基于MATLAB的数字图像边缘检测算法研究开题报告

合集下载

基于MATLAB的图像分割算法研究开题报告

基于MATLAB的图像分割算法研究开题报告
1011周采用分水岭分割方法实现图像分割。
1213周系统测试,完善程序功能。
1415周按照规定要求完成毕业论文。
六、指导教师意见
签字: 年见
签字: 年 月 日
2、图像边缘检测方法用于图像处理的历史
在图像分割中,边缘检测方法可以说是人们研究的最多的方法,它试图通过检测包含不同区域的边缘来解决图像分割问题。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较剧烈的地方,也即我们通常所说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常我们将边缘划分为阶跃状和屋顶状两种类型。阶跃边缘中边缘两边的灰度值有明显的变化;而屋顶状边缘中边缘位于灰度增加与减少的交界处。在数学上可利用灰度的导数来刻划边缘点的变化,对阶跃边缘、屋顶状边缘分别求其一阶、二阶导数。可见,对阶跃边缘点儿其灰度变化曲线的一阶导数在A点达到极大值;二阶导数在A点与零交叉。对屋顶状边缘点B,其灰度变化曲线的一阶导数在B点与零交叉,二阶导数在B点达到极值。
本课题就是从这一起点出发,分别采用边界分割和分水岭变换两种方法进行图形分割,并用MATLAB实现整个分割过程。
二、课题关键问题及难点问题
1、基于边缘分割的图像分割算法的应用。
2、Hough变换的线检测方法与仿真实现。
3、利用各种算子进行图像分割并仿真实现
4、图像分割的仿真与实现。
5、基于分水岭变换进行图像分割
多年来,对图像分割的研究一直是图像技术研究中的热点和焦点,人们对其的关注和投入不断提高。它是一种重要的图像分析技术,是从图像处理到图像分析的关键步骤,也是计算机视觉领域低层次视觉中的主要问题,图像分割结果是图像特征提取和识别等图像理解的基础,对图像的加工主要处于图像处理的层次,图像分割后,对图像的分析才成为可能。另外,图像分割在实际中也得到了广泛的应用,在计算机视觉和图像识别的各种应用系统中占有相当重要的地位,也是研制和研发计算机视觉系统、字符识别和目标自动获取等图像识别和理解系统首先要解决的问题。只要需对图像目标进行提取,测量等都离不开图像分割。

(完整word版)图像边缘检测任务书及开题报告

(完整word版)图像边缘检测任务书及开题报告

重庆邮电大学毕业设计(论文)任务书学生姓名_A_学院_计算机学院_专业_地理信息系统_年级班别_1 _指导教师 —b__职 称—副教授—下达任务日期_2009_年_ 1_月_ 10_日研究内容 1•收集相关的相关学术报告,对其进行深入的学习了解及分析,了 解各种处理图像的过程和方法,了解常用的边缘检测算法,如图像的数 字化和离散图像的数学描述;数学形态学与二值图像的数学形态学运算; 图像分割和特征提取中的分割技术;边缘提取的经典方法;图像特征提 2.对经典边缘检测算法进行学习、分析和比较,如 Roberts 算子、 Sobel 算子、Prewitt 算子、Laplacian 算子、Marr 算子、Canny 算子等;3.用VC++实现这些算法,对边缘检测算法进行理解和加深,并通 过比较找出每种算法的优缺点和各自适用的范围;4.对上述算法融合自己的想法,并初步提出改进,让算法更实用。

研究方法和要求一个好的边缘检测算子应该具有三个指标: 1•低失误率,既要少将真正的边缘丢失也要少将非边缘判为边缘;2•高位置精度,检测出的边缘应在真正的边界上; 3.对每个边缘有唯一的响应,得到的边界为单像素宽;要做好边缘检测,首先,清楚待检测的图像特性变化的形式,从而使用适应这类变化的检测方法。

