制动系统设计
制动系统的设计与性能优化
制动系统的设计与性能优化制动系统是车辆中至关重要的部分,它直接影响到行车的安全性和稳定性。
良好的制动系统设计以及性能优化是保障车辆和乘客安全的关键。
本文将讨论制动系统的设计原理以及性能优化策略,并探讨如何通过技术手段提升制动系统的性能。
一、制动系统的设计原理制动系统主要由制动器、制动片、制动液、制动器操控装置以及制动辅助装置等组成。
其工作原理是通过制动器施加一定的力矩使制动片与制动盘或制动鼓相互摩擦,从而转化为摩擦力以达到制动车辆的目的。
1. 制动器的选择原则制动器根据制动能力的不同分为盘式制动器和鼓式制动器。
盘式制动器由刹车盘和刹车钳组成,优点是散热性好、制动效果稳定,因此在高速行驶中有更好的制动性能;鼓式制动器由刹车鼓、制动片和制动轮筒组成,适用于低速行驶且制动次数相对较少的情况。
2. 制动片的材料选择制动片主要材料包括无石棉有机材料、半金属材料和陶瓷材料等。
不同材料具有不同的制动性能,如无石棉有机材料制动片具有制动平稳、噪音低等优点,而陶瓷材料则在制动性能和散热性上具有优势。
因此,在设计制动系统时需要根据车辆使用情况和需求选择合适的制动片材料。
3. 制动液的选用制动液作为传递压力的介质,其性能直接影响到制动系统的工作效果。
常见的制动液有DOT3、DOT4和DOT5等不同规格的液体。
制动液的选择要考虑到制动系统的工作温度范围、湿润点和抗氧化性能等因素。
二、制动系统的性能优化策略为了进一步提升制动系统的性能,以下几个方面可以进行优化:1. 制动系统的散热设计在高速行驶或制动频繁的情况下,制动系统会产生大量的热量,若无法及时散热,会影响制动效果甚至导致制动衰退。
因此,通过合理的散热设计,如增加散热器的面积、采用散热材料等措施,可以提高制动系统的稳定性和耐用性。
2. 制动系统的力矩分配制动系统的力矩分配是指在不同工况下各个车轮的制动效果。
通过调整制动力矩分配,可以使车辆制动时更加平衡稳定,减少车辆的侧滑和翻滚现象,提高行车的稳定性。
制动系统设计注意事项
制动系统设计注意事项一管路设计符合:GB12679-99《汽车制动系统结构、性能和试验方法》要求。
有效范围:包括客车,货车和牵引车至少四轮且最大设计时速超过25Km/h 必要装备:制动装置必须具有的功能———GB 12676-1999 4.1.4 行车制动:行车制动系必须保证车辆在任何车速.载重及坡路上逐渐迅速且有效的停车。
制动时驾驶员不得离开座位且手不得离开方向盘不论车速高低.载荷多少,车辆上坡和下坡,行车制动系统必须能控制车辆的行驶,且使车辆安全,迅速,有效地停住;行车制动必须是可控制的;必须保证驾驶员在其座位上双手无须离开方向盘就能实现的制动。
——GB 12676-1999 4.1.4.1第二制动系:应急制动行车制动系万一失效后,第二制动系必须使车辆停住,而且必须是逐渐的,驾驶员不得离开座位且至少有一只手扶着方向盘应急制动必须在行车制动只有一处失效的情况下,在当的一段距离内使车辆停住;应急制动必须是可控制的,应使驾驶员在其座位上至少有一只手在握住方向盘的情况下就可以实现的制动。
——GB 12676-1999 4.1.4.2驻车制动系:驻车制动系必须利用纯机械力使车辆在坡路上停住,或驾驶员离开车辆时。
驾驶员不得离开座位(挂车除外)。
驻车制动必须能通过纯机械装置把工作部件锁住,使车辆停驻在上坡或下坡的地方,即使在驾驶员离开也如此。
驾驶员必须能够在其座位上就可实现驻车制动。
挂车的驻车制动应符合4.3.10。
若驾驶员随时都能检查通过牵引车驻车制动系的纯机械作用从而使汽车列车获得足够的制动性能,则挂车的气制动系和牵引车的驻车制动系允许同时作用。
——GB 12676-1999 4.1.4.3二制动系统要求:制动系统必须具有的功能: 行车制动,驻车制动,应急制动;行车制动必须是双回路系统;行车制动必须作用在所有车轮上,具有均匀的制动效果;制动控制必须具有渐进功能;结构上必须具有声(或)光报警装置;制动力分配要求;如果一回路失效,保护另一回路压力使残余制动力能使车辆有效停车三制动系统图:五:制动系统元件设计使用要求:1 不带卸荷功能干燥器的布置:带卸荷功能干燥器的管路布置:空压机自带卸荷功能干燥器布置:2空气压缩机:3 空气干燥器:4 调压阀。
制动系统设计规范
本规范介绍了制动器的设计计算、各种制动阀类的功能和匹配、以及制动管路的布置。
本规范合用于天龙系列车型制动系统的设计。
本规范主要是在满足下列标准的规定(或者强制)范围之内对制动系统的零、部件进行设计和整车布置。
汽车制动系统结构、性能和试验方法机动车和挂车防抱制动性能和试验方法机动车运行安全技术条件在设计制动系统时,应首先考虑满足零部件的系列化、通用化和零件设计的标准化。
先从《产品开辟项目设计定义书》上获取新车型在设计制动系统所必须的下列信息。
再设计制动器、匹配各种制动阀,以满足整车制动力和制动法规的要求。
确定了制动器的规格和各种制动阀之后,再完成制动器在前、后桥上的安装,各种制动阀在整车上的布置,以及制动管路的连接走向。
3.1 车辆类型:载货汽车、工程车、牵引车3.2 驱动形式:4×2、6×4、8×43.3 主要技术及性能参数:长×宽×高、轴距、空/满载整车重心高坐标、轮距、整备质量、额定载质量、总质量、前/后桥承载吨位、 (前/后)桥空载轴荷、 (前/后)桥满载轴荷、最高车速、最大爬坡度等。
