六年级上册奥数题及答案

合集下载

六年级上册奥数及答案

六年级上册奥数及答案

六年级上册奥数及答案【篇一:小学六年级奥数题及答案】t>工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率1-45/80=35/80表示还要的进水量答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

六年级奥数题及答案.

六年级奥数题及答案.

六年级奥数题及答案.题目一:数字问题小明在计算一个数加上5,再减去3,最后乘以4的结果时,得到了48。

请问这个数是多少?解答:设这个数为x。

根据题意,我们有:4x = 48x = 48 ÷ 4x = 12所以这个数是12。

题目二:几何问题一个长方形的长是宽的两倍,如果将这个长方形的长和宽都增加5厘米,那么面积增加了85平方厘米。

求原来长方形的长和宽。

解答:设原来长方形的宽为w,那么长为2w。

根据题意,我们有:(2w + 5)(w + 5) - 2w * w = 852w^2 + 5w + 10w + 25 - 2w^2 = 8515w + 25 = 8515w = 60w = 4所以原来的宽是4厘米,长是2 * 4 = 8厘米。

题目三:逻辑问题有5个盒子,每个盒子里分别装有1个、2个、3个、8个和13个乒乓球。

现在需要将这些盒子重新组合,使得每个盒子里的乒乓球数都是奇数,且每个盒子里的乒乓球数都不相同。

请问如何组合?解答:首先,我们知道奇数加奇数等于偶数,奇数加偶数等于奇数。

由于1、3、8、13都是奇数,2是偶数,我们需要将2个乒乓球与另一个奇数组合,以保持总数为奇数。

我们可以尝试以下组合:- 第一个盒子:1个乒乓球(奇数)- 第二个盒子:2 + 3 = 5个乒乓球(奇数)- 第三个盒子:8个乒乓球(奇数)- 第四个盒子:13个乒乓球(奇数)这样每个盒子里的乒乓球数都是奇数,并且各不相同。

题目四:时间问题小华从家到学校需要30分钟,如果他加快速度,每分钟走的距离增加25%,那么他需要多少时间到达学校?解答:设原来每分钟走的距离为d,那么30分钟内走的总距离为30d。

加快速度后,每分钟走的距离为1.25d。

由于总距离不变,我们有:30d = 时间 * 1.25d解这个方程,我们得到:时间 = 30 / 1.25时间 = 24分钟所以,加快速度后,小华需要24分钟到达学校。

题目五:比例问题一个班级有男生和女生,男生人数是女生人数的1.5倍。

(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。

思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。

2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。

思路:根据数量关系列方程求解。

3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。

思路:先求两车行驶的路程和,再加上相距距离。

4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。

解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。

思路:根据圆柱侧面积和体积公式计算。

5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。

小学六年级上册数学奥数题带答案图文百度文库

小学六年级上册数学奥数题带答案图文百度文库

小学六年级上册数学奥数题带答案图文百度文库一、拓展提优试题1.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.2.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).3.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.4.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a 相乘)5.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.6.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?7.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.8.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.9.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.10.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.11.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.12.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.13.已知A是B的,B是C的,若A+C=55,则A=.14.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.2.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.3.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.4.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.5.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.6.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.7.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.8.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.9.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.10.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.11.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.12.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.13.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.14.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4015.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。

小学六年级数学上册奥数题100道及答案

小学六年级数学上册奥数题100道及答案

小学六年级数学上册奥数题100道及答案1. 甲、乙两数的和是120,甲数是乙数的3 倍,求甲、乙两数各是多少?答案:乙数= 120÷(3 + 1) = 30,甲数= 3×30 = 902. 某工厂有三个车间,第一车间人数是第二、三车间人数和的1/2,第二车间人数是第一、三车间人数和的1/3,第三车间有105 人,求该厂总人数。

