=1.2 盈利1.2元育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40)÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱:54×5=270元某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。
小学六年级必学奥数题集锦及答案.doc
小学六年级经典必学奥数题集锦及答案工程问题1.甲乙两个水管独自开,注满一池水,别离需求 20 小时,16 小时.丙水管独自开,排一池水要 10 小时,若水池没水,一同翻开甲乙两水管,5 小时后,再翻开排水管丙,问水池注满仍是要多少小时?解:1/20+1/16 =9/80表明甲乙的作业效率9/80 × 5=45/8表0 示 5 小时后进水量1-45/80 =35/80表明还要的进水量35/80 ÷( 9/80-1/10 )=表明3 5还要 35 小时注满答:5 小时后还要 35 小时就能将水池注满。
2.修一条水渠,独自修,甲队需求 20 天完结,乙队需求 30 天完成。
假如两队协作,由于互相施工有影响,他们的作业效率就要降低,甲队的作业效率是原本的五分之四,乙队作业效率只需原本的十分之九。
现在方案 16 天修完这条水渠,且要求两队协作的天数尽或许少,那么两队要协作几天?解:由题意得,甲的工效为 1/20 ,乙的工效为1/30 ,甲乙的协作工效为 1/20*4/5+1/30*9/10 =7/100 ,可知甲乙协作工效 >甲的工效乙的工效。
又由于,要求“两队协作的天数尽或许少”,所以应该让做的快的甲多做,16 天内真实来不及的才应该让甲乙协作完结。
只需这样才干“两队协作的天数尽或许少”。
设协作时刻为 x 天,则甲独做时刻为( 16-x )天1/20* (16-x )+7/100*x =1x=10答:甲乙最短协作 10 天3.一件作业,甲、乙合做需 4 小时完结,乙、丙合做需 5 小时完成。
现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完结。
乙独自做完这件作业要多少小时?解:由题意知, 1/表4 示甲乙协作 1 小时的作业量, 1表/5示乙丙协作 1小时的作业量(1/4+1/5 )× 2=9 /表10示甲做了 2 小时、乙做了 4 小时、丙做了2 小时的作业量。
(完整)小学六年级奥数题100道带答案有解题过程
(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。
思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。
2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。
思路:根据数量关系列方程求解。
3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。
思路:先求两车行驶的路程和,再加上相距距离。
4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。
解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。
思路:根据圆柱侧面积和体积公式计算。
5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。
小学六年级分数奥数题100道及答案(完整版)
小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。
思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。
2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。
思路:5×6=30(米)。
3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。
思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。
4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。
思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。
5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。
思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。
6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。
思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。
7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。
思路:设公路长x 米,1/2x-2/5x=60,解得x=300。
8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。
思路:设全书有x 页,1/5x+25=3/10x,解得x=125。
小学六年级奥数难题100道及答案(完整版)
小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。
解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。
解得x = -24。
2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。
解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。
解得x = 60。
3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。
解:设长方形的长为x厘米,宽为y厘米。
根据题意可得方程组:x - y = 4;2x + 2y = 32。
解得x = 10,y = 6。
所以长方形的长为10厘米,宽为6厘米。
4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。
解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。
解得x = 12。
5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。
解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。
将已知的三边长代入公式即可求得三角形的面积。
6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。
解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。
解得x = 10。
7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。
解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。
解得x = 4。
所以原来正方形的边长为4厘米。
8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。
小学六年级奥数题100道及答案
小学六年级奥数题100道及答案1. 有两组数列,第一组数列是:2, 4, 6, 8, ..., 100;第二组数列是:1, 3, 5, 7, ..., 99。
问两组数列中所有数的和是多少?答案:第一组数列是一个等差数列,首项为2,公差为2,共有50项。
第二组数列也是一个等差数列,首项为1,公差为2,共有50项。
两组数列的和可以通过求和公式计算得出:\[ S_1 = 2 \times 50 + 50 \times 49 / 2 = 2550 \];\[ S_2 = 1 \times 50 + 50 \times 49/ 2 = 1225 \]。
所以,两组数列的和是:\[ S_1 + S_2 = 2550 + 1225 = 3775 \]。
2. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米。