其次,要知道特性变化总是发生在一定 的空间范围内,不能期望用一种检测算子就能最佳检测出发生在图像上的所有特性变化。

当需要提取多空间范围内的变化特性时,要多考虑算子的综合应用。

第三,要考虑噪声的影响,其中的一个办法就是滤除噪设计(论文)题目 ____图象边缘检测算法研究与实现主要研究内容取等;方法和要求声,但这有一定的局限性。

第四,可以考虑各种方法的组合;第五,在正确检测边缘的基础上,要考虑精确定位的问题。

进度计划4月 2号-4月19号:4月on C R -7 县.20号5月7号:5月Q县8号5月23号.5月 24号一—5月31号:查阅相关资料,写出开题报告,熟悉VC++开发工具,并用VC++实现一些经典的算法测试,编写文档,完成毕业设计论文初稿对毕业设计论文进行修改,并最终完成毕业设计论文主要参考文献[1][2][3][4][7][8][9]谢凤英等.VC++数字图像处理[M].电子工业出版社,2008. 9.K. R. Castlemen, 朱志刚等(译).数字图象处理[M].北京.电子工业出版社.1998. 387-422.张凯丽,刘辉.边缘检测技术的发展研究[J].昆明理工大学学报,2000, 25(5): 36-39章毓晋.图象分割[M].北京:科学出版社,2001. 116-119. 何斌,马天予等编著.Visual C++数字图像处理[M], 2001.4.刘曙光,刘明远等.基于Canny准则的基数B样条小波边缘检测[J].信号处理,2001,17(5):418-423.赵志刚,管聪慧.基于多尺度边缘检测的自适应阈值小波图像降噪[J+].仪器仪表学报,2007,(2): 288-292田岩岩,齐国清.基于小波变换模极大值的边缘检测方法[J].大连海事大学学报:自然科学版,2007, (1): 102-106Mallat Stephane, Zhong Sifen. Characterization of Signals fromMultiscale EdgesJ]. IEEE Trans. on Pattern Analysis and MachineIn tellige nee, 1992, 14(7): 710-733[10]王文庆,支华.基于统计的边缘阈值检验方法[J].测绘科学,2007(2):71-72.指导教师签字教学部主任签字备注:此任务书由指导教师填写,并于毕业设计(论文)开始前下达给学生。

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真目录第1章绪论 11.1 序言 11.2 数字图像边缘检测算法的意义 1第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 22.2 MATLAB和图像处理工具箱的背景知识 32.3 数字图像边缘检测关于边缘的定义 42.4 基于一阶微分的边缘检测算子 42.5 基于二阶微分的边缘检测算子 7第3章编程和调试 103.1 edge函数 103.2 边缘检测的编程实现 11第4章总结 13第5章图像边缘检测应用领域 13附录参考文献 15第1章绪论§1.1 序言理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。

图像边缘是分析理解图像的基础,它是图像中最基本的特征。

在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。

图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。

图像边缘主要划分为阶跃状和屋脊状两种类型。

阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。

传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。

由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。

近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。

Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。

其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。

另外其相对简单的算法使得整个过程可以在较短的时间实现。

实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。

数字图像处理基于MATLAB的图像边缘检测

数字图像处理基于MATLAB的图像边缘检测
在图像中跟踪边缘较高的亮度梯度比较有可能是边缘,但是没有一个确切的值来限定多大 的亮度梯度是边缘多大又不是,所以 Canny 使用了滞后阈值。
滞后阈值需要两个阈值——高阈值与低阈值。假设图像中的重要边缘都是连续的曲线, 这样就可以跟踪给定曲线中模糊的部分,并且避免将没有组成曲线的噪声像素当成边缘。所以 从一个较大的阈值开始,这将标识出比较确信的真实边缘,使用前面导出的方向信息,从这些 真正的边缘开始在图像中跟踪整个的边缘。在跟踪的时候,使用一个较小的阈值,这样就可以 跟踪曲线的模糊部分直到回到起点。
中的 candy 技术来进行边缘处理,最后将处理后的图像从 YCC 色彩模式转换回 RGB 色图。 在对图像进行边缘检测功能的实现时,需要注意到所使用的 Edge 函数只能对灰度图或二
值化图像进行处理,因此,在进行边缘检测之前,首先要对图像进行灰度处理。为了更方便的 实现灰度处理,采取了转换 RGB 色域到 YCC 色域后进行。 二、程序流程图及算法说明
《数字图像处理》课程考核报告
rk
理学院
《数字图象处理》课程考核报告
基于 MATLAB 的图像边缘检测
电子信息科学与技术 x 班 x
0
《数字图像处理》课程考核报告
rk
《数字图像处理》课程考核报告
一、程序的主要功能和原理方法 1.功能 本程序使用 Matlab 结合图像处理工具箱的相关功能实现了对彩色图像的边缘检测。 2.原理方法 程序通过将 RGB 色彩模式的图像转换为 YCC 色彩模式(色域),并使用 Edge detection
Eg.png 对比效果图:
Henan Agricultural University College of Science Ren Kai