答案:第一车间人数占总人数的1/(1 + 2) = 1/3,第二车间人数占总人数的1/(1 + 3) = 1/4,所以第三车间人数占总人数的1 - 1/3 - 1/4 = 5/12,总人数= 105÷5/12 = 252 人3. 一筐苹果,连筐重56 千克,先卖出苹果的一半,再卖出剩下苹果的一半,这时连筐重17 千克,原来这筐苹果重多少千克?答案:一共卖出的苹果占总苹果的1/2 + 1/2×1/2 = 3/4,卖出的苹果重56 - 17 = 39 千克,原来苹果重39÷3/4 = 52 千克4. 修一条路,第一天修了全长的1/3,第二天修了余下的1/3,还剩180 米没修,这条路全长多少米?答案:第二天修了全长的(1 - 1/3)×1/3 = 2/9,剩下的占全长的1 - 1/3 - 2/9 = 4/9,全长= 180÷4/9 = 405 米5. 有一堆煤,第一天运走全部的1/4,第二天运走剩下的1/3,第三天运走50 吨,正好运完,这堆煤有多少吨?答案:第二天运走全部的(1 - 1/4)×1/3 = 1/4,所以第三天运走全部的1 - 1/4 - 1/4 = 1/2,这堆煤有50÷1/2 = 100 吨6. 三个连续奇数的和是15,它们的积是多少?答案:中间的奇数= 15÷3 = 5,这三个奇数是3、5、7,它们的积是3×5×7 = 1057. 一个数除以8 余5,除以7 也余5,这个数最小是多少?答案:这个数减去5 能同时被8 和7 整除,8 和7 的最小公倍数是56,所以这个数最小是56 + 5 = 618. 一个长方形的周长是48 厘米,长是宽的3 倍,求这个长方形的面积。

六年级上奥数题及答案

六年级上奥数题及答案

六年级奥数练试题及答案1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。

小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。

那么,小明这辆山地车的原价是________元。

【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。

已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。

【分析】方法一:方程。

设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。

方法二:比例。

1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。

两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。

倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。

3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。

4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。

六年级上册奥数题大全及答案

六年级上册奥数题大全及答案

六年级上册奥数题大全及答案六年级上册奥数题大全及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。

后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。

问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。

那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。

把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。

把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。

由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

六年级上册奥数题大全及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。

问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。

另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。

只要分析清楚这些,就可以解出本题了。

详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。

六年级上册奥数题及答案

六年级上册奥数题及答案

六年级上册奥数题及答案【篇一:小学六年级奥数题及答案(全面)】t>1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为a人,则80分以下的人数是(a-2)/4,及格的就是a+22,不及格的就是a+(a-2)/4-(a+22)=(a-90)/4,而6*(a-90)/4=a+22,则a=314,80分以下的人数是(a-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(1+1/5)x这一步是什么意思,为什么这么做左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案取40%后,存款有4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。

5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。

2. 一个圆的半径扩大3 倍,它的面积扩大()倍。

A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。

3. 甲数的2/3 等于乙数的3/4,甲数()乙数。

A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。

4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。

6. 要反映某地气温变化情况,应绘制()统计图。

A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。

7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。

六年级上册数学奥数题带答案

六年级上册数学奥数题带答案

一、拓展提优试题1.已知A是B的,B是C的,若A+C=55,则A=.2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?3.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.4.若一个十位数是99的倍数,则a+b=.5.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.6.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.7.根据图中的信息可知,这本故事书有页页.8.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).9.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.10.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.11.如图所示的“鱼”形图案中共有个三角形.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.14.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.15.能被5和6整除,并且数字中至少有一个6的三位数有个.16.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.17.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.18.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.19.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.20.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.21.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.22.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.23.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.24.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.25.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.26.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.27.分子与分母的和是2013的最简真分数有个.28.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.29.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.30.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.31.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.32.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.33.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.34.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.35.图中的三角形的个数是.36.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.37.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.38.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.39.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.40.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).【参考答案】一、拓展提优试题1.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.2.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.3.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.4.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.5.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:96.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.7.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.8.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.9.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.10.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.11.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.14.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.15.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.16.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.17.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.18.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.19.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.20.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.21.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.22.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.23.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.24.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.25.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.26.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.27.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.28.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.29.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.30.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.31.解:根据分析可得,,=,=2;故答案为:2.32.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.33.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.34.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.35.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.36.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.37.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.38.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.39.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.40.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.。