3.4 制动系统的配置:双回路气/液压制动、弹簧制动、鼓/盘式制动器、防抱制动系统、手动/自动调整臂、无石棉磨擦衬片、感载阀调节后桥制动力、缓速器、排气制动。
本规范仅对鼓式制动器的各主要元件和设计计算加以阐述,盘式制动器的选型和计算将暂不列入本规范的讨论范围之内。
4.1 鼓式制动器主要元件:4.1.1 制动鼓:由于铸铁耐磨,易于加工,且单位体积的热容量大,所以,重型货车制动鼓的材料多用灰铸铁。
不少轻型货车和轿车的制动鼓为组合式,其圆柱部份用铸铁,腹板则用钢压制件。
制动鼓在工作载荷下将变形,使蹄、鼓间单位压力不均,带来少许踏板行程损失。
制动鼓变形后的不圆柱度过大,容易引起制动时的自锁或者踏板振动。
所以,在制动鼓上增加肋条,以提高刚度和散热性能。
中型以上货车,普通铸造的制动鼓壁厚为 13~18㎜。
(完整word版)制动系统设计
GD12A电动汽车行车制动系统设计毕业设计说明书姓名:俞翼鸿专业:汽车维修与检测班级:(2)指导老师: 邹章鸣南昌理工学院机械工程系1.。
目录摘要Troduction前言第一章绪论 (6)1。
1 制动系统设计的意义 (6)1。
2 制动系统研究现状 (6)1.3 本次制动系统应达到的目标 (6)1.4 本次制动系统设计要求 (6)第二章制动系统方案论证分析与选择 (7)2.1 制动器形式方案分析 (7)2。
1.1 鼓式制动器 (7)2。
1。
2 盘式制动器 (9)2。
2 制动驱动机构的结构形式选择 (10)2.2.1 简单制动系 (10)2。
2。
2 动力制动系 (10)2。
2。
3 伺服制动系 (11)2。
3 液压分路系统的形式的选择 (11)2.3.1 II型回路 (11)2.3.2 X型回/路 (12)2。
3。
3 其他类型回路 (12)2。
4 液压制动主缸的设计方案 (12)第三章制动系统设计计算 (15)3.1 制动系统主要参数数值 (15)3.1.1 相关主要技术参数 (15)3.1.2 同步附着系数的分析 (15)3.2 制动器有关计算 (16)3.2。
1 确定前后轴制动力矩分配系数β (16)3。
2。
2制动器制动力矩的确定 (16)3.2。
3 后轮制动器的结构参数与摩擦系数的选取 (17)3.2.4 前轮盘式制动器主要参数确定 (18)3。
3 制动器制动因数计算 (19)3.3.1 前轮盘式制动效能因数 (19)3.3。
2 后轮鼓式制动器效能因数 (19)3。
4 制动器主要零部件的结构设计 (20)第四章液压制动驱动机构的设计计算 (22)4。
1 后轮制动轮缸直径与工作容积的设计计算 (22)4.2 前轮盘式制动器液压驱动机构计算 (23)4.3 制动主缸与工作容积设计计算 (24)4.4 制动踏板力与踏板行程 (24)4.4。
1 制动踏板力 (24)4.4.2 制动踏板工作行程 (25)第五章制动性能分析 (26)5.1 制动性能评价指标 (26)5.2 制动距离S (26)5。
制动系统的优化设计与仿真分析
制动系统的优化设计与仿真分析随着汽车工业的发展,制动系统的设计和制造技术也在不断进步。
制动系统是汽车行驶过程中最关键的安全系统之一,能够在紧急情况下尽快将车辆停止,保障车辆和行人的安全。
因此,制动系统的优化设计和仿真分析对于汽车行业至关重要。
一、制动系统的构成制动系统主要由制动器、制动盘/鼓、制动液、制动管路、制动泵等几个部分组成。
其中,制动器可以分为基本制动器和辅助制动器两类。
基本制动器主要包括气压制动器、液压制动器和机械制动器等。
其工作原理是通过施加制动力使车轮停止旋转,从而阻止汽车运动。
辅助制动器则是指制动制动器处理无法满足制动要求时所使用的辅助装置。
主要包括泊车制动器和驻车制动器等。
制动盘/鼓是制动系统主要能量转换的地方,它将制动液通过制动器送到刹车片与制动盘接触的位置,转化为制动力。
制动管路是用于传输制动液的管道,而制动泵则是产生并提供制动液压力的终端设备。
二、制动系统的优化设计在实际的汽车制动系统应用中,制动系统需要满足多种复杂的要求。
如何实现较好的制动性能和较低的成本是设计者需要解决的首要问题。
因此,下面分别从黏着力、稳定性和制动力三个方面探讨制动系统的优化设计。
1.黏着力在制动系统中,刹车片和制动盘必须要有良好的黏着力才能实现高效的制动效果。
所谓黏着力,指的是刹车片表面和制动器内壁之间的摩擦力,它决定了汽车能够在多大范围内停止。
优化黏着力的方法主要有以下几个方面:(1)选择合适的材料。
选择合适的刹车片材料可以改善制动器与制动盘之间的黏着力,从而提高制动性能。
目前主流的刹车片材料有金属、有机和陶瓷等,不同材料的优缺点也不同。
(2)改善制动盘表面。
制动盘表面会因为使用而损耗,会影响刹车片与制动盘之间的黏着力。
对制动盘进行适当的处理或涂层处理可以改善黏着性能。
(3)优化刹车片结构。
刹车片的厚度和面积也会影响制动性能。
适当增加刹车片的面积或者采用具有弹性可调的刹车片结构可以增强黏着性能。
SUV驱动桥设计方案制动系统与驱动力分配策略
SUV驱动桥设计方案制动系统与驱动力分配策略随着汽车行业的不断发展,SUV型车辆的市场份额也日益增加。
作为一种功能齐全、越野能力强的车型,SUV驱动桥的设计方案中的制动系统和驱动力分配策略变得尤为重要。
