新人教版六年级下册数学《数学广角——鸽巢问题》优秀教学设计
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
人教新课标六年级数学下册5《数学广角——鸽巢问题》教学设计
人教新课标六年级数学下册 5《数学广角——鸽巢问题》教学设计一. 教材分析《数学广角——鸽巢问题》是人教新课标六年级数学下册中的一课。
本节课主要通过鸽巢问题引导学生理解鸽巢原理,培养学生的逻辑思维能力和解决问题的能力。
教材以生活中的实际问题为背景,让学生在解决实际问题的过程中感受数学与生活的紧密联系,体会数学的价值。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于生活中的问题有一定的认识和理解。
但在解决实际问题时,还需要引导学生将问题转化为数学模型,运用数学知识进行解决。
此外,学生对于抽象的鸽巢原理可能一时难以理解,需要通过具体的例子和操作来进行引导。
三. 教学目标1.让学生理解鸽巢原理,并能运用到实际问题中。
2.培养学生的逻辑思维能力和解决问题的能力。
3.引导学生感受数学与生活的紧密联系,体会数学的价值。
四. 教学重难点1.重点:理解鸽巢原理,能运用到实际问题中。
2.难点:对于抽象的鸽巢原理的理解和运用。
五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生感受数学与生活的联系。
2.案例教学法:通过具体的例子,让学生理解鸽巢原理。
3.问题驱动法:引导学生提出问题,分析问题,解决问题。
4.小组合作法:让学生在小组内讨论问题,共同解决问题。
六. 教学准备1.准备相关的案例和问题,用于引导学生理解和运用鸽巢原理。
2.准备PPT,用于展示问题和案例。
七. 教学过程利用PPT展示一个生活中的问题:“某小区有10栋楼,现有12户居民要入住,请问至少有一栋楼里有2户居民的情况会出现吗?”让学生思考并回答问题。
2.呈现(10分钟)通过PPT呈现鸽巢问题的相关案例,引导学生理解鸽巢原理。
如:“有n个鸽巢,m个鸽子,当m>n时,至少有一个鸽巢里有2只鸽子。
”让学生观察和理解案例。
3.操练(10分钟)让学生分组讨论,每组找一个生活中的问题,运用鸽巢原理进行解决。
如:“某班有30名学生,共有5个小组,每个小组最多有6人,请问至少有一个小组有7人以上的情况会出现吗?”让学生在小组内讨论并回答问题。
2024年秋季人教版六年级数学下册《数学广角——鸽巢问题》教学设计
-课后作业及答案
-小组合作活动记录表
-学生学习反馈表
-家长意见反馈表
二、教学目标
1.知识与技能:
(1)理解鸽巢问题的概念和原理。
(2)学会运用鸽巢原理解决实际问题。
(3)培养逻辑思维和推理能力。
2.过程与方法:
(1)通过观察、操作、交流等活动,探索鸽巢问题的解决方法。
(2)运用数学语言表述鸽巢问题的解题过程。
3.情感态度与价值观:
(1)培养学生独立思考、合作学习的良好习惯。
3.家长参与:邀请家长参与课堂活动,让家长了解孩子在数学学习中的进展,同时增进家长对数学学科的认识。
十二、教学反思与改进
1.教学效果评估:课后收集学生的反馈,了解他们对鸽巢原理的理解程度,以及教学方法的适应性。
2.教学内容调整:根据学生的掌握情况,对教学内容进行适当的调整,以满足不同学生的学习需求。
3.小组合作:评估学生在小组合作中的表现,包括团队合作能力、分享和交流能力。
4.定期测试:通过定期的单元测试,评估学生对鸽巢问题的理解和应用能力。
十六、教学反馈与改进
1.教师反馈:教师根据学生的课堂表现和作业完成情况,给予及时的反馈和指导。
2.学生反馈:鼓励学生提出学习中的困惑和问题,教师根据反馈调整教学策略。
2024年秋季人教版六年级数学下册《数学广角——鸽巢问题》教学设计
一、导入
1.教学情境:以生活中常见的场景为例,如同学们在排队打饭、乘坐公交车时,如何安排位置和座位,引出本节课的主题——鸽巢问题。
2.提问:同学们,你们在生活中有没有遇到过类似的问题,如何解决的?