小学六年级上册奥数题及答案

小学六年级上册奥数题及答案

小学六年级上册奥数题及答案【篇一:六年级上册奥数题】b地要植1250棵。

已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树。

两块地同时开始同时结束,乙应在开始后第几天从a地转到b 地?2. 有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。

4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。

现打开水龙头往容器中灌水。

3分钟时水面恰好没过长方体的顶面。

再过18分钟水已灌满容器。

已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。

两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。

经过2+1/3小时,a,b两池中注入的水之和恰好是一池。

这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。

小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离。

小学六年级上册奥数题及答案

小学六年级上册奥数题及答案

小学六年级上册奥数题及答案【篇一:六年级上册奥数题】b地要植1250棵。

已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树。

两块地同时开始同时结束,乙应在开始后第几天从a地转到b 地?2. 有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。

4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。

现打开水龙头往容器中灌水。

3分钟时水面恰好没过长方体的顶面。

再过18分钟水已灌满容器。

已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。

两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。

经过2+1/3小时,a,b两池中注入的水之和恰好是一池。

这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。

小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离。

小学六年级上册数学奥数题及答案

小学六年级上册数学奥数题及答案

小学六年级上册数学奥数题及答案1.小学六年级上册数学奥数题及答案1、甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?解:设甲校有x人参加,则乙校有(22-x)人参加。

0.2x=(22-x)×0.25-10.2x=5.5-0.25x-10.45x=4.5x=1022-10=12(人)答:甲校有10人参加,乙校有12人参加。

2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款。

答案:取40%后,存款有9600×(1-40%)=5760(元)这时,甲有:(5760+120×2)÷2=3000(元)甲原来有:3000÷(1-40%)=5000(元),乙存款:9600-5000=4600(元)2.小学六年级上册数学奥数题及答案1、某种商品打九折出售,说明现在售价比原来降低了(D)。

A、90%B、9%C、1/9D、10%2、今年油菜产量比去年增产1/5,就是(C)。

A、今年油菜产量是去年的102%B、去年油菜产量比今年少20%C、今年油菜产量是去年的120%D、今年油菜产量是去年的100.2%3、男工人数的'25%等于女工人数的30%,那么男工人数和男工人数相比(A)A、男工人数多B、女工人数多C、一样多D、无法比较4、一种录音机,每台售价从220元降低到120元,降低了百分之几?正确的列式是(D)。

A、120÷220B、(220-120)÷120C、220÷120D、(220-120)÷2205、王力宏4月5日在银行存了活期储蓄2000元,月利率是0.12%,到6月5日,他可以得到税后利息是多少元?(税后利息为5%)正确的列式是(B)。

A、2000×0.12%×(1-5%)B、2000×0.12%×2C、2000×0.12%×2×(1-5%)D、2000+2000×0.12%×2×(1-5%)3.小学六年级上册数学奥数题及答案1、一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?9除以(5分之2-7分之1)=9除以35分之9=35(页)答:这见稿件有35页.2、一块地,长和宽的比是8:5,长比宽多24米.这块地有多少平方米?设长是8份,则宽是5份,多了:3份,即是24米那么一份是:24/3=8米即长是:8*8=64米,宽是:8*5=40米面积是:64*40=2560平方米3、如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?女同学为单位1男同学为1+25%=125%女同学的人数比男同学少(125%-1)÷125%=20%4、饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?去年养猪:(1987+245)/3=744今年比去年多养猪:1987-744=12435、小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?设小伟捐了X元所以2:5=X:35得:X=14元小伟捐了14元4.小学六年级上册数学奥数题及答案1、某工厂生产一批玩具,完成任务的五分之三后,又增加了280件,这样还需要做的玩具比原来的多10%。

六年级上册奥数题大全及解答

六年级上册奥数题大全及解答

二个相邻的正方形,其中一条边在同一直线上,直线长度为20分米,现已知大正方形的面积比小正方形的面积多40平方分米,问:大、小正方形的边长各是多少?把两个正方形的两条边对齐,重叠后,可看出大正方形比小正方形大的部分是两个长方形。