如果把这个长方体切割成两个大小相等的正方体,那么切割后的每个正方体的体积是多少?答案:首先计算长方体的体积,\[ V_{长方体} = 10 \times 8\times 6 = 480 \] 立方厘米。
切割成两个正方体后,每个正方体的体积是原长方体体积的一半,即\[ V_{正方体} = 480 / 2 = 240 \]立方厘米。
3. 一个数列的前5项是:1, 1, 2, 3, 5。
这个数列的第6项是多少?答案:这是一个斐波那契数列,每一项都是前两项的和。
所以第6项是\[ 3 + 5 = 8 \]。
4. 有一个数字,如果把它乘以3然后加上10,得到的结果是这个数字的5倍。
这个数字是多少?答案:设这个数字为x,根据题意,我们有\[ 3x + 10 = 5x \]。
解这个方程,我们得到\[ 2x = 10 \],所以\[ x = 5 \]。
5. 一个班级有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,那么选择到男生的概率是多少?答案:从40名学生中随机选择一名,选择到男生的概率是男生人数除以总人数,即\[ P(男生) = 20 / 40 = 1 / 2 \]。
六年级奥数题及答案(五篇)
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
(完整)小学六年级数学奥数题
六年级数学奥赛题(一)一、计算。
1、1.25×17.6+36.1÷0.8+2.63×12.52、7.5×2.3+1.9×2. 53、1999+999×9994、8+98+998+9998+99998=5、(78.6—0.786×25十75%×21.4)÷15×1997二、填空题1、六(1)班男、女生人数的比是8:7。
(1)女生人数是男生人数的()(2)男生人数占全班人数的()(3)女生人数占全班人数的()(4)全班有45人,男生有()人。
2、甲数和乙数的比是2:5,乙数和丙数的比是4:7,已知甲数是16,求甲、乙、丙三个数的和是()。
3、甲数和乙数的比7:3,乙数和丙数的比是6:5,丙数是甲数的(),甲数和丙数的比是():()。
4、0.08的倒数是(),2.25的倒数是()。
5、一根铁丝长3米,剪去1/3 后还剩()米;一根铁丝长3米,剪去 1/3米后还剩()米。
6、甲、乙合做一件工作,甲做的部分占乙的 2/5,乙做的占全部工作的()。
7、周长相等的正方形和圆形,()的面积大。
8、()÷40=15:()= =0.625=()%9、把0.38、、37%、0.373按从大到小的顺序排列是()。
10、4米是5米的()%,5米比4米多()%,4米比5米少()%11、用一张长5厘米,宽4厘米的长方形纸剪一个最大的圆,这个圆的面积占这张纸面积的()%。
12. 甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买____ _千克这种混合糖果。
13、一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_____个月。
14、奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是星期( )。
小学六年级数学奥数题100题附答案(完整版)
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
小学六年级奥数题100道及答案
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。
小学六年级奥数题集锦(全面)
小学六年级奥数题集锦搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解此题的关键,是先算出三人共同搬运两个仓库的时间.此题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要60 × 2÷〔6+ 5+ 4〕= 8〔小时〕甲需丙帮助搬运〔60- 6× 8〕÷ 4= 3〔小时〕乙需丙帮助搬运〔60- 5× 8〕÷4= 5〔小时〕一件工作,假设由甲单独做72天完成,现在甲做1天后,乙参加一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,假设余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4那么甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48那么丙一天做:1/16-1/72-1/48=1/36那么余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天某书店老板去图书批发市场购置某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,假设赔,赔多少,假设赚,赚多少答案〔100+40〕/2.8=50本100/50=2 150/(2+0.5〕=60本60*80%=48本48*2.8+2.8*50*12-150=1.2 盈利1.2元育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案原来达标人数占总人数的3÷〔3+5〕=3/8现在达标人数占总人数的9/11÷〔1+9/11〕=9/20育才小学共有学生60÷〔9/20-3/8〕=800人甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村方案按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:〔60+40〕÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱:54×5=270元某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购置量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,他买了蓝钢笔30枝,那么。
完整)小学六年级奥数题集锦及答案
完整)小学六年级奥数题集锦及答案小学六年级奥数题集锦及答案1.甲乙两个水管分别需要20小时和16小时才能注满一池水。
丙水管单独开,排一池水需要10小时。
如果同时打开甲乙两水管,5小时后再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,甲队单独修需要20天完成,乙队单独修需要30天完成。
如果两队合作,甲队的工作效率是原来的五分之四,乙队的工作效率是原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、XXX做需5小时完成。
现在先请甲、XXX做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,恰好用整数天完工。
如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件。
共有多少个零件?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙、丙两管用了18分钟放完。
当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成。
若由甲队去做,恰好如期完成;若乙队去做,要超过规定日期三天完成;若先由甲乙合作二天,再由乙队单独做,恰好如期完成。
问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时。
一天晚上停电,XXX同时点燃了这两根蜡烛看书,若干分钟后来点了,XXX将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍。
小学六年级数学奥数题集锦及答案
小学六年级数学奥数题集锦及答案工程问题011.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题021.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题031.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
小学六年级奥数应用题100道及答案解析完整版
小学六年级奥数应用题100道及答案解析完整版1. 有一堆苹果,第一次吃了总数的20%,第二次吃了余下的25%,还剩下120 个,这堆苹果原来有多少个?答案:200 个解析:设这堆苹果原来有x 个。
第一次吃了0.2x 个,剩下0.8x 个。