3.学生回答后,教师总结:其实这就是我们今天要学习的鸽巢问题,它是一种典型的数学问题,可以帮助我们更好地解决生活中的实际问题。
2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
六年级下册数学教学设计-5《数学广角—鸽巢问题》人教新课标
《数学广角—鸽巢问题》教学设计一、教学目标:1. 知识与技能目标:使学生掌握鸽巢原理,能运用鸽巢原理解决实际问题。
2. 过程与方法目标:通过观察、操作、猜想等数学活动,培养学生的逻辑思维能力和数学推理能力。
3. 情感态度价值观目标:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
二、教学内容:1. 鸽巢原理:如果有n个鸽子,m个巢,且n>m,那么至少有一个巢里有2个或2个以上的鸽子。
2. 鸽巢原理的应用:通过实例,让学生理解鸽巢原理在实际生活中的应用。
三、教学重点与难点:1. 教学重点:鸽巢原理的理解与应用。
2. 教学难点:鸽巢原理的证明过程。
四、教学过程:1. 导入新课:通过一个有趣的数学故事,引发学生对鸽巢问题的思考。
2. 探究新知:(1)引导学生观察生活中的实例,如:有10个学生,9个座位,至少有一个座位上有2个学生。
(2)让学生动手操作,验证鸽巢原理。
(3)引导学生思考:为什么会有这样的现象?(4)教师总结:鸽巢原理的证明过程。
3. 应用拓展:(1)让学生运用鸽巢原理解决实际问题。
(2)引导学生思考:鸽巢原理在生活中还有哪些应用?4. 总结反思:(1)让学生谈谈对本节课的收获。
(2)教师总结:鸽巢原理在实际生活中的应用价值。
五、作业布置:1. 完成课后练习题。
2. 观察生活中的鸽巢问题,并与同学分享。
六、板书设计:《数学广角—鸽巢问题》1. 鸽巢原理:n>m,至少有一个巢里有2个或2个以上的鸽子。
2. 鸽巢原理的证明过程:(1)观察生活中的实例。
(2)动手操作,验证鸽巢原理。
(3)思考:为什么会有这样的现象?(4)总结:鸽巢原理的证明过程。
3. 鸽巢原理的应用:(1)解决实际问题。
(2)生活中的应用。
七、课后反思:本节课通过生活中的实例,引导学生观察、操作、思考,使学生掌握了鸽巢原理,并能运用鸽巢原理解决实际问题。
在教学过程中,要注意关注学生的个体差异,充分调动学生的积极性,培养学生的逻辑思维能力和数学推理能力。
人教新课标六年级数学下册5 《数学广角——鸽巢问题》教案
人教新课标六年级数学下册5 《数学广角——鸽巢问题》教案一. 教材分析《数学广角——鸽巢问题》是人教新课标六年级数学下册的一章内容。
本章主要让学生了解和掌握鸽巢问题的基本原理和应用。
通过本章的学习,学生能够解决一些生活中的实际问题,提高他们的数学应用能力。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力。
他们在学习本章内容时,需要将已有的知识和经验与鸽巢问题相结合,通过探究和思考,理解并掌握鸽巢问题的解决方法。
三. 教学目标1.知识与技能:让学生了解和掌握鸽巢问题的基本原理和解决方法。
2.过程与方法:通过探究和思考,培养学生解决问题的能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极向上的学习态度。
四. 教学重难点1.重点:让学生了解和掌握鸽巢问题的基本原理和解决方法。
2.难点:如何引导学生将已有的知识和经验与鸽巢问题相结合,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握鸽巢问题的解决方法。
2.问题教学法:通过提问和思考,激发学生的思维,培养学生解决问题的能力。
3.小组合作学习:让学生在小组内进行讨论和探究,培养他们的合作意识和团队精神。
六. 教学准备1.教学素材:准备一些生活实例,用于引导学生理解和应用鸽巢问题。
2.教学工具:准备黑板、粉笔等教学工具,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如停车场停车问题,引导学生思考和讨论,引出鸽巢问题的概念。
2.呈现(10分钟)呈现一些鸽巢问题的图片或实例,让学生观察和分析,引导学生理解鸽巢问题的基本原理。
3.操练(10分钟)让学生分组讨论和解决一些简单的鸽巢问题,引导学生运用已有的知识和经验解决实际问题。
4.巩固(5分钟)通过一些练习题,让学生巩固和加深对鸽巢问题的理解。
5.拓展(5分钟)引导学生思考和讨论鸽巢问题在实际生活中的应用,如安排座位、分配资源等。
5数学广角——鸽巢问题(教案)-六年级下册数学人教版
5 数学广角——鸽巢问题(教案)六年级下册数学人教版作为一名经验丰富的教师,我深知教学的重要性,下面我将根据您给的“数学广角——鸽巢问题(教案)六年级下册数学人教版”,以第一人称,详细描述我的教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思和拓展延伸。
一、教学内容本节课的教学内容来自于人教版六年级下册数学教材的第107页,主要包括了“鸽巢问题”的相关知识。
在这个问题中,学生会了解到,在一定条件下,鸽子放置在鸽巢中的方式,以及如何利用鸽巢问题解决实际问题。
二、教学目标通过本节课的学习,我希望学生能够掌握鸽巢问题的基本概念和解决方法,能够将所学的知识应用到实际问题中,提高解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的解决方法,难点则是如何让学生将所学的知识应用到实际问题中。