基于MATLAB的图形图像处理系统的实现的开题报告

基于MATLAB的图形图像处理系统的实现的开题报告

基于MATLAB的图形图像处理系统的实现的开题报告一、选题背景和意义图形图像处理是一项重要的计算机技术,在现代社会得到了广泛应用。

图形图像处理技术主要是指利用计算机对图像进行处理、分析、压缩、存储等操作。

MATLAB是一种非常流行的科学计算软件,具有强大的计算和图形处理功能,被广泛应用于科学计算、工程分析、数据探索等领域。

本项目旨在基于MATLAB实现一个图形图像处理系统,该系统可以对图像进行各种处理,并能将处理结果直观地展示。

二、研究内容和目标1. 系统需求分析首先对图形图像处理系统的需求进行分析,确定该系统需要实现的功能和具体的运行环境。

目标是基于MATLAB实现一个简单易用的图形图像处理系统,具有一定的实用性。

2. 图像处理算法研究选择常用的几种图像处理算法进行研究,包括图像滤波、边缘检测、二值化处理、形态学处理等。

研究各种算法的原理和实现方式,为后续系统的实现提供基础。

3. 系统设计和实现根据系统需求和图像处理算法的研究结果,对系统进行设计和实现。

设计包括系统结构、界面设计和算法实现等。

实现方面需要考虑MATLAB 编程语言特有的特点和使用需要注意的事项。

4. 系统测试和性能分析对系统进行全面的测试和性能分析,检验系统是否达到预期的目标。

分析系统的性能,包括运行速度、处理效果等指标。

三、研究方法和步骤1. 文献综述:针对图像处理技术和MATLAB编程语言相关文献进行综述和分析。

深入研究图像处理算法的原理和实现方式,熟悉MATLAB编程语言的基本语法和运用方式。

2. 需求分析:通过调研和访谈等方式,明确图形图像处理系统的需求,包括功能、性能和运行环境等方面。

3. 系统设计:根据需求分析结果,设计系统的结构和界面,并确定具体的算法实现方式。

4. 系统实现:依据系统设计方案,利用MATLAB编程语言实现图形图像处理系统。

5. 系统测试:对系统进行全面的测试和调试,评估系统的运行速度、处理效果等性能指标。

边缘检测matlab实验报告

边缘检测matlab实验报告

边缘检测matlab实验报告引言边缘检测在图像处理领域中是一项十分重要的任务。

它可以帮助我们从图像中提取出物体的边缘信息,对于图像分割、目标识别等任务都具有重要意义。

本实验旨在通过利用MATLAB中提供的边缘检测函数,实现对图像中边缘的提取,并对实验结果进行分析和探讨。

实验步骤1. 导入图像首先,我们需要从MATLAB工作环境中导入需要进行边缘检测的图像。

我们可以使用`imread`函数将图像读入到MATLAB的内存中。

matlabimage = imread('example.jpg');2. 灰度化灰度化是边缘检测的前提条件,它可以将一幅彩色图像转化为灰度图像,使得后续的操作更加简便。

