单元制动器 ppt课件

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、单元制动器的结构组成及工作原理
(一)单元制动器的外型
JSP-1型单元制动器
JSP-2型单元制动器
(二)单元制动器的内部结构
9
8
11
13
10
2
13 12
14
15 4
567
图1 JSP-1型单元制动器
图2 JSP-2型单元制动器
1-缸体; 2-制动皮碗及楔角机构; 3-塔式复原弹簧; 4-固定轴承; 5-滚动轴承; 6-间隙调整器; 7-调整螺杆; 8-小调整螺杆; 9-停车制动主弹簧; 10-停车制动皮碗;11-调整螺母; 12-手动缓解 装置; 13-中间隔板; 14-棘轮机构; 15-调整六方。
故 n=k/p1=1/tgα
式中 n—制动倍率 p1—制动皮碗作用 力 k—制动单元输 α—楔角角度
图5 楔角放大原理
2、单向间隙调整器对弹性变形的不调整性,确保闸瓦与车轮 踏面的有效间隙
踏面制动单元在制动过程中,产生如下三种变形与位移: (1)在输出力传递过程中,由于机械原因,间隙调整器内将产 生较小范围内的弹性变形; (2)制动时,车轮产生沿受力方向的弹性位移; (3)制动时,单元制动器安装固定座的弹性变形位移。
损,这样就会形成一段由于闸瓦磨损导致的多余行程“P”。这个磨损的多 余行程“P”是应该被调整的多余间隙。
(5)缓解和磨损间隙调整: 当压缩空气排出制动缸时,作用在勾贝推杆上的空气压力消失,从而闸瓦上
的制动力也消失。在复原弹簧1作用下,所有零件向相反的方向移动。移动过距 离“P”以后,系统弹性变形消失,离合弹簧张开,制动盘2不再被夹紧,由于螺 杆3螺纹是非自锁的,引导弹簧4推动导向螺母5在螺杆3上旋转、移动,至接触 到引导齿座6齿面啮合为止,向螺母5正好移动了磨损的距离“P”。
同时,在复原弹簧1作用下,制动主轴套7继续向后移动,在移动过一段距离 “A”后,引导齿座6被调整后盖8的凹槽顶住,不能继续移动,由于导向螺母5和 引导齿座6的齿面紧紧啮合,导向螺母5和螺杆3也一起停止移动。在复原弹簧力 的作用下,制动主轴套7要继续向后移动,这时,通过复原弹簧1和制动主轴套7, 调整螺母9和调整齿片10齿面脱开,在调整弹簧11作用力下,推动调整螺母9在 非自锁的螺杆3上旋转、移动,至间隙调整机构回到初始位置,调整螺母9和调整 齿片10齿面再次啮合。这样,调整螺母9也移动了相当于闸瓦磨损距离“P”,磨 损距离得到调整补偿,单元制动器恢复了正常闸瓦间隙。
图3 停车制动示意图
图4 手动缓解示意图
4、停车制动空气缓解 总风进入停车制动皮碗下方,当总风压力达到450kPa
以上时,推动皮碗和主弹簧向上移动,从而带动小调整螺杆 上移,实现了停车制动的缓解。如图2所示。
5、停车制动手动缓解 用专用工具拉动手动缓解销,调整螺母和棘轮装置在
停车制动主弹簧的作用下快速旋转,迫使停车制动主弹簧和 皮碗下移至上缸体的最底端,同时由于调整螺母的快速旋转, 小调整螺杆迅速上移至上缸体的顶端,实现了停车制动的缓 解,如图4所示。
2、行车制动缓解 制动缸压缩空气从P口排出,制动皮碗及楔角机构在复原 弹簧的作用下上移,滚动轴承和间隙调整器后退,带动调整螺 杆后退,从而实现了车辆的缓解。
3、停车制动
停车制动皮碗下方的压缩空气排出,停车制动皮碗在主弹簧作用力下迅速 下移,同时带动小调整螺杆下移,小调整螺经过中间隔板的通孔推动制动皮 碗及楔角机构下移,从而产生停车制动作用,如图3所示。
间隙调整器的工作原理:
(1)缓解位置: 当制动单元处于缓解状态时,间隙调整机构及其所有零部件处于图
示的位置,图中所示的设计距离“A”,就是闸瓦和车轮踏面之间的理论 正常间隙。
(2)轻制动作用: 当制动缸充入压缩空气,间隙调整机构首先移动一段距离“A”,
这个距离“A”相当于在缓解位置时闸瓦与踏面之间的距离,这时闸 瓦刚好贴敷在车轮踏面上,而没有产生制动力。
(3)全制动作用: 间隙调整机构继续向前移动,这时离合弹簧4被压缩,制动盘5被
夹紧,使导向螺母6不能转动。同时,调整螺母2在调整弹簧1的作用下 齿也啮合,不能转动,同螺杆3向前运动产生制动力,此时不发生间隙 调整。
(4)有磨损制动行程: 间隙调整机构移动了距离“A”以后,全制动开始实施,闸瓦会产生磨
三、单元制动器的主要特性
1、力的放大机构采用楔角放大原理 传统的基础制动力的放大原理基本上通过逐级的杠杆传递完成,而单元
制动器力的放大采用楔角放大原理,使制动单元重量轻、体积小、输出力大 且范围广,如图5所示。
踏面制动单元力的放大倍率仅与楔角角度有关,制动倍率的计算如下:
k=p1·1/tgα=p1·n
单元制动器内部结构:
塔式 弹簧
滚动轴承
制动 皮碗
停车制动 主弹簧
楔角 机构
间隙调 整器
固定轴承
手动缓 解装置
调整螺母Baidu Nhomakorabea
中间隔板 进风口
排风口
停车制动皮碗
小调整螺杆
(三) 单元制动器的工作原理 1、行车制动 制动缸压缩空气经P口进入缸体,制动缸皮碗及楔角机构
下移,推动滚动轴承向前移动,同时间隙调整器前移,从而推 出调整螺杆带动闸瓦托、闸瓦压紧车轮踏面,实现车辆的制动 功能,如图1所示。
单元制动器
金鹰重工培训中心
一、概述 为了适应列车速度、载重的需要,提高机车车辆技术 装备水平,目前城市轨道车辆和大型养路机械的基础制动 装置普遍采用了单元制动器。 单元制动器是集制动缸、力的放大机构及间隙调整器 为一体的装置,它对减轻车辆重量、均匀分配制动力、改 善转向架动力学性能及减少维护量等有明显作用。 目前应用于城市轨道车辆和大型养路机械中的单元制 动器主要有三种,分别是四川江山铁路配件公司的JSP型、 株洲九方制动设备公司的JDYZ型和铁科院机车车辆研究所 的XFD型。三种单元制动器的生产厂家不同,但其结构原 理、操作方法和维护保养基本一致,本课件以JSP型为例 对单元制动器进行介绍。
由于上述弹性变形,将促使间隙调整器进行调整。这样会造 成车轮踏面与闸瓦间的有效间隙越来越小。为了防止该现象的发生, JSP型踏面制动单元的单向间隙调整器内设置了制动盘机构,以保 证弹性变形范围内,间隙调整器不调整,使闸瓦与车轮踏面之间的 正常间隙保持始终不变。当闸瓦磨耗时,能自动调整闸瓦与车轮踏 面间隙变化,使之达到规定的正常间隙。
相关文档
最新文档