四、教具与学具准备为了更好地进行教学,我准备了多媒体教具和一些实际的例子,以便更好地解释和展示鸽巢问题。
五、教学过程1. 实践情景引入:我给学生展示了一个实际的例子,例如:“一个班级有30名学生,有20个座位,如何安排这些学生坐下来?”让学生思考并讨论。
2. 讲解概念:然后我引入了“鸽巢问题”的概念,讲解了鸽巢问题的定义和解决方法。
3. 例题讲解:我给学生讲解了一些典型的鸽巢问题题目,让学生了解并掌握解题方法。
4. 随堂练习:我给出了一些随堂练习题,让学生即时巩固所学知识。
5. 应用拓展:我让学生分组讨论,如何将鸽巢问题应用到实际问题中,并给出了一些实际问题的案例。
六、板书设计我在黑板上设计了简洁明了的板书,列出了鸽巢问题的定义、解决方法和实际应用。
七、作业设计我布置了一道实际的鸽巢问题题目,让学生课后思考并解答。
题目如下:假设一个房间里有5个鸽巢,现在有6只鸽子,如何将这些鸽子放入鸽巢中,使得每个鸽巢至少有1只鸽子?八、课后反思及拓展延伸课后,我进行了反思,认为学生们在课堂上掌握了鸽巢问题的基本知识,但在将知识应用到实际问题中,仍需加强。
2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇
人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
说教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
说教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
说教学过程:一、创设情境、导入新课1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。
今天我们就一起来研究它。
二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。
请看大屏幕。
(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。
(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。
(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法探究之前,老师有几个要求。
(一生读要求)(3)汇报展示方法,证明结论。
(展示两张作品,其中一张是重复摆的。
)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?说板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。
)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。
六年级下册数学教学设计-5《数学广角—鸽巢问题》人教新课标
六年级下册数学教学设计5《数学广角—鸽巢问题》人教新课标作为一名经验丰富的教师,我深知教学设计的重要性。
在此基础上,我对六年级下册数学教学设计5《数学广角—鸽巢问题》进行了精心的设计,以期达到最佳的教学效果。
一、教学内容本节课的教学内容为人教新课标六年级下册数学教材第117页的“数学广角—鸽巢问题”。
该章节主要介绍了鸽巢问题的概念、原理和应用。
通过本节课的学习,学生能够理解鸽巢问题的本质,掌握解决鸽巢问题的方法,并能够运用到实际问题中。
二、教学目标1. 知识与技能:使学生掌握鸽巢问题的基本概念和解决方法,能够运用到实际问题中。
2. 过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力和团队合作精神。
3. 情感、态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自尊心,使学生感受到数学在生活中的重要性。
三、教学难点与重点重点:鸽巢问题的概念和解决方法。
难点:如何运用数形结合的方法解决鸽巢问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:笔记本、尺子、圆规。
五、教学过程1. 实践情景引入:以一个实际问题为例,如“某学校有100名学生,他们的座位是3行4列的排列,请问至少有几名学生坐在同一列?”引导学生思考,引出鸽巢问题的概念。
2. 自主学习:让学生阅读教材,了解鸽巢问题的定义、原理和解决方法。
3. 合作交流:学生分组讨论,分享各自的学习心得和解决方法,教师巡回指导。
4. 例题讲解:教师选取典型的例题,如“有10只鸽子,8个鸽巢,请问至少有一个鸽巢里有几只鸽子?”引导学生运用鸽巢问题的解决方法进行解答。
5. 随堂练习:学生独立完成教材中的练习题,教师及时批改,给予反馈。
6. 数形结合:教师引导学生运用数形结合的方法解决鸽巢问题,如利用图形展示鸽巢的分布情况,引导学生观察、分析、解决问题。
六、板书设计板书内容:鸽巢问题2. 解决方法:(1)直接计算:n÷m(整除)+1(2)数形结合:利用图形展示鸽巢分布,观察、分析、解决问题。
5 数学广角——鸽巢问题(一等奖创新教案)-六年级下册数学人教版 1
5 数学广角——鸽巢问题(一等奖创新教案)-六年级下册数学人教版1《鸽巢问题》教学设计教学目标:1、通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。
渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:课件扑克练习篇教学过程:(一)游戏引入谈话导入:教师:看到课题你想知道什么?板书课题。
咱们的学习先从一个有趣的“魔术”开始。
出示一副扑克牌,取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,让我来猜一猜,至少有2张牌是同一花色的,我猜的对吗?拿到同一花色的同学站到一起。
教师:这个魔术里蕴含鸽巢原理。
扑克牌的数量较多,研究起来有点麻烦,怎么办呢?数学家陈省身说过,数学的本质在于化复杂为简单。
板书:化繁为简。
我们就来研究数量较少的同类问题。
(二)探索新知.一、教学例1。
师:把4支铅笔放到3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔?大家觉得这个结论对吗?1、小组合作:(课件)请4人为一组怎么证明这个结论?2、教师:收集不同的表示情况。
展示画图表示四种结果。
师:还有其它的放法吗?生:没有了。
师:看来,不管怎么放,总有一个笔筒里铅笔的支数是最多的,同学们能找出来吗?在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?生:没有。
师:这几种放法如果用一句话概括可以怎样说?生:装得最多的笔筒里至少装2支。
师:装得最多的那个笔筒一定是第一个吗?生:不一定,哪个笔筒都有可能。
生:不管哪个笔筒,总有一个笔筒里至少装2支。
六年级数学下册教学设计《5数学广角—鸽巢问题》人教版
六年级数学下册教学设计《 5 数学广角—鸽巢问题》人教版一. 教材分析《数学广角—鸽巢问题》是人教版六年级数学下册的教学内容。
本节课主要让学生理解并掌握鸽巢问题的原理及应用,培养学生的逻辑思维能力和解决实际问题的能力。
教材通过生活中的实例,引导学生发现并总结鸽巢问题的规律,进而解决问题。
二. 学情分析六年级的学生已经具备一定的数学基础,对于问题的探究和思考能力也在不断提高。
但学生在解决实际问题时,仍存在一定的困难,需要教师引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.让学生理解并掌握鸽巢问题的原理及应用。
2.培养学生的逻辑思维能力和解决实际问题的能力。
3.提高学生运用数学知识解决生活问题的意识。
四. 教学重难点1.重点:理解并掌握鸽巢问题的原理及应用。
2.难点:将鸽巢问题应用于实际生活中,解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生发现并总结鸽巢问题的规律。
2.问题驱动法:教师提出问题,引导学生思考、探讨,培养学生解决问题的能力。
3.小组合作学习:学生分组讨论,共同完成任务,提高团队协作能力。
六. 教学准备1.准备相关的生活实例,用于引导学生发现鸽巢问题的规律。
2.设计问题任务,让学生在解决实际问题中应用鸽巢原理。
3.准备课件,辅助教学。
七. 教学过程1.导入(5分钟)利用生活中的实例,如公园里的鸽子窝,引出鸽巢问题。
提问:如果有5只鸽子,至少需要几个鸽子窝?引导学生思考并讨论。
2.呈现(10分钟)展示教材中的例子,让学生观察并总结鸽巢问题的规律。
引导学生发现:如果有n个鸽子,至少需要n+1个鸽子窝。
3.操练(10分钟)设计一系列问题,让学生运用鸽巢原理进行解答。
如:如果有10只鸽子,至少需要几个鸽子窝?让学生分组讨论,共同完成任务。
4.巩固(10分钟)让学生举例说明在生活中遇到的鸽巢问题,并运用所学知识解决。
教师点评并指导,确保学生掌握鸽巢问题的应用。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。
设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。
教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。
学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。
但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。
设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。
教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
教学准备:多媒体课件、微视频、合作探究作业纸。
教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。
你们信吗?2、验证:学生报出生月份。
根据所报的月份,统计13人中生日在同一个月的学生人数。
小学六年级下册数学《数学广角鸽巢问题》教案优秀4篇
小学六年级下册数学《数学广角鸽巢问题》教案优秀4篇小学六年级下册数学《数学广角──鸽巢问题》教案篇一教学目标:通过复习练习,进一步掌握分数、百分数、小数的互化的方法。
进一步掌握分数、小数等有关性质。
教学重点、难点:分数、百分数、小数的互化的方法。
分数、小数等有关性质。
教学设计:一、复习小数、分数、百分数、成数、折扣等互化表格出示:给出其中一种,要求转化成另外几种数。
学生独立完成后,指名交流,说明转化方法。