本文将探讨SUV驱动桥制动系统和驱动力分配策略的设计原则与最佳实践。
一、制动系统设计方案SUV驱动桥制动系统的设计方案需要考虑以下几个关键要素:1. 刹车盘和刹车片选材:对于SUV这种重量较大的车型来说,刹车盘和刹车片的选材必须具备高温耐受和耐磨损的特性。
常见的材料包括铸铁、复合材料和碳陶瓷材料等,设计方案应根据具体的车辆使用环境和预算做出权衡选择。
2. 刹车液与系统设计:高效的刹车系统需要优质的刹车液来传递刹车力。
选用合适的刹车液品牌和类型,并确保刹车油管和散热装置等刹车系统的设计合理,以避免刹车液过热或流失等问题。
3. ABS和制动力分配系统:为了确保SUV驱动桥制动系统的安全性和稳定性,反锁死刹车系统(ABS)是必不可少的。
此外,制动力的合理分配也对车辆驾驶性能和稳定性至关重要。
设计方案应根据车辆的重心、动力系统和制动装置等因素来制定最佳的驱动力分配策略,以提高整车的刹车性能和操控性。
二、驱动力分配策略SUV驱动力分配策略的设计考虑到了在不同驾驶工况下驱动力的合理分配,以提供最佳的操控和越野性能。
以下是一些常见的驱动力分配策略:1. 前驱动力分配:在一般的道路行驶中,SUV驱动桥的驱动力可以通过各种方式分配,其中最常用的是前驱动(2WD)。
前驱动力分配策略适合在干燥的、平坦的道路上行驶,能够提供较高的燃油经济性和较好的操控性。
2. 后驱动力分配:对于SUV驱动桥来说,后驱动力分配策略(2WD)适用于需要更大牵引力的情况,尤其是在湿滑或崎岖的路面行驶时。
后驱系统在提供更好的牵引力的同时,也增加了驾驶员的操控难度。
3. 自动驱动力分配:许多现代SUV驱动桥设计中,都配备了自动驱动力分配系统(AWD)。
汽车制动系统设计说明书
目录第一章绪论 (1)1.1 本次制动系统设计的意义 (2)1.2 本次制动系统应达到的目标 (2)1.3 本次制动系统设计容 (3)1.4 汽车制动系统的组成 (3)1.5 制动系统类型 (3)1.6 制动系工作原理 (3)第二章汽车制动系统方案确定 (4)2.1 汽车制动器形式的选择 (5)2.2 鼓式制动器的优点及其分类 (6)2.3 盘式制动器的缺点 (8)2.4 制动驱动机构的结构形式 (8)2.4.1 简单制动系 (9)2.4.2 动力制动系 (9)2.4.3 伺服制动系 (10)2.5 制动管路的形式选择 (10)2.6 液压制动主缸方案的设计 (12)第三章制动系统主要参数的确定 (14)3.1 轻型货车主要技术参数 (14)的确定 (14)3.2 同步附着系数的3.3 前、后轮制动力分配系数 的确定 (15)3.4 鼓式制动器主要参数的确定 (16)3.5 制动器制动力矩的确定 (18)3.6 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (20)3.7 鼓式制动器零部件的结构设计 (21)第四章液压制动驱动机构的设计计算 (24)4.1 制动轮缸直径d的确定 (24)的计算 (25)4.2 制动主缸直径d4.3 制动踏板力F (26)P4.4 制动踏板工作行程Sp (26)第五章制动性能分析 (27)5.1 制动性能评价指标 (27)5.2 制动效能 (27)5.3 制动效能的恒定性 (27)5.4 制动时汽车的方向稳定性 (28)5.5 前、后制动器制动力分配 (28)5.5.1 地面对前、后车轮的法向反作用力 (29)5.6 制动减速度j (29)5.7 制动距离S (29)5.8 摩擦衬片(衬块)的磨损特性计算 (30)5.9 汽车能够停留在极限上下坡角度计算 (32)第六章总结 (33)参考文献 (34)一.绪论汽车工业是一个综合性产业,汽车工业的生产水平,能够代表一个国家的整个工业水平,汽车工业的发展,能够带动各行各业的发展,进而促进我国工业生产的总体水品。
13制动系统设计规范
13制动系统设计规范制动系统是一款车辆非常重要的安全系统,直接影响到车辆的制动性能和行车安全。
对于制动系统的设计规范,下面将从设备选型、布置设计、控制系统设计、保养与维护等方面进行详细阐述。
一、设备选型1.制动器选型:根据车辆的类型、质量和运行速度等因素选择适合的制动器,确保其能够承受对应的制动力,并具有稳定的制动性能。
2.主缸和助力器选型:根据车辆的质量和制动需求选择合适的主缸和助力器,确保能够提供足够的制动力,并具有快速响应和稳定性好的特点。
3.制动片/鼓选型:选择耐磨、散热性好、摩擦稳定的制动片/鼓,并根据车辆使用情况进行适当调整。
二、布置设计1.制动管路设计:设计合理的制动管路,确保制动力能够传递到各个轮子,并且管路布置尽量简洁,减少制动力的损失。
2.制动助力器布置:助力器应设置在主缸和制动器之间,布置合理,保证管路短连接,提高制动效果。
三、控制系统设计1.制动系统电气设计:根据车辆的特点,选择合适的电气元件和线路布置,确保电气系统的可靠性和稳定性。
2.制动踏板设计:踏板应符合人体工程学原理,力度适中,操作感受良好,能准确感知制动力大小和变化。
3.制动系统控制策略设计:根据车辆的特点和需求,制定合理的制动控制策略,确保制动力分配均匀、稳定。
四、保养与维护1.定期检查制动系统的工作状况,包括制动片/鼓磨损情况、制动液油位和油质、制动踏板行程、制动管路漏气等。