一个的长是大正方形的边长,另一个的长是小正方形的长,两个的宽都是大正方形与小正方形边长的差。

把这两个长方形拼成一个长方形所拼长方形的长是大、小正方形边长的和20分米,面积是大、小正方形面积的差40平方分米,宽是大、小正方形边长的差用40除以20的商是2分米,即大、小正方形边长的差。

用大、小正方形边长的和减去大、小正方形边长的差,再除以2,得数9分米就是小正方形的边长。

说清楚了吗?有甲乙丙三种货物。

若购甲3件,乙7件,丙1件共花3.15元,若购甲4件,乙10件,丙1件共花4.2元,现购甲、乙、丙各1件,共须多少元?这道小学奥数题怎样用小学的方法解答,要有详细的解题过程。

望高人指点,多谢啦啊~~~~~~(1)3a+7b+c=3154a+10b+11c=42012a+28b+4c=126012a+30b+33c=12602b+29c=0b=c=0a=105105分=1.05元(2)设甲的价格为x,乙的价格为y,丙的价格为z,那么得到的方程就是:3x+7y+z=3.15 (1)4x+10y+z=4.20 (2)x=0.15y=0.3z=0.6所以购买甲乙丙一件就是1.05元如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?67×(2+1)-17×(5+1)=201-102=99(吨)99÷〔(5+1)-(2+1)〕=99÷3=33(吨)答:原来的乙有33吨。

(33+67)×2+67=200+67=267(吨)答:原来的甲有267吨。

小学六年级奥数题及答案[6篇]

小学六年级奥数题及答案[6篇]

小学六年级奥数题及答案[6篇]1.小学六年级奥数题及答案篇一1、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?答案:25%解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/ 5)÷1/5=25%需要多少分钟?2、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。

甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?答案:432分钟解析:甲行驶2.5小时的路程,乙用了3.5小时。

所以甲乙的速度比为7:5,走相同路程的时间比是5:7。

那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。

2.小学六年级奥数题及答案篇二1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答案与解析:人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。

2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?答案与解析:①做正方形的另一条对角线。

得到四个完全相同的等腰直角三角形。

②一个等腰直角三角形的面积是:8÷2=4(直角边)4×4÷2=8(平方米)③四个等腰直角三角形的面积,即正方形的面积。

8×4=32(平方米)3.小学六年级奥数题及答案篇三1、125×(17×8)×4=125×8×4×17=1000×68=680002、375×480+6250×48=480×(375+625)=4800003、25×16×125=25×2×8×125=500004、13×99=13×(100-1)=1300-13=12875、75000÷125÷15=75×1000÷125÷15=75÷15×1000÷125=5×8=406、7900÷4÷25=7900÷(4×25)=797、150×40÷50=150÷50×40=3×40=1208、5600÷(25×7)=56×100÷25÷7=56÷7×100÷25=329、210÷42×6=210÷7÷6×6=3010、39600÷25=396×100÷25=396×4=15844.小学六年级奥数题及答案篇四有三块草地,面积分别是5,15,24亩。

六年级上册奥数题20道及答案

六年级上册奥数题20道及答案

六年级上册奥数题20道及答案六年级上册奥数题20道及答案本篇文档将介绍六年级上册奥数题20道及答案。

这些题目涵盖了常见的各种数学问题,包括数字理解、算术、几何、代数和统计等领域。

这些题目是为了帮助学生提高数学技巧和解决复杂数学问题的能力。

1、一群鸟在从南向北迁移,如果第一只鸟飞了15公里,第二只鸟飞了18公里,第三只鸟飞了22公里……以此类推,第25只鸟飞了多少公里?答案:第n只鸟飞的公里数为a[n] = 10n+5,因此第25只鸟飞了255公里。

2、请计算:19 × 36 - 84 ÷ 7 + 28答案:19 × 36 - 84 ÷ 7 + 28 = 684 - 12 + 28 = 700。

3、请画出一个68度的角度。

答案:使用直尺和圆规,首先画一条线段AB,接着在点A处画一条射线AC。

设置圆规的宽度,然后把它放在点A上,将圆规的另一端放在点C上画一条圆弧。

接着,把圆规的另一端放在刚画的圆弧上,把尺子的一端放在点A处,这次画出线段AD,使角度BAC为68度.4、如果你想在1分钟内计算5位数的乘法问题,你会如何做?答案:使用简单的乘法和心算技巧,快速解决问题。