0.35 1/4 140% 六成五八折二、分数、小数有关性质及其关系出示:12÷( )=3/4=( ):36=( )/12=( )%学生独立填写。
交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?三、巩固练习1、第86页第12题独立完成,说明填写方法。
引导学生发现:第1小题:后面的数总比前面大,越来越接近1.第2小题:后面的数总比前面小,越来越接近02、第86页第一叁、14题读题理解要求。
再按要求完成。
四、补充练习填空题1. 有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作( ),读作( ),它的计数单位是( )。
2. 六亿零六十万零六十写作( ),改写成用“万”作单位是( ),省略万后面的尾数是( ),精确到亿位是( )。
3. 两个相邻的自然数,它们的差是( )。
一个自然数既不是质数又不是合数,与它相邻的两个自然数是( )和( )。
4.如果a+1=b,那么它们的最小公倍数是( ),最大公因数是( )。
5. 把0.625的小数点向左移动两位是( ),它缩小了( )倍。
6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是( )7. 五个连续自然数的和是200,这五个自然数分别是( )、( )、( )、( )、( )。
8.最大的一位纯小数比最大的两位纯小数小( );最小的两位纯小数比最小的三位纯小数大( )。
9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是( )。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。
请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。
2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。
再提问:这句话对吗?组织小组活动,进行验证。
总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。
两种方法都能验证这句话是正确的。
在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。
活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
提问:这句话对吗?为什么?组织小组活动,进行探究。
总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。
追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。
学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。
引出鸽巢问题又叫抽屉问题。
3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。
5.布置作业课后习题1、2题,将今天学到的整理成数学日记人教版数学六年级下册鸽巢问题优秀教案【第2篇】《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。
数学广角《鸽巢问题》(教案)六年级下册数学人教版
数学广角《鸽巢问题》(教案)一、教学内容《鸽巢问题》选自人教版小学数学六年级下册。
本课主要围绕鸽巢问题展开,通过引导学生理解鸽巢原理,培养学生解决实际问题的能力。
二、教学目标1. 知识与技能:理解并掌握鸽巢原理,能运用鸽巢原理解决生活中的实际问题。
2. 过程与方法:通过观察、实验、推理等数学活动,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生数学学习的兴趣,培养学生合作交流、积极参与的意识和态度。
三、教学难点1. 理解并掌握鸽巢原理的含义和应用。
2. 能够运用鸽巢原理解决实际问题。
四、教具学具准备1. 教具:PPT课件、实物投影仪、教学黑板。
2. 学具:学习材料、练习本、文具。
五、教学过程1. 导入新课通过一个简单的实际生活中的例子,引出鸽巢问题的概念,激发学生的学习兴趣。
2. 探究新知利用PPT课件,展示一系列的实例,引导学生观察、思考、讨论,逐步理解鸽巢原理。
3. 实践应用分组讨论,每组选择一个实际问题,运用鸽巢原理进行解决,并分享解决过程和结果。
六、板书设计1. 鸽巢问题2. 重点内容:鸽巢原理的定义、应用实例、解决方法。
七、作业设计1. 必做题:完成课后练习题,巩固鸽巢原理的应用。
八、课后反思本节课通过实例导入、探究新知、实践应用等环节,使学生掌握了鸽巢原理,并能够解决实际问题。
在教学过程中,注意引导学生积极参与、合作交流,培养学生的数学思维和解决问题的能力。
在今后的教学中,要继续关注学生的个体差异,提高教学效果。
总计:约2000字重点关注的细节:教学过程1. 导入新课导入环节是激发学生学习兴趣、引发思考的重要环节。
教师可以通过一个简单的实际生活中的例子,如将10个苹果放入9个篮子中,引导学生思考:是否每个篮子都会放一个苹果?为什么?从而引出鸽巢问题的概念,激发学生的学习兴趣。
2. 探究新知(1)为什么每个盒子至少有一个乒乓球?(2)如何证明鸽巢原理的正确性?(3)鸽巢原理在实际生活中有哪些应用?通过这些问题,引导学生深入理解鸽巢原理的含义和应用。