2.定期更换制动片/鼓和制动液,确保制动系统的正常工作和稳定性。
3.检查和保养助力器,确保其功能正常,能够提供足够的助力。
以上是对13制动系统设计规范的详细阐述,设计和保养制动系统时必须要考虑到车辆的特点和使用情况,确保其能够提供稳定、可靠的制动性能,保障行车安全。
同时,制动系统的设计和维护也需要参考相关的法律法规,以确保制动系统符合强制性标准,且能满足用户需求。
自卸车制动系统设计方案
随着人们对安全性的关注不断提高,制动系统的安全性要 求也将越来越高。未来制动系统需要不断优化和完善,以 满足更高的安全标准。
市场竞争
市场竞争的加剧将促使制动系统制造商不断提高产品质量 和服务水平,同时需要加强技术研发和创新,以保持竞争 优势。
感谢您的观看
THANKS
尽管现有的自卸车制动系统设计取得了一定的成果,但仍存在一些问题 ,如制动距离过长、制动响应时间慢、制动力分配不均等,这些问题增
加了车辆在紧急情况下的风险,可能导致重大安全事故。
因此,设计一种新型的自卸车制动系统,旨在提高制动性能、增强安全 性和可靠性,对于减少工程事故、保障人员生命财产安全具有重要意义 。
制动系统组成
自卸车制动系统主要由制动器、 制动管路、制动踏板、制动液循 环系统等组成。
制动系统工作原理
通过制动踏板操作,将制动液压 力传递到制动管路,再传递到制 动器,从而对车轮进行制动。
制动器选型与设计
制动器类型选择
根据自卸车使用工况和载荷,选择合适的制动器类型,如鼓式、盘式等。
制动器设计要点
确定制动器摩擦衬片的材质和摩擦系数,以及制动器的热容量和耐久性。
制动管路设计
制动管路布局
合理布置制动管路,确保管路走向顺 畅,避免弯曲和干涉。
制动管路密封性
采用可靠的密封材料和密封技术,确 保制动管路密封性好,防止制动液泄 漏。
制动液循环系统设计
制动液型号选择
根据自卸车使用环境和性能要求,选择合适的制动液型号。
制动液循环系统设计
设计合理的制动液循环路径,确保制动液能够充分循环,提 高制动效果和散热性能。同时要考虑到制动液的过滤和净化 装置的设计。
设计范围
制动系统设计手册(NEW)
总体上写得不错,需要进一步改进的建议如下:
1.主要零部件的典型结构图。
2.分泵、总泵、吊挂助力器和阀等试验验证与试制验证的方法与标准(结合参考上次L项目验证计划)细化与补充。
3.分泵、总泵、吊挂助力器和阀的DFMEA分析的主要内容。
3.做到图文并茂,无经验的年轻的设计人员(《设计手册》主要读者)一看就明白。
3.3.6制动管路的布置:
首先以不与其它零部件干涉为前提,应尽量理顺;其次各管路的结构应合理,尤其是管路两端在整车行驶过程中有相对运动的件应考虑吸震方案,必要时采用软管连接;另外,在进行管路布置时应考虑管子的卡固,在空间允许的前提下管卡子的间隔以500~600mm为佳,当然在局部障碍部位可能要密一些。
真空助力器的直接作用在于降低制动踏板力,当制动踏板力太大时,仅依靠人的输入力(按照标准要求人的最大输入力不得大于700N)可能不足以使整车完全制动,而利用真空对助力器内橡胶膜片及反馈盘的作用可以成数倍(取决于真空助力器的助力比)地放大制动踏板的输入力,即增大制动总泵活塞的输入力,从而增大制动管路的压力。当然真空助力器助力比的选取应合适,助力比太大易使驾驶员失去踏板感,而太小又使人在制动过程中感到吃力,且对于一定规格的助力器来说,助力器的助力比越大,其最大输出拐点越低,这就容易造成整个制动过程在初期省力,但在后期特废力,严重时也会刹不住车,故真空助力器助力比的选取以使制动踏板力调整适当为宜。另当某一规格的助力器对整车制动踏板力的调整不能满足要求且适当调整助力比仍不能达到要求时应更换助力器的规格。
3.3制动系统各总成零部件在设计和布置过程中的注意事项:
3.3.1制动器总成:
优先采用社会成熟资源,但在与整车实际应用时应考察制动器的效能、制动底板、制动蹄铁、制动鼓的刚性与整车的符合性。
盘式制动器制动系统设计
XXX大学本科生毕业设计(论文)HX7200制动系设计学生姓名:______________学号:______________班级: ______________专业:______________指导教师:______________4月目录目录 ............................................................................................................................ 错误!未定义书签。
摘要 .......................................................................................................................... 错误!未定义书签。
Abstract ......................................................................................................................... 错误!未定义书签。