我们可以使用`rgb2gray`函数将彩色图像转化为灰度图像。

matlabgray_image = rgb2gray(image);3. 边缘检测接下来,我们可以使用MATLAB中提供的边缘检测函数进行实际的边缘检测操作。

MATLAB中有许多边缘检测算法可供选择,例如Sobel算子、Canny算子等。

本实验我们选择使用Canny算子进行边缘检测。

matlabedge_image = edge(gray_image, 'Canny');4. 结果显示最后,我们可以使用`imshow`函数将原始图像和边缘检测结果显示出来,以便于观察和分析。

matlabsubplot(1, 2, 1);imshow(gray_image);title('原始图像');subplot(1, 2, 2);imshow(edge_image);title('边缘检测结果');5. 结果分析通过以上步骤,我们可以得到原始图像和边缘检测结果。

我们可以观察边缘检测结果,进一步分析图像中的边缘信息。

同时,我们还可以对不同的边缘检测算法进行对比实验,以评估它们的性能和适用性。

实验结果下图展示了使用Canny算子进行边缘检测的实验结果。

基于matlab数字图像处理的开题报告

基于matlab数字图像处理的开题报告

毕业设计(论文)开题报告题目:基于Matlab的数字图像处理学生姓名:学号:专业:通信工程指导教师:2011年 3 月 13 日一.文献综述:随着人类社会的进步和科学技术的发展,人们对信息处理和信息及交流的要求越来越高。

人们传递信息的主要媒介是语音和图像。

在接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉,嗅觉,触觉总的加起来不超过20%。

图像信息处理是人们视觉延续的重要手段。

人的眼睛只能看到波长为380到780nm的可见光部分,而迄今为止人类发现可成像的射线已有很多种,他们扩大了人类认识客观世界的能力。

数字图像处理是一个跨科学的前沿科技领域,在工程学,计算机科学,信息学,统计学,物理,化学,生物医学,地址,海洋,气象,农业,冶金等许多科学中的应用取得了巨大的成功和显著地经济效益。

图像是当光辐射能量照在物体上,经过他的反射或透射,或有发光物体本身发出的光能量,在人的视觉器官中所重现出的物体的视觉信息。

图像一般用Image表示,是视觉景物的某种形式的标记和记录。

通俗的说,图像是指利用技术手段把目标原封不动的再现。

由于图像感知的主题是人类,所以不仅可以将图像看作是二维平面上或三维立体空间中具有明暗或颜色变化的分布,还可以包括人的心理因素对图像接收和理解所产生的影像。

一般认为图片是图像的一种类型,在一些教科书中将其定义为“经过核实的光照后可见物体的分布”,图片强调了现实世界中的可见物体。

图形是指人为的图形,如图画,动画等人造的二维或三维图形,他强调应用一定的数学模型生成图形。

图形学是研究应用计算机生成,处理和显示图形的一门学科。

它涉及利用计算机将有概念或数学描述所表示的物体图像进行处理和现实的过程,侧重点在于根据给定的物体描述数学模型,光照及想象中的摄像机的成像几何,生成一幅图像的过程。

而图像处理进行的却是与其相反的过程,提示基于画面进行二维或三维物体模型的重建,这在很多场合是十分重要。

从20世纪60年代起,随着电子计算机技术的进步,数字图像处理技术得到了飞跃发展。

图像边缘检测方法研究的开题报告

图像边缘检测方法研究的开题报告

图像边缘检测方法研究的开题报告一、选题背景及意义随着数字图像处理技术的发展,图像边缘检测方法经历了从 Sobel 算子、Canny 算子、Laplacian 算子到更加前沿的基于深度学习的方法的演进,但图像边缘检测的准确性和稳定性依然是数字图像处理领域中的一个热点问题。

图像边缘检测在计算机视觉、图像识别等领域有着重要的应用,因此,对于图像边缘检测方法的研究具有重要的理论和实践意义。

二、研究内容本研究将重点探讨图像边缘检测中的经典和创新的算法,包括 Sobel、Prewitt、Roberts 算子、Canny 算子、Laplacian 算子、LoG 算子等经典算法,以及基于深度学习的算法,如卷积神经网络(CNN)等,结合实验数据对各种算法的准确性和稳定性进行对比分析,为更有效地应用图像边缘检测提供理论和实践基础。