六年级下册数学教案《5《数学广角—鸽巢问题》人教版
六年级下册数学教案《5《数学广角—鸽巢问题》人教版一、教案背景本节课将围绕数学广角中的鸽巢问题展开教学。
鸽巢问题是数学中一个经典的组合数学问题,通过这个问题的讲解,可以帮助学生理解组合数学的基本概念。
二、教学目标1.理解鸽巢问题的基本概念。
2.能够运用组合数学的知识解决实际问题。
3.培养学生的逻辑思维和数学建模能力。
三、教学重点1.理解鸽巢问题的描述。
2.运用组合数学的方法求解相关问题。
四、教学内容1. 什么是鸽巢问题鸽巢问题是指有n个鸽子和m个巢,如果n个鸽子全部进入m个巢,必然有至少一个巢内有超过一个鸽子。
这个问题可以通过组合数学的方法进行求解。
2. 解决鸽巢问题具体解决鸽巢问题的方法是采用反证法。
假设所有的m个巢中都只有一个鸽子,那么至少需要m个巢。
但是鸽子的数量大于m,所以必然存在至少一个巢内有超过一个鸽子。
五、教学过程1.引入问题:老师给出一个生活中的例子,引出鸽巢问题。
2.学生思考:让学生思考如果有5只鸽子和3个巢,是否存在至少一个巢有两只鸽子。
3.学生讨论:学生们在小组内讨论并给出自己的答案。
4.知识梳理:老师讲解鸽巢问题的解决方法,引导学生理解反证法的应用。
5.练习:布置一些练习题让学生巩固所学知识。
6.总结:对本节课的内容进行总结,强调鸽巢问题的重要性和实际应用。
六、教学反馈1.在课堂中观察学生对鸽巢问题的理解情况。
2.收集学生的练习作业并进行评价,及时纠正学生的错误。
七、拓展延伸1.鸽巢问题的变形:让学生尝试解决更复杂的鸽巢问题,如n个鸽子和m个巢的情况。
2.探究组合数学的其他应用:带领学生探索组合数学在其他领域的应用,如排列组合问题等。
通过本节课的学习,相信学生们能够更好地理解鸽巢问题的精髓,并将组合数学的方法运用到实际问题中去,为他们的数学学习打下坚实的基础。
小学六年级下册数学《数学广角──鸽巢问题》教案范文五篇[修改版]
是时代的见证,真理的火炬,记忆的生命,生活的老师和古人的使者。
下面是小编给大家准备的小学六年级下册《数学广角──鸽巢问题》教案,供大家阅读。
小学六年级下册数学《数学广角──鸽巢问题》教案范文一教学目标1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。
重点难点经历抽屉原理的探究过程,并对抽屉原理的问题模式化学生笔记(教师点拨) 学案内容一、知识回顾:(2分钟)二、学生:(15分钟)(1)自学例1把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?(1) 学生思考各种放法。
(2) 第一种放法:第二种放法:第三种放法:第四种放法:教学过程:5÷2=2……1 (至少放3本)7÷2=3……1 (至少放4本)9÷2=4……1 (至少放5本)1、提出问题。
不管怎么放,总有一个文具盒里至少放进( )铅笔。
为什么?如果每个文具盒只放( )铅笔,最多放( )枝,剩下( )枝还要放进其中的一个文具盒,所以至少有( )铅笔放进同一个文具盒。
(1) 说一说你有什么体会。
二自学例21、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?2、摆一摆,有几种放法。
不难得出,不管怎么放总有一个抽屉至少放进( )本书。
3、说一说你的思维过程。
如果每个抽屉放( )本书,共放了( )本书。
剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
如果一共有7本书会怎样呢?9本呢?4. 你能用算式表示以上过程吗?你有什么发现?总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
三、小组合作交流(8分钟)四、教师评价释疑。
(10分钟)五、当堂检测(5分钟)1. 做一做。
(1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。
为什么?(2) 说出想法。
如果每个鸽舍只飞进( )鸽子,最多飞回( )鸽子,剩下( )鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。
(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教案
(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教案一. 教材分析新人教版六年级数学下册第五单元“数学广角——鸽巢问题”主要让学生了解和掌握鸽巢问题的基本概念和解决方法。
通过本节课的学习,使学生能够运用鸽巢问题解决一些简单的实际问题,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于问题的解决有一定的思路和方法。
但在解决实际问题时,还需要引导学生将问题抽象成数学模型,运用数学方法进行解决。
三. 教学目标1.让学生了解和掌握鸽巢问题的基本概念和解决方法。
2.培养学生运用鸽巢问题解决实际问题的能力。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:了解和掌握鸽巢问题的基本概念和解决方法。
2.难点:如何引导学生将实际问题抽象成数学模型,运用鸽巢问题进行解决。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生在实际情境中感受和理解问题。