第1章绪论......................................................................................................... 错误!未定义书签。
1.1本课题研究背景............................................................................................. 错误!未定义书签。
1.2制动系统旳研究现实状况............................................................................. 错误!未定义书签。
汽车机械制造中的制动系统设计与制造案例分析
汽车机械制造中的制动系统设计与制造案例分析近年来,汽车制造技术的快速发展促使了制动系统在汽车行业中的重要地位。
制动系统的设计与制造直接关系到汽车的安全性和性能。
本文将通过分析一个制动系统设计与制造的案例,探讨汽车机械制造中的制动系统设计与制造的关键因素及相关技术。
案例概述在某汽车制造公司的新款豪华轿车中,制动系统的设计和制造被认为是其中的核心技术之一。
该汽车制造公司希望设计出一套高性能、可靠安全的制动系统,以提供稳定的制动性能和出色的操控感受。
制动系统设计为了达到设计目标,该公司的工程师团队采用了一系列先进的技术和方法。
首先,他们选择了高性能的制动盘和制动片材料,以确保制动系统具有更好的耐磨损性和更好的制动效果。
其次,他们利用数值仿真技术对制动系统进行了全面的分析和优化,以确保系统的设计符合安全性和性能要求。
此外,他们还注重了制动系统的整体结构设计和组装工艺,以确保制动系统的可靠性和稳定性。
制动系统制造在制动系统制造过程中,该公司重点关注零部件的质量控制和制造工艺的优化。
他们与供应商建立了严格的质量管理体系,并进行全面的质量检测和测试,确保每个零部件都符合设计要求。
此外,他们还优化了制动系统的组装工艺,采用先进的自动化生产线,以提高工作效率和产品质量。
案例分析通过对该案例的分析,我们可以得出以下几点结论:1. 技术创新是实现制动系统设计与制造的关键。
在该案例中,通过采用先进的材料和数值仿真技术,使得制动系统具有更好的性能和可靠性。
2. 质量控制是制动系统制造的重要环节。
严格的质量管理体系和质量检测措施可以保证制动系统的零部件符合设计要求,并提高产品的质量稳定性。
3. 制造工艺的优化可以提高制动系统的生产效率和产品质量。
采用自动化生产线和优化的组装工艺,可以减少人为因素的影响,提高工作效率和一致性。
4. 汽车制造公司的技术创新和制造管理水平的提高,能够为制动系统的设计与制造带来更好的效果,提高汽车的安全性能和用户体验。
制动系设计
第二节 制动器的结构方案分析
4. 盘式制动器
与鼓式制动器相比盘式制动器具有: ① 热稳定性好 ② 水稳定性好 ③ 制动力矩与汽车运动方向无关 ④ 易于构成双回路制动系 ⑤ 尺寸小、质量小、散热良好 ⑥ 衬块磨损均匀 ⑦ 更换衬块容易;缩短了制动协调时间
⑧ 易于实现间隙自动调整。
第二节 制动器的结构方案分析
第一节 概述
6. 制动系设计应满足的要求
① 具有足够的制动效能(行车制动以制动减速度和制动距离为 评价指标;驻车制动以可靠停使的最大坡度为评价指标)
② 工作可靠 ③ 制动时不应当丧失操纵性和方向稳定性 ④ 防止水和污泥进入制动器工作表面 ⑤ 热稳定性良好 ⑥ 操纵轻便,并具有良好的随动性
第二节 制动器的结构方案分析
作业
如右图所示,车辆的质量为m,制动减速度为a, 地面附着系数为φ,其余参数如图所示,试求车
辆在制动时,前后桥制动器的最大制动力。
本章主要内容
第一节 概述 第二节 制动器的结构方案分析 第三节 制动器的设计 第四节 制动驱动系统
第一节 概述
1. 制动系的功能
① 能够以控制和重复的形式降低车速,在需要时可将车停下来 ② 能够在下坡时保证车辆以稳定车速行驶 ③ 使汽可靠地停在原地或坡道上
第一节 概述
2. ABS防抱死刹车系统
第三节 制动器设计
1. 行车制动
第三节 制动器设计
2. 制动力分配曲线
第三节 制动器设计
3. 驻车制动
第三节 制动器设计
4. 弹簧式盘式制动器
第三节 制动器设计
5. 多片湿式制动器设计
第四节 制动驱动系统
1. 驱动形式
① 机械制动 ② 气压制动 ③ 液压制动
制动系统设计规范精选全文完整版
可编辑修改精选全文完整版一、国标要求1、GB 12676-1999《汽车制动系统结构、性能和试验方法》2、GB 13594-2003《机动车和挂车防抱制动性能和试验方法》3、GB 7258-1997《机动车运行安全技术条件》二、整车基本参数及样车制动系统主要参数整车基本参数样车制动系统主要参数三、计算1. 前、后制动器制动力分配1.1 地面对前、后车轮的法向反作用力 公式:gz h dt du mGb L F +=1 ………………………………(1) gz h dt du mGa L F -=2 (2)参数:1z F ——地面对前轮的法向反作用力,N ;2z F ——地面对后轮的法向反作用力,N ;G ——汽车重力,N ;b ——汽车质心至后轴中心线的水平距离,m ;a ——汽车质心至前轴中心线的距离,m 。