三、研究方法1.文献研究法:对图像边缘检测领域目前应用较广泛的算法进行解析,分析各算法的优缺点,为后续实验提供理论基础;2.实验研究法:运用 MATLAB 等数学软件平台,结合不同的测试图像和算法,进行各种图像边缘检测算法的实验研究,从而实现对其准确性和稳定性进行全面评估;四、预期成果1. 收集归纳多种图像边缘检测方法的原理、优缺点等基本理论知识;2. 实现各种图像边缘检测算法,并对其进行实验验证,掌握不同算法的实用价值;3. 对比分析不同算法的准确性和稳定性,找出各种算法的内在关联,为进一步探索图像边缘检测方法提供理论基础。

五、研究难点深度学习算法设计与优化。

六、研究进度安排本研究计划分为以下三个阶段进行:1. 阅读相关文献资料,全面了解不同的图像边缘检测算法和机器学习算法,完成相关理论知识储备,预计耗时 1 个月;2. 在 MATLAB 等计算机软件平台上,实现各种图像边缘检测算法,并通过不同数据集的实验验证,预计耗时 2 个月;3. 在前两个阶段的基础上,对各种算法进行验证和探究,寻找更优秀的算法,用论文的形式进行总结,撰写实验报告和结论,预计耗时 3 个月。

基于matlab的图像边缘检测算法研究和仿真

基于matlab的图像边缘检测算法研究和仿真

基于matlab的图像边缘检测算法研究和仿真目录第1章绪论 11.1 序言 11.2 数字图像边缘检测算法的意义 1第2章传统边缘检测方法及理论基础 22.1 数字图像边缘检测的现状与发展 2 2.2 MATLAB和图像处理工具箱的背景知识 32.3 数字图像边缘检测关于边缘的定义 42.4 基于一阶微分的边缘检测算子 42.5 基于二阶微分的边缘检测算子 7第3章编程和调试103.1 edge函数 10 3.2 边缘检测的编程实现 11 第4章总结13第5章图像边缘检测应用领域13附录参考文献15第1章绪论§1.1 序言理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。

图像边缘是分析理解图像的基础,它是图像中最基本的特征。

在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。

图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。

图像边缘主要划分为阶跃状和屋脊状两种类型。

阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。

传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。

由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。

近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。

Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。

其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。

另外其相对简单的算法使得整个过程可以在较短的时间内实现。

实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。

§1.2 数字图像边缘检测算法的意义数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。

基于Matlab的图像边缘检测算法的实现及应用

基于Matlab的图像边缘检测算法的实现及应用

目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)附录 (22)附录A:程序代码 (22)附录B:各种边缘检测算子得到的边缘图像效果 (23)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。

该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。

梯度算子简单有效,LOG算法和Canny边缘检测器能产生较细的边缘。

边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。

在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。

关键词:边缘检测;图像处理;MATLAB仿真如需程序/Word版本,请访问: 嵌入式软件院。

引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。

许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。

但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。

基于机器学习的图像边缘检测方法的研究与应用的开题报告

基于机器学习的图像边缘检测方法的研究与应用的开题报告

基于机器学习的图像边缘检测方法的研究与应用的开题报告1.研究背景与研究意义图像边缘是图像中最基本的特征之一,图像边缘检测是计算机视觉领域中的一个重要问题。

传统的边缘检测方法包括Sobel算子、Canny算子、Prewitt算子等,但这些方法仍然存在局限性,例如对噪声敏感、边缘检测结果不准确等问题。

针对这些问题,近年来,基于机器学习的图像边缘检测方法得到了广泛的研究与应用。

这种方法能够自动从大量的图像数据中学习图像特征,并得到更高精度的边缘检测结果。

因此,本研究旨在通过对基于机器学习的图像边缘检测方法的研究与应用,提高图像边缘检测的准确度和鲁棒性,为计算机视觉领域的发展做出贡献。

2.研究内容与研究思路本研究将围绕以下内容进行深入研究:(1)机器学习的基本变上下文边缘检测理论介绍机器学习相关的理论知识,包括分类器、神经网络、卷积神经网络等,并着重介绍上下文边缘检测理论。