2.启发式教学法:引导学生主动思考,发现问题,归纳总结解决方法。
3.小组合作学习:培养学生团队合作精神,共同解决问题。
六. 教学准备1.准备相关的生活实例和问题,用于导入和巩固环节。
2.准备课件,用于呈现和讲解鸽巢问题的解决方法。
3.准备练习题,用于课后巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个生活实例引入鸽巢问题,如:假设一个班级有30名学生,如果有40个座位,那么至少有一个座位上会有2个或以上的学生。
让学生思考并解释原因。
2.呈现(10分钟)利用课件呈现鸽巢问题的基本概念和解决方法,如:对于n个鸽子,m个巢穴,当n>=m时,至少有一个巢穴上有2个或以上的鸽子。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用鸽巢问题进行解决。
如:一个篮子可以放4个苹果,如果有5个苹果,那么至少有一个苹果在篮子里。
4.巩固(10分钟)让学生独立完成一些类似的练习题,巩固对鸽巢问题的理解和运用。
人教版数学六年级下册鸽巢问题教案(推荐3篇)
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境 揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有” “至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有” “至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入 初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学广角——鸽巢问题【教学内容】最简单的鸽巢问题(教材第68页例1和第69页例2)。
【教学目标】1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。
2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。
【重点难点】了解简单的鸽巢问题,理解“总有”和“至少”的含义。
【教学准备】实物投影,每组3个文具盒和4枝铅笔。
【情景导入】教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。
通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。
(板书课题:鸽巢问题)教师:通过学习,你想解决哪些问题?根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?【新课讲授】1.教师用投影仪展示例1的问题。
同学们手中都有铅笔和文具盒,现在分小组形式动手操作:把四支铅笔放进三个标有序号的文具盒中,看看能得出什么样的结论。
组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。
教师指名汇报。
学生汇报时会说出:1号文具盒放4枝铅笔,2号、3号文具盒均放0枝铅笔。
教师:不妨将这种放法记为(4,0,0)。
〔板书:(4,0,0)〕教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。
教师:除了这种放法,还有其他的方法吗?教师再指名汇报。
学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。
教师板书。
教师:还有不同的放法吗?教师:通过刚才的操作,你能发现什么?(不管怎么放,总有一个盒子里至少有2枝铅笔。
)教师:“总有”是什么意思?(一定有)教师:“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝)教师:就是不能少于2枝。
(通过操作让学生充分体验感受)教师进一步引导学生探究:把5枝铅笔放进4个文具盒,总有一个文具盒要放进几枝铅笔?指名学生说一说,并且说一说为什么?教师:把4枝笔放进3个盒子里,和把5枝笔放进4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
这是我们通过实际操作发现的这个结论。
那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考——组内交流——汇报教师:哪一组同学能把你们的想法汇报一下?学生会说:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
教师:你能结合操作给大家演示一遍吗?(学生操作演示)教师:同学们自己说说看,同桌之间边演示边说一说好吗?教师:这种分法,实际就是先怎么分的?学生:平均分。
教师:为什么要先平均分?(组织学生讨论)学生汇报:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在哪个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