m ——汽车质量,kg ;gh ——汽车质心高度,m ;L ——轴距,m ;dt du——汽车减速度,m/s 2四、制动器的结构方案分析制动器有摩擦式、液力式和电磁式等几种。
电磁式制动器虽有作用滞后小、易于连接且接头可靠等优点,但因成本高而只在一部分重型汽车上用来做车轮制动器或缓速器。
液力式制动器只用作缓速器。
目前广泛使用的仍为摩擦式制动器。
摩擦式制动器按摩擦副结构形式不同,分为鼓式、盘式和带式三种。
带式只用作中央制动器。
一、鼓式制动器鼓式制动器分为领从蹄式、双领蹄式、双向双领蹄式、双从蹄式、单向增力式、双向增力式等几种,见图la ~f 。
不同形式鼓式制动器的主要区别有:①蹄片固定支点的数量和位置不同。
②张开装置的形式与数量不同。
③制动时两块蹄片之间有无相互作用。
因蹄片的固定支点和张开力位置不同,使不同形式鼓式制动器的领、从蹄数量有差别,并使制动效能不同。
制动器在单位输入压力或力的作用下所输出的力或力矩,称为制动器效能。
在评比不同形式制动器的效能时,常用一种称为制动器效能因数的无因次指标。
制动器效能因数的定义为,在制动鼓或制动盘的作用半径R 上所得到的摩擦力(RM μ)与输入力0F 之比,即RF M K 0μ=式中,K 为制动器效能因数;μM 为制动器输出的制动力矩。
课程设计制动系设计
课程设计制动系设计一、教学目标本课程旨在通过制动系设计的学习,让学生掌握制动系统的组成、工作原理及其设计方法。
具体目标如下:1.了解制动系统的功能和重要性;2.掌握制动系统的组成部件及其作用;3.理解制动系统的工作原理;4.学习制动系统的设计方法和流程。
5.能够分析制动系统的性能指标;6.能够运用制动系统设计方法进行初步设计;7.能够评估制动系统的安全性和可靠性。
情感态度价值观目标:1.培养学生对汽车工程领域的兴趣和热情;2.培养学生具备安全意识和责任感,注重行车安全;3.培养学生具备创新精神和团队合作意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.制动系统的功能和重要性;2.制动系统的组成部件及其作用,如制动盘、制动鼓、制动片、制动鞋、制动油管、制动泵等;3.制动系统的工作原理,如液压制动系统、气压制动系统、电子制动系统等;4.制动系统的设计方法,包括制动盘、制动鼓、制动片等的设计计算和选型;5.制动系统的性能评价,如制动效能、制动距离、制动稳定性等;6.制动系统的维修保养和故障诊断。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:通过教师的讲解,使学生掌握制动系统的基本概念、原理和设计方法;2.讨论法:学生进行小组讨论,分享学习心得和经验,提高学生的思考和分析能力;3.案例分析法:分析实际案例,使学生更好地理解制动系统的工作原理和设计方法;4.实验法:安排实验室实践环节,让学生亲自动手进行制动系统的拆装和检测,提高学生的动手能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的制动系统设计教材,为学生提供系统的学习资料;2.参考书:提供相关领域的参考书籍,丰富学生的知识体系;3.多媒体资料:制作课件、视频等多媒体资料,提高学生的学习兴趣和效果;4.实验设备:准备制动系统的实验设备,为学生提供实践操作的机会。
制动系设计毕业设计
制动系设计毕业设计制动系统设计毕业设计引言:制动系统是汽车安全性能的重要组成部分,它直接关系到车辆的制动效果和驾驶者的行车安全。
因此,制动系统设计是汽车工程领域中的重要课题之一。
本文将讨论制动系统设计的关键要素和技术挑战,以及如何通过优化设计来提高制动系统的性能。
一、制动系统的基本原理制动系统的基本原理是通过施加力量来减速或停止车辆的运动。
它主要由制动器、制动液、制动管路和制动控制系统等组成。
制动器是制动系统的核心部件,它通过施加摩擦力来减速车辆。
制动液在制动器和制动踏板之间传递压力,制动管路将压力传递到制动器上,而制动控制系统则负责控制制动力的大小和分配。
二、制动系统设计的关键要素1. 制动效果:制动系统设计的首要目标是实现良好的制动效果,即在短时间内将车辆停止或减速到安全范围内。
制动效果的好坏主要取决于制动器的性能和制动力的大小。
2. 制动稳定性:制动系统在制动过程中要保持稳定,避免制动过程中的抖动或失控现象。
制动稳定性的实现需要考虑制动器的设计和制动力的分配等因素。
3. 制动耐久性:制动系统在长期使用中需要保持稳定的性能。
制动器的材料和结构设计要考虑到耐磨损、耐高温和耐腐蚀等因素,以确保制动系统的长期可靠性。
4. 制动舒适性:制动过程中产生的噪音、震动和刹车跳动等问题会影响驾驶者的舒适性。
制动系统设计需要考虑减少这些不良影响,提供平稳、静音的制动体验。
三、制动系统设计的技术挑战1. 制动力的分配:在制动系统设计中,如何合理分配制动力是一个关键问题。
前轮制动力过大会导致车辆打滑,后轮制动力过大则会导致车辆失控。
因此,制动系统设计师需要根据车辆的动力学特性和重心位置等因素来优化制动力的分配。
2. 制动器的材料选择:制动器的摩擦材料对制动效果和制动稳定性起着重要作用。
目前常用的制动器材料有有机材料、金属材料和陶瓷材料等。
设计师需要根据车辆的使用条件和性能要求来选择合适的制动器材料。
