新人教版六年级下册数学《数学广角——鸽巢问题》优秀教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学广角——鸽巢问题

【教学内容】最简单的鸽巢问题(教材第68页例1和第69页例2)。

【教学目标】

1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。

2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。

【重点难点】了解简单的鸽巢问题,理解“总有”和“至少”的含义。

【教学准备】实物投影,每组3个文具盒和4枝铅笔。

【情景导入】

教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。(板书课题:鸽巢问题)

教师:通过学习,你想解决哪些问题?

根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?

【新课讲授】

1.教师用投影仪展示例1的问题。

同学们手中都有铅笔和文具盒,现在分小组形式动手操作:把四支铅笔放进三个标有序号的文具盒中,看看能得出什么样的结论。

组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。

教师指名汇报。

学生汇报时会说出:1号文具盒放4枝铅笔,2号、3号文具盒均放0枝铅笔。教师:不妨将这种放法记为(4,0,0)。〔板书:(4,0,0)〕

教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。

教师:除了这种放法,还有其他的方法吗?教师再指名汇报。学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。教师板书。

教师:还有不同的放法吗?

教师:通过刚才的操作,你能发现什么?(不管怎么放,总有一个盒子里至少有2枝铅笔。)

教师:“总有”是什么意思?(一定有)

教师:“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝)教师:就是不能少于2枝。(通过操作让学生充分体验感受)

教师进一步引导学生探究:把5枝铅笔放进4个文具盒,总有一个文具盒要放进几枝铅笔?指名学生说一说,并且说一说为什么?教师:把4枝笔放进3个盒子里,和把5枝笔放进4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作发现的这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

学生思考——组内交流——汇报

教师:哪一组同学能把你们的想法汇报一下?

学生会说:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

教师:你能结合操作给大家演示一遍吗?(学生操作演示)

教师:同学们自己说说看,同桌之间边演示边说一说好吗?

教师:这种分法,实际就是先怎么分的?

学生:平均分。

教师:为什么要先平均分?(组织学生讨论)

学生汇报:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在哪个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

教师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说) 教师:哪位同学能把你的想法汇报一下?

学生一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:

把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢

教师:你发现什么?

学生:铅笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。教师:你们的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。把100枝铅笔放进99个文具盒里会有什么结论?一起说。

巩固练习:教材第68页“做一做”。

A组织学生在小组中交流解答。

B指名学生汇报解答思路及过程。

2.教学例2。

①出示题目:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请同学们小组合作探究。探究时,可以利用每组桌上的7本书。

活动要求:

a.每人限独立思考。

b.把自己的想法和小组同学交流。

c.如果需要动手操作,可以利用每桌上的7本书,要有分工,并要全面考虑问题。(谁分铅笔,谁当抽屉,谁记录等)

d.在全班交流汇报。(师巡视了解各种情况)

学生汇报。

哪个小组愿意说说你们的方法?把你们的发现和大家一起分享,学生可能会有以下方法:

a.动手操作列举法。

学生:通过操作,我们把7本书放进3个抽屉,总有一个抽屉至少放进3本书。

b.数的分解法。

把7分解成三个数,有(7,0),(6,1),(5,2),(4,3)四种情况。在任何一种情况下,总有一个数不小于3。

教师:通过动手摆放及把数分解两种方法,我们知道把7本书放进3个抽屉,总有一个抽屉至少放进几本书?(3本)

②教师质疑引出假设法。

教师:同学们通过以上两种方法,知道了把7本书放进3个抽屉,总有一个抽屉至少放进3本书,但随着书的本数越多,数据变大,如:要把155本书放进3

个抽屉呢?用列举法、数的分解法会怎么样?(繁琐)我们能不能找到一种适用各种数据的方法呢?请同学们想想。

板书:7本3个2本??余1本(总有一个抽屉里至少有3本书)

8本3个2本??余2本(总有一个抽屉里至少有3本书)

10本3个3本??余1本(总有一个抽屉里至少有4本书)

师:2本、3本、4本是怎么得到的?

生:完成除法算式。

7÷3=2本??1本(商加1)

8÷3=2本??2本(商加1)

10÷3=3本??1本(商加1)

师:观察板书你能发现什么?

学生:“总有一个抽屉里的至少有3本”,只要用“商+1”就可以得到。师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

学生:“总有一个抽屉里至少有3本”只要用5÷3=1本??2本,用“商+2”就可以了。

学生有可能会说:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论、交流、说理活动。

可能有三种说法:a.我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

b.把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。

c.我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。

教师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

学生回答:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就

相关文档
最新文档