例如,如果你需要计算256×27,可以先将乘数27分解为20+7,然后分别计算256×20和256×7,最后将两个结果加起来。

5、请计算:4.5 + 2.2 × 3.1答案:4.5 + 2.2 × 3.1 = 4.5 + 6.82 = 11.32。

6、请计算:(4.8 + 7.2)÷ 2.4答案:(4.8 + 7.2)÷ 2.4 = 3 × 2.0 = 6.0。

7、请计算:14 - 2 × 5 ÷ 2答案:14 - 2 × 5 ÷ 2 = 14 - 5 = 9。

8、请计算:87 × 19答案:87 × 19 = 1653。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级上册奥数题及答案【篇一:小学六年级奥数题及答案(全面)】t>1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为a人,则80分以下的人数是(a-2)/4,及格的就是a+22,不及格的就是a+(a-2)/4-(a+22)=(a-90)/4,而6*(a-90)/4=a+22,则a=314,80分以下的人数是(a-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(1+1/5)x这一步是什么意思,为什么这么做左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案取40%后,存款有4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。

5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库a和b,甲在a仓库、乙在b仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为60.甲每小时搬运6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要甲需丙帮助搬运乙需丙帮助搬运7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成 :5/6-1/3=1/2则甲做一天后乙做2天要做 :1/3-1/4=1/12则丙一天做 :1/16-1/72-1/48=1/36答:还需要6天8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元)0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案(100+40)/2.8=50本100/50=2150/(2+0.5)=60本60*80%=48本48*2.8+2.8*50*12-150=1.2 盈利1.2元对我有帮助一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人解: 设需要增加x人(40+x)(15-3)=40*15x=10所以需要增加10人10.仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。

仓库原有货物多少吨?解:第1次运走:2/(2+7)=2/9.64/(1-2/9-3/5)=360吨。

答:原仓库有360吨货物。

11.育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案原来达标人数占总人数的现在达标人数占总人数的育才小学共有学生12.小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?答案设小王做了a道,小李做了b道,小张做了c道由题意1/2a=1/3b=1/8cc-a=72解得a=24 b=36 c=9613.甲乙二人共同完成242个机器零件。

甲做一个零件要6分钟,乙做一个零件要5分钟。

完成这批零件时,两人各做了多少个零件?答案设甲做了x个,则乙做了(242-x)个6x=5(242-x)x=110242-110=132(个)答:甲做了110个,乙做了132个14.某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。

求丙组男女人数之比答案设男会员是3n,则女会员是2n,总人是:5n甲组有:5n*10/[10+8+7]=2n,其中:男:2n*3/4=3n/2,女:2n*1/4=n/2乙级有:5n*8/25=8/5n,其中男:8/5n*5/8=n,女:8/5n*3/8=3/5n丙级有:5n*7/25=7/5n丙级中男有:3n-3n/2-n=n/2,女有:2n-n/2-3/5n=9/10n那么丙组中男女之比是:n/2:9/10n=5:915.甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份p16619题16.李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。

后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。

问:每千克水果降价多少元?答案设以前卖出x降价a 那么0.2x * (1+0.5)=(0.2-a) * 2x则0.1x=2ax a=0.05.哈利.波特参加数学竞赛,他一共得了68分。

评分的标准是:每做对一道得20分,每做错一道倒扣6分。

已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?解:设哈利波特答对2x题,答错x题40x-6x=6834x=68x=2共有:4+2=6题17.爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。

答案设可免费携带的重量为x kg,则:(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;解方程:x=3018.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?答案解法一:设船数为x,则(15x+9)/18=x-115x+9=18x-1827=3xx=9答:有9只船。

解法二:8+1=9只船19.建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?答案设2堆为x吨,则一堆为x+85吨x+85-30=2(x-30)x=115(2堆)x+85=115+85=200(1堆)自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几【篇二:小学六年级奥数题及答案】t>工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率1-45/80=35/80表示还要的进水量答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

相关文档
最新文档