(2)基础边缘检测算法介绍传统的边缘检测算法,包括Sobel算子、Canny算子、Prewitt 算子等,并比较各算子的优劣。

(3)基于机器学习的边缘检测方法介绍基于机器学习的边缘检测方法,包括基于Haar特征的Adaboost算法、基于LBP特征的SVM算法、基于CNN的图像边缘检测算法等,并分析各种方法的优缺点。

(4)实验与应用本研究将使用大量的实验数据验证上述研究内容,在各种场景下应用并评估不同边缘检测方法的性能表现。

3.研究预期成果本研究主要预期达到以下成果:(1)深入了解机器学习相关理论知识及其在图像边缘检测中的应用。

(2)对传统边缘检测算法进行分析,并比较不同算法的优缺点。

(3)研究基于机器学习的图像边缘检测方法,并对各种方法进行评估和比较。

(4)通过实验与应用,验证机器学习方法在图像边缘检测中的性能表现,并与传统算法进行对比。

4.研究工作计划本研究的工作计划如下:(1)第一阶段(第1-4周):学习机器学习理论知识,阅读相关文献,进行相关实验的准备。

基于MATLAB的数字图像与边缘检测毕业设计论文

基于MATLAB的数字图像与边缘检测毕业设计论文

基于MATLAB的数字图像分析与边缘检测摘要:图像处理是用计算机对图像进行一系列的操作,一般操作是先将图像数字化,即易于获得某种预期结果的技术,其中边缘检测是图像处理中必不可少的一步,采用微分算子检测边缘是最常用的,也是处理效果比较好的一种。

MATLAB图像处理工具箱提供了边缘检测(edge)函数,它能利用多种算子进行图像的边缘检测,语言结构简单,本文主要介绍了数字图像处理主要研究领域中边缘检测的方法,并利用MATLAB图像处理工具箱提供的函数处理图片,对图像进行边缘检测,给出了各种算子检测边缘的结果并进行相互比较。

关键字:图像处理,MatLab ,边缘检测ABSTRACTImage processing is to analyze images by computers to achieve desired a series of results. Edge detection is an absolutely necessary step in image processing and the use of differential operators to detect edge is one of the most common and effective methods. Image processing Mat lab Toolbox User’s Guide, Has provided the edge function, It can use many kinds of operators to carry on the image the edge examination. Edge detection is one of the main methods in the research field of digital image processing. The image processing function provided by the Mat Lab image processing tool box is employed to perform edge detection for image so that the program and processing result are obtained.Key words: Image processing , MatLab,Edge detection独创声明本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。

基于matlab的数字图像边缘检测

基于matlab的数字图像边缘检测

实验二数字图像的边缘检测一、实验目的1.掌握图像边缘检测方法;2.学会利用MATLAB程序进行边缘检测二、实验内容利用sobel、prewitt、canny边缘检测算子对图像进行边缘检测,并比较处理结果三、实验原理边缘即图像中灰度发生急剧变化的区域边界。

边缘检测的实质是采用某种算法来提取图像中对象与背景间的交界线。

图像灰度的变化情况可以用图像灰度分布的梯度来反应,因此可以用局部图像微分技术来获得边缘检测算子。

经典的边缘检测方法是对原始图像中像素的某小邻域来构造边缘检测算子。

常采用差分、梯度、拉普拉斯算子及各种高通滤波处理方法对图像边缘进行检测。

检测的方法有:梯度算子、拉普拉斯算子、方向算子、Canny算子等。

Sobel 算子主要用作边缘检测。

在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。

在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量Prewitt算子采用以下算子分别计算一阶x 方向和y 方向的图像差分。