3. 制动系统的热管理:制动过程中会产生大量的热量,如果不能及时散热,会导致制动器的性能下降甚至失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WORP 文档下载可编辑第七章 制动系统设计制动系是汽车的一个重要的组成部分。
它直接影响汽车的行驶安全性。
为了保证汽车有良好的制动效能,应该合理地确定汽车的制动性能及制动系结构。
7.1 制动动力学7.1.1 稳定状态下的加速和制动加速力和制动力通过轮胎和地表的接触面从车辆传送到路面。
惯性力作用于车辆的重心,引起一阵颠簸。
在这个过程中当刹车时,前后轮的负载各自增加或减少;而当加速时,情况正好相反。
制动和加速的过程只能通过纵向的加速度a x 加以区分。
下面,我们先来分析一辆双轴汽车的制动过程。
最终产生结果的前后轮负载ZVF '和ZhF ',在制动过程中,图7.1随着静止平衡和制动减速的条件而变为:()l h ma l l l mg F x V ZV--=' (7.1a ) l h ma l l mg F x V Zh+=' (7.1b ) 设作用于前后轴的摩擦系数分别为f V 和f h ,那么制动力为:V ZVXVf F F'= (7.2a ) h Zh Xhf F F '=' (7.2b )图7.1双轴汽车的刹车过程它们的总和便是作用于车辆上的减速力。
x Xh XV ma F F =+ (7.3)对于制动过程,f V 和f h 是负的。
如果要求两轴上的抓力相等,这种相等使 f V =f h =a x /g ,理想的制动力分配是:)/(])([gl h a l l g ma F x v x XV --=(7.4) )/(][gl h a gl ma F x v x Xh +=(7.5)这是一个抛物线F xh (F xv )和参数a x 的参数表现。
在图7.1的右半部分,显示了一辆普通载人汽车的理想制动力分配。
实践中,向两边分配制动力通常被选用来防止过早的过度制动,或是由刹车片摩擦偏差而引起的后轮所死,因为后轮锁死后将几乎无法抓地,车辆将会失去控制。
然而防抱死刹车系统将会减轻这个问题。
当然,每一个负载状态都有它各自的理想制动力分配。
如果所有负载状态都必须由一个固定的分配去应对,那么最重要的条件往往就是空车载司机的情况。
虽然,固定的分配在更多负载时无法实现最优化的制动力分配,b线显示了当后轴的制动力未超过理想值直到最大减速度为0.8g时的制动力分配情况。
弯曲的分配曲线可通过如下方法应用。
图 7.2 半挂车的刹车过程情况(c)使用一个后轴限压阀,情况(d)使用减压阀。
那些负载变化巨大的车辆,比如说卡车,或火车站货车及很多前轮驱动车,都有减压阀,并且带有一个可变的突变点,具体要看静止时的轴上负载(所谓的“制动力调节器”)。
在一辆双轴车上,轮子在制动中的负载只取决于减速度,而不取决于设定的制动力分配。
但这对于有三个或以上轴的车辆来说并不适用。
例如拖车,图7.2,高度协调了拖车接点的hk,h1和h2,拖拉机和拖车的重心,设定的制动力分配决定了连接力Fxk和F2k,从而决定了各轴上力的分布。
这里建立的制定过程等式仍然有效,对于加速,加速度为正值。
7.2、制动系统设计与匹配的总布置设计硬点或输入参数新车型总体设计时能够基本估算如下基本设计参数, 这些参数作为制动系统的匹配和优化设计的输入参数.7.3、理想的前、后制动器制动力分配曲线7.3.1 基本理论(1) 地面对前、后车轮的法向反作用力在分析前、后轮制动器制动力分配比例以前,首先了解地面作用于前、后车轮的法向反作用力。
图7.3.1由图7.3.1,对后轮接地点取力矩得g z h dtdu mGb L F +=1式中:1z F ——地面对前轮的法向反作用力;G ——汽车重力;b ——汽车质心至后轴中心线的距离;m ——汽车质量;g h ——汽车质心高度;dtdu——汽车减速度。
对前轮接地点取力矩,得g z h dtdu mGa L F -=2 式中2z F——地面对后轮的法向反作用力;a ——汽车质心至前轴中心线的距离。
则可求得地面法向反作用力为⎪⎪⎭⎫ ⎝⎛+=dt du g h b L G F g z 1 ⎪⎪⎭⎫ ⎝⎛-=dt du g h a L G F g z 2 (7.3.1)(2) 前、后制动器制动力分配曲线在任何附着系数的路面上,前、后车轮同时抱死的条件是:前、后轮制动器制动力之和等于附着力;并且前、后轮制动器制动力分别等于各自的附着力,即:G F F ϕμμ=+21 11z F F ϕμ=22z F F ϕμ=消去变量ϕ,得)]2(4[21112μμμF h Gb F G hgL b h G F gg +-+=(7.3.2)7.3.2 计算算例与计算结果由上述结果可以分别得出车型A 和车型B 的前、后车轮同时抱死时前、后制动器制动力的关系曲线——理想的前、后轮制动器制动力分配曲线,简称I 曲线。
(1) 车型B 的I 曲线下图为车型B 空载和满载时候的I 曲线2μF (N )1μF(2) 车型A 的I 曲线下图分别为车型A 空载、满载的I 曲线2μF (N )1 F7.4、前、后轮制动器制动力矩的确定 7.4.1车型B 制动器的制动力矩计算车型B 所采用的为:前面为盘式制动器,后面为鼓式制动器。
下面就两种制动器分别进行制动力矩的计算。