第二次吃了0.25×0.8x = 0.2x 个,所以0.8x - 0.2x = 120,解得x = 200 。
2. 一项工程,甲单独做10 天完成,乙单独做15 天完成,两人合作多少天完成?答案:6 天解析:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要1÷(1/6) = 6 天。
3. 一个长方体的棱长总和是80 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少?答案:384 立方厘米解析:长方体的棱长总和= 4×(长+ 宽+ 高),所以长+ 宽+ 高= 20 厘米。
长= 20×5/(5 + 3 + 2) = 10 厘米,宽= 20×3/(5 + 3 + 2) = 6 厘米,高= 20×2/(5 + 3 + 2) = 4 厘米,体积= 10×6×4 = 384 立方厘米。
4. 学校图书馆有科技书和文艺书共630 本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,买进了多少本科技书?答案:90 本解析:原来有科技书630×20% = 126 本,设买进x 本科技书,则(126 + x) / (630 + x) = 30%,解得x = 90 。
5. 甲乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇,各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇,A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,甲乙合走一个全程,甲走了60 千米。
小学六年级奥数题100道及答案解析(完整版)
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
(完整word版)小学六年级奥数题50道题及解答(可直接打印)
练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
小学六年级 奥数题及答案100道
小学六年级奥数竞赛100道测试题!附答案解析1、有28位小朋友排成一行.从左边开始数第10位是学豆,从右边开始数他是第几位?2、纽约时间是香港时间减13小时.你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在香港你应几月几日几时给他打电话?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人?6、在1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.□+□□=□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数.11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给A, B, C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
六年级的奥数题大全
1.小学六年级奥数练习题及答案解析甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?【解析】总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙即做了300÷30=10天之后即第11天从A地转到B地。
2.小学六年级奥数练习题及答案解析有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?【解析】这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。
两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数题集锦某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48则丙一天做:1/16-1/72-1/48=1/36则余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案(100+40)/2.8=50本100/50=2 150/(2+0.5)=60本60*80%=48本48*2.8+2.8*50*12-150=1.2 盈利1.2元一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人解: 设需要增加x人(40+x)(15-3)=40*15x=10所以需要增加10人仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。
仓库原有货物多少吨?解:第1次运走:2/(2+7)=2/9.64/(1-2/9-3/5)=360吨。
答:原仓库有360吨货物。
育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?答案设小王做了a道,小李做了b道,小张做了c道由题意1/2a=1/3b=1/8cc-a=72解得a=24 b=36 c=96甲乙二人共同完成242个机器零件。
甲做一个零件要6分钟,乙做一个零件要5分钟。
完成这批零件时,两人各做了多少个零件?答案设甲做了X个,则乙做了(242-X)个6X=5(242-X)X=110242-110=132(个)答:甲做了110个,乙做了132个某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。
求丙组男女人数之比答案设男会员是3N,则女会员是2N,总人是:5N甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N丙级有:5N*7/25=7/5N丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N那么丙组中男女之比是:N/2:9/10N=5:9甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40)÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱:54×5=270元p16619题李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x则0.1X=2aX a=0.05.哈利.波特参加数学竞赛,他一共得了68分。
评分的标准是:每做对一道得20分,每做错一道倒扣6分。
已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?解:设哈利波特答对2X题,答错X题20×2X-6X=6840X-6X=6834X=68X=2答对:2×2=4题共有:4+2=6题爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
答案设可免费携带的重量为x kg,则:(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;解方程:x=30一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?答案解法一:设船数为X,则(15X+9)/18=X-115X+9=18X-1827=3XX=9答:有9只船。
解法二:(15+9)÷(18-15)=8只船--每船坐18人时坐了8只船8+1=9只船建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?答案设2堆为X吨,则一堆为X+85吨X+85-30=2(X-30)x=115(2堆)x+85=115+85=200(1堆)自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几答案六个数分别是46 47 48 96 97 98甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?答案两段路所用时间共8小时。
柏油路时间:(420-x)÷60泥土路时间:x÷407-(x÷60)+(x÷40)=8有x÷120=1所以x=120一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?设有x个人x+x/2+x/3=55x=30学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。