在一个较大区域中,用两点的偏导数值来求梯度幅度值,受噪声干扰很大。

若对两个点的各自一定领域内的灰度值求和,并根据两个灰度值和的差来计算x,y的偏导数,则会在很大程度上降低噪声干扰。

Canny 算子使用了变分法,这是一种寻找满足特定功能的函数的方法。

最优检测使用四个指数函数项的和表示,但是它非常近似于高斯函数的一阶导数。

Canny的目标是找到一个最优的边缘检测算法.四、实验设备和仪器1.计算机2.matlab开发平台五、关键代码及注释I=imread('coins.png'); %读取原始图像subplot(2,2,1),imshow(I);title('原图');BW1=edge(I,'sobel'); %sobel边界探测器BW2=edge(I,'prewitt'); %prewitt边界探测器BW3=edge(I,'canny'); %canny边界探测器subplot(2,2,2),imshow(BW1);title('sobel边缘探测器');subplot(2,2,3),imshow(BW2);title('prewitt边缘探测器');subplot(2,2,4),imshow(BW3);title('canny边缘探测器');六、实验结果有实验结果可以看出,对此图用sobel和prewitt算子进行边缘检测效果最好,因为sobel和prewitt算子有一定的噪声抑制能力,在检测阶跃边缘时得到的边缘宽度至少为二像素。

基于matlab的数字图像识别开题报告

基于matlab的数字图像识别开题报告

指导老师:蔡艳艳 学 号:100102077 学 生:
1 汽车牌识别背景
随着我国经济的发展和人民生活水平的提高,汽 车的数量迅速增长,汽车的使用在给人们生活提 供方便的同时,也使车辆管理上存在的问题日益 突出,人工管理的方式已经不能满足实际的需要 。智能交通系统在交通领域的应用极大地提高了 交通管理效率,作为信息来源的自动检测、图像 识别技术越来越受到人们的重视。目前,一些发 达国家车牌识剐系统在实际交通系统中已经成功 应用,而国内外有大量关于车牌识别方面的研究 报道。国外在这方面的研究工作开展较早。我国 起步较晚而且在技术方面落后与发达国家。
2 车牌号码识别系统总体方案
车辆牌照识别方法的一般步骤包括: 图像采集、图像预处理、车牌定位、字符切分、 字符识别其流程图如下:
图像采集
图像预处理
车牌定位
字符分割
字符识别
图像的采集
• 智能交通系统的图像采集由摄像机、主控机、采 集卡和照明装置完成。例如在停车场管理系统中 ,系统硬件主要包括车辆传感探测器、高性能工 控计算机、高分辨率CCD摄像机、高放大倍数镜 头、CCD自动亮度控制器和视频采集卡等设备。 本课题主要侧重算法的研究,主要工作是设计软 件,对已采集到的车辆照片实现车牌识别。
图像预处理
• 图像预处理就是需要对车辆牌照在识别之前再进行一 次针对性的处理。预处理的原因是由于在拍摄时的光 照条件不理想,车辆牌照的整洁程度不高,摄像机的 焦距调整不到位以及摄像机镜头的光学畸变等所产生 的噪声都会不同程度地造成车辆牌照字符的边界模糊 、细节不清、笔划断开或粗细不均,加上车辆牌照上 的污渍腐蚀等缺陷,致使字符提取困难,进而影响字 符识别的准确性,所以要对图像进行预处理。预处理 流程图如下:

图像边缘检测的开题报告

图像边缘检测的开题报告

中北大学信息商务学院毕业设计(论文)开题报告学生姓名:赵宝娟学号:08050643X07系别:信息与通信工程学院信息工程系专业:电子信息工程设计(论文)题目:图像边缘检测算法研究指导教师:桂志国2012年3月7日毕业设计(论文)开题报告1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述:文献综述一、课题背景和研究意义伴随着计算机技术的高速发展,数字图像处理成为了一门新兴学科,并且在生活中的各个领域得以广泛应用。