已知制动总泵的参数如下:(1) 盘式制动器的制动力矩计算 (a) 基本参数(b) 计算依据假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为: R fF M 02=μ式中f ——摩擦系数;0F ——单侧制动块对制动盘的压紧力;R ——作用半径(c) 计算结果下面为盘式制动器的制动力矩与摩擦系数之间的关系曲线。
M(Nm)f 由上图可以看出,当摩擦系数在0.35~0.42之间时,盘式制动器所能提供的摩擦力矩在1205Nm~1447Nm之间。
当f=0.38时,鼓式制动器提供的摩擦力矩为1309Nm。
(2) 鼓式制动器的制动力矩计算(a) 基本参数(b) 计算依据在摩擦衬片表面取一横向微元面积,由鼓作用在微元面积上的法向力为:ααd bfR p fR dF dF sin 112max ==对于紧蹄:对于松蹄:其中(c) 计算结果下图为鼓式制动器所能提供的制动力矩——摩擦系数曲线。
M(Nm)f 由上图可以看出,摩擦系数在0.35~0.42之间时,制动力矩在524Nm~706.53Nm之间。
当f=0.38时,鼓式制动器提供的摩擦力矩为598.316Nm。
(3) 确定同步附着系数通过上述关于制动器的制动力矩的计算,可以得到前、后制动器之间的制动力分配的比例β:211μμμβM M M +=通过这个曲线与I 曲线的交点处的附着系数为同步附着系数。
7.4.2确定车型A 的制动器制动力矩(1) 基本原理选定同步附着系数φ0,确定为0.7。
并用下列计算前、后轮制动力矩的比值。
然后,根据汽车满载在柏油、混凝土路面上紧急制动到前轮抱死,计算出前轮制动器的最大制动力矩M μ1max ;在根据前、后轮制动力矩的比值计算出后轮制动器的最大制动力矩M μ2max 。
M μ1Mμ2=b φ0h g aφ0h g(2) 基本参数(3) 计算结果7.4.3 车型A的制动器改进结果前桥制动力矩为2323 Nm,后桥制动力矩1430Nm。
即所采用的盘式制动器制动力矩为2323/2 =1161.5Nm,鼓式制动器为1430/2=715Nm。
通过确定前、后轮制动器的最大制动力矩,可以用7.3中提及的公式,用改变制动分泵的直径来改变原来制动器的制动力矩。
可以得出制动分泵改变情况如下:在车型A上,前桥采用盘式制动器,后桥采用鼓式制动器。
盘式制动器的缸径为48mm,鼓式制动器的缸径为21mm。
7.5、比例阀的设计由于,对于具有固定比值的前、后制动器制动力的制动系特性,其实际制动力分配曲线与理想的制动力分配曲线相差很大,附着效率低。
因此,现代汽车均装有制动力调节装置,可根据制动强度,载荷等因素来改变前、后制动器制动力的比值,使之接近于理想制动力分配曲线,满足制动法规的要求。
7.5.1 基本参数由上述参数,用前面讨论过的盘式、鼓式制动器的计算方法,可以得出以下结果:7.5.2 GMZ1的校核经GZM1调节后,汽车在空、满载时的状态如下:如下图:那么可以得出,空载的时候,经比例阀调节后,后面的制动器提供的制动力是小于当时情况下的地面所能提供的制动力的;满载的时候,经比例阀调节后,后面的制动器提供的制动力是大于当时情况下的地面所能提供的制动力的。
7.5.3 GZM2的校核经GZM2调节后,结果如下:同样,空载的时候,经比例阀调节后,后面的制动器提供的制动力是小于当时情况下的地面所能提供的制动力的;满载的时候,经比例阀调节后,后面的制动器提供的制动力是大于当时情况下的地面所能提供的制动力的。
7.5.4新曲线通过上面的计算可以看出,GZM1和GZM2可以满足0.7g时空载时的要求,但是不满足在满载时候的要求。
那么,理想的调节曲线如下:可以得出实际的新曲线,如下:比较上述图表,我们可以得出以下结论;如下表对照可得:空载状态满载状态新曲线更贴近理想的调节状态,也更能充分的利用地面附着系数。
7.6、总泵的校核由于相对与原车,前、后制动器轮缸直径发生了变化,因此需要校核原车总泵的容积是否满足改动后的容积要求。
7.6.1基本参数改动前,盘式制动器轮缸缸径'1D,容积'1v;鼓式制动器轮缸缸径'2D,容积'2v;总泵的缸径为'D,前腔容积'_fv,后腔容积'v;_b改动后,盘式制动器轮缸缸径1D,容积1v;鼓式制动器轮缸缸径1D,容积2v;总泵的缸径为D;前腔容积fv_;v_,后腔容积b7.6.2基本理论如果原总泵的前、后腔容量满足制动器的需要,那么就认为原总泵是满足要求的,反之,就认为是不满足。
7.6.3校核结果由上可以得出,前、后腔的容积是满足前、后制动器的需要的。
7.7法规要求7.7.1 GB12676-1999法规要求由于GB12676-1999制动法规要求发动机脱开的0型试验性能要求。
空、满载试验车辆分别按6.6.2.1a)和6.6.2.2a)规定的试验方法进行,在规定的车速下,各类车辆试验结果必须达到下表规定的最低性能要求。
那么其规定的制动距离为:50.667m。
下面为车型A在GB12676-1999法规要求下,其制动距离和充分发出的平均减速度。
由上可以得出,是符合GB12676-1999法规要求的。
7.8 GB 7258-1997法规要求GB 7258-1997法规要求:汽车、无轨电车和四轮农用运输车的行车制动,必须采用双管路或多管路,当部分管路失效时,剩余制动效能仍能保持原规定值的30%以上。