这样分,只分一次就能确定总有一个盒子至少有几枝笔了?教师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说) 教师:哪位同学能把你的想法汇报一下?学生一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢教师:你发现什么?学生:铅笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
教师:你们的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
把100枝铅笔放进99个文具盒里会有什么结论?一起说。
巩固练习:教材第68页“做一做”。
A组织学生在小组中交流解答。
B指名学生汇报解答思路及过程。
2.教学例2。
①出示题目:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请同学们小组合作探究。
探究时,可以利用每组桌上的7本书。
活动要求:a.每人限独立思考。
b.把自己的想法和小组同学交流。
c.如果需要动手操作,可以利用每桌上的7本书,要有分工,并要全面考虑问题。
(谁分铅笔,谁当抽屉,谁记录等)d.在全班交流汇报。
(师巡视了解各种情况)学生汇报。
哪个小组愿意说说你们的方法?把你们的发现和大家一起分享,学生可能会有以下方法:a.动手操作列举法。
学生:通过操作,我们把7本书放进3个抽屉,总有一个抽屉至少放进3本书。
b.数的分解法。
把7分解成三个数,有(7,0),(6,1),(5,2),(4,3)四种情况。
在任何一种情况下,总有一个数不小于3。
教师:通过动手摆放及把数分解两种方法,我们知道把7本书放进3个抽屉,总有一个抽屉至少放进几本书?(3本)②教师质疑引出假设法。
教师:同学们通过以上两种方法,知道了把7本书放进3个抽屉,总有一个抽屉至少放进3本书,但随着书的本数越多,数据变大,如:要把155本书放进3个抽屉呢?用列举法、数的分解法会怎么样?(繁琐)我们能不能找到一种适用各种数据的方法呢?请同学们想想。
板书:7本3个2本??余1本(总有一个抽屉里至少有3本书)8本3个2本??余2本(总有一个抽屉里至少有3本书)10本3个3本??余1本(总有一个抽屉里至少有4本书)师:2本、3本、4本是怎么得到的?生:完成除法算式。
7÷3=2本??1本(商加1)8÷3=2本??2本(商加1)10÷3=3本??1本(商加1)师:观察板书你能发现什么?学生:“总有一个抽屉里的至少有3本”,只要用“商+1”就可以得到。
师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?学生:“总有一个抽屉里至少有3本”只要用5÷3=1本??2本,用“商+2”就可以了。
学生有可能会说:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论、交流、说理活动。
可能有三种说法:a.我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
b.把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。
c.我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
教师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?学生回答:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
教师讲解:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。
这一原理在解决实际问题中有着广泛的应用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
下面我们应用这一原理解决问题。
提问:尽量把书平均分给各个抽屉,看每个抽屉能分到多少本书,你们能用什么方式表示这一平均的过程呢?学生在练习本上列式:7÷3=2??1。
集体订正后提问:这个有余数的除法算式说明了什么问题?生:把7本书平均放进3个抽屉,每个抽屉有两本书,还剩一本,把剩下的一本不管放进哪个抽屉,总有一个抽屉至少放三本书。
③引导学生归纳鸽巢问题的一般规律。
a.提问:如果把10本书放进3个抽屉会怎样?13本呢?b.学生列式回答。
c.教师板书算式:10÷3=3??1(总有一个抽屉至少放4本书)13÷3=4??1(总有一个抽屉至少放5本书)④观察特点,寻找规律。
提问:观察3组算式,你能发现什么规律?引导学生总结归纳出:把某一数量(奇数)的书放进三个抽屉,只要用这个数除以3,总有一个抽屉至少放进书的本数比商多一。
⑤提问:如果把8本书放进3个抽屉里会怎样,为什么?8÷3=2??2学生汇报。
可能出现两种情况:一种认为总有一个抽屉至少放3本书;一种认为总有一个抽屉至少放4本书。
学生讨论。
讨论后,学生明白:不是商加余数2,而是商加1。
因为剩下两本,也可能分别放进两个抽屉里,一个抽屉一本,相当于数的分解(3,3,2)。
所以,总有一个抽屉至少放3本书。
⑥总结归纳鸽巢问题的一般规律。
要把a个物体放进n个抽屉里,如果a÷n=b??c(c≠0),那么一定有一个抽屉至少放(b+1)个物体。
【课堂作业】教材第69页“做一做”。
(1)组织学生在小组中交流解答。
(2)指名学生汇报解答思路及过程。
【课堂小结】通过这节课的学习,你有哪些收获?【课后作业】完成练习册中本课时的练习。
第1课时鸽巢问题(1)(4,0,0)(0,1,3)(2,2,0)(2,1,1)。