图像边缘检测技术则是数字图像处理和计算机视觉等领域最重要的技术之一。

在实际图像处理中,图像边缘作为图像的一种基本特征,经常被用到较高层次的图像处理中去。

边缘检测技术是图像测量、图像分割、图像压缩以及模式识别等图像处理技术的基础,是数字图像处理重要的研究课题之一。

边缘检测是图像理解、分析和识别领域中的一个基础又重要的课题,边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。

图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。

经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。

图像边缘检测一直是图像处理中的热点和难点。

近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。

但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。

另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。

二、国内外研究现状:作为计算机视觉的经典性研究课题,图像边缘的研究已有较长历史,涌现了许多方法,这些方法分为两大类:基于空间域上微分算子的经典方法和基于图像滤波的检测方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、进度安排
第1周:查阅收集资料,完成文献综述。
第2周:结合课题要求,提交开题报告,并完成开题答辩。
第3--5周:提交文献翻译,进行系统需求分析、总体设计和详细设计。第6—9周:实现仿真分析、图像处理。撰写毕业设计说明书。第10—13周:修改毕业设计说明书至定稿,资格审查,进行答辩。
五、所需技术条件
[5]章毓晋编著.图象处理与分析.北京清华大学出版社,2009
[6] C. W. Helstrom Image Restroration by the Method of Lesat Squares. J. Opt. Soc. Amer. March .1967,57(3):297~303
指导教师签名:日期:2015年3月10日
1.要求学生具有一定的Matlab方面的理论知识,熟悉Matlab软件的使用,掌握数字图像的处理方法;了解边缘检测算子的计算原理。
2.学校机房提供上网功能,安排学生每周不少于2次上机。
3.图书馆要求开放,能够提供资料查询。
4.安排学生辅导与学习的场所。
六、主要参考文献
[1]张憬,郭春秋,聂雪等.快速、准确的图像阐值分割新方法.西安文理学院学报,2006,9(3):54-58.
1.从网上查阅相关文献资料,在理解图像边缘检测算法及原理的基础上,通过Matlab软件,调用Matlab函数工具箱的各种边缘检测算子相关函数对数字图像进行边缘检测处理。
2.并分析各种算子的计算原理和处理特点。
3.对一阶微分算子如Roberts算子、Prewitt算子、Sobel算子和二阶微分算子Laplacian算子进行理论分析,理解各个算子的优缺点和适用范围。
课题来源:(1)教师拟订(2)学生建议;(3)企业和社会征集;(4)科研单位提供
课题类型:(1)A—工程设计(艺术设计);B—技术开发;C—软件工程;D—理论研究;
E—调研报告
(2)X—真实课题;Y—模拟课题;Z—虚拟课题
黄河科技学院毕业设计开题报告表
课题名称
基于MATLAB的数字图像边缘检测算法研究
课题来源
学生姓名
专业
学号
一、课题背景和目的
图像是人类获取和交换信息的主要来源。因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。近几年来,图像处理和识别技术得到了迅速的发一展。边缘是图像的重要特征之一,边缘检测作为图像分割、目标区域识别等图像分析领域的重要基础而受到人们的广泛关注,自从边缘检测的提出年到现在,在五十多年的发展中,国内外的众多专家学者都致力于边缘检测的研究,并相继提出了成百上千种不同类型的边缘检测算法。
二、课题任务要求
1.分析图像分割技术,图像边缘检测方法以及它的研究现状;
2.深刻理解边缘检测技术的几种经典边缘检测算法的理论根据及它们各自的运算特点;
3.基于Matlab环境,对各种边缘检测方法详细分析并进行仿真实验;
4.通过实验验证各个边缘检测算子的特点,详细分析各个算子的优缺点和适用范围。
三、课题任务实现方法
[2] KennethR.Castleman著,朱志刚,林学阎,石定机等译.数字图像处理.北京电子工业出版社,2012:181~190
[3]唐良瑞,马全明等编著.图像处理实用技术.北京化学工业出版社,2014:40~41
[4]郑莹,孙燮华.图像边缘检测LaPlace算子的改进[J].沈阳建筑大学学报(自然科学版) [J],2005,21(3):268~271
相关文档
最新文档