波动光学基础练习

合集下载

6.波动光学(衍射、偏振)

6.波动光学(衍射、偏振)

第六次 波动光学(衍射、偏振)一、选择题:1.B 2.C 3.D 4.D 5.B二、填空题:⒈ 子波;子波相干叠加 ⒉ 4;第一,暗 ⒊ λd k k <±±= ,3 ,1 ,0且⒋ 双折射;寻常;折射;非常;折射;光轴 ⒌ "8'44542 ︒≈tg arc ⒍ 1:2⒎ ⑴反射、折射,均为点子 ⑵反射、折射,均为短线 ⑶反射、折射,均为点子、互相垂直 ⑷折射,短线 ⑸反射,点子;折射,点子、短线;互相垂直三、计算题:1.⑴ 由单缝衍射明纹公式(1=k )知:1 1 1 23)12(21sin λλφ=+=k a , af f tg f x 23sin 1 1 1 1λφφ=⋅≈⋅= 22223)12(21sin λλφ=+=k a , af f tg f x 2 3sin 2 222λφφ=⋅≈⋅= 则两种单色光的第一级明纹中心之间距为: cm a f x x x 27.02312=∆⋅=-=∆λ⑵ 由光栅衍射主极大的公式: 1 1 1 1 sin λλφ==k d , 2 2 2 1 sin λλφ==k d且有 f x tg =≈φφsin 所以 cm d f x x x 8.1/12=∆⋅=-=∆λ2.⑴ 对应第二级主极大 λϕ2sin )(2=+b a , 则光栅常数 m b a 0.6sin 22 μϕλ==+ ⑵ 按题意:第四级开始缺级,由缺级公式 k ab a k '+=,讨论可能的透光宽度 a 得: 若 4)( ,1=+='a b a k ,可得 4=k 缺级,则 a b 3=, m a m b 5.1 , 5.4 μμ==∴ 若 2)( ,2=+='a b a k ,也可得 4=k 缺级,但同时 2=k 缺级,与题意不符,故 2≠k 若 34 ,3=+='a b a k ,也可得 4=k 缺级,则 b a 3=, m a m b 5.4 , 5.1 μμ==∴ 故有两种答案,即 m a 5.1μ= 或 m a 5.4μ=⑶ 由光栅方程,λφk b a =+sin )( 10max =+<λba k , 考虑到第四级缺级,第八级也应缺级,故理论上可能出现的为:9 ,7 ,6 ,5 ,3 ,2 ,1 ,0±±±±±±± 级,共 15条明条纹。

大学物理之波动光学习题与解答

大学物理之波动光学习题与解答

r1.如图,S1、S2 是两个相干光源,它们到P 点的距离分别为r1 和r2.路径S1P 垂直穿过一块厚度为t1,折射率为n1 的介质板,路径S2P 垂直穿过厚度为t2,折射率为S1t1 r1Pt21 2(A) (r2 + n2t2 ) − (r1 + n1t1 )(B) [r2 + (n2 − 1)t2 ] −[r1 + (n1 − 1)t2 ](C) (r2 − n2t2 ) − (r1 − n1t1 )S2 n2(D) n2t2 − n1t12. 如图所示,波长为λ的平行单色光垂直入射在折射率为n2 的薄膜上,经上下两个表面n1 λ反射的两束光发生干涉.若薄膜厚度为e,而且n1>n2>n3,则两束反射光在相遇点的相(B) 2πn2 e / λ.(A) λD / (nd) (B) nλD/d.(C) λd / (nD).(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.5.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光(A) r k = kλR .(B) r k = kλR / n .(C) r k = knλR .(D) r k = kλ /(nR)二.填空题:1.在双缝干涉实验中,两缝分别被折射率为n1 和n2 的透明薄膜遮盖,二者的厚度均为e.波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=.2. 在双缝干涉实验中,双缝间距为d,双缝到屏的距离为D (D>>d),测得中央零级明纹与第五级明之间的距离为x,则入射光的波长为.3.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距;若使单色光波长减小,则干涉条纹间距.4. 在双缝干涉实验中,所用光波波长λ=5.461×10–4 mm,双缝与屏间的距离D=300 mm,双缝间距为d=0.134 mm,则中央明条纹两侧的两个第三级明条纹之间的距离为.n2en3n一.选择题:n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于( )位差为( )(A) 4πn2e/λ.(C) (4πn2e/λ)+π.(D) (2πn2e/λ)−π.3.把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D(D>>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是( )(D)λD/(2nd).4.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是( )程大2.5λ,则屏上原来的明纹处( )(A)仍为明条纹;(B)变为暗条纹;(C)既非明纹也非暗纹;(D)无法确定是明纹,还是暗纹6.在牛顿环实验装置中,曲率半径为R的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k的表达式为( ).一.光的干涉5. 图 a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波 长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图 b 所示.则干涉 图 a 条纹上 A 点处所对应的空气薄膜厚度为 e = .图 b6. 用波长为λ的单色光垂直照射到空气劈形膜上,从反射光中观察干涉条纹, 距顶点为 L 处是暗条纹.使劈尖角θ 连续变大,直到该点处再次出现暗条纹为止.劈尖角 的改变量∆θ是.7. 波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ (以弧度计),劈形膜的折射率为 n ,则反射光形成的干 涉条纹中,相邻明条纹的间距为 .8. 波长为λ的平行单色光垂直地照射到劈形膜上,劈形膜的折射率为 n ,第二条明纹与第五条明纹所对应的薄膜厚 度之差是 .9. 已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离 d 的过程中,干涉条纹将移动 条.10. 在迈克耳孙干涉仪的一条光路中,插入一块折射率为 n ,厚度为 d 的透明薄片.插入这块薄片使这条光路的光 程改变了 .11. 以一束待测伦琴射线射到晶面间距为 0.282 nm (1 nm = 10-9 m)的晶面族上,测得与第一级主极大的反射光相应 的掠射角为 17°30′,则待测伦琴射线的波长为 .三.计算题:屏AθL1.在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求:(1)零级明纹到屏幕中央O 点的距离.(2)相邻明条纹间的距离.2.在杨氏双缝实验中,设两缝之间的距离为 0.2 mm .在距双缝 1 m 远的屏上观察干涉条纹,若入射光是波长为 400 nm 至 760 nm 的白光,问屏上离零级明纹 20 mm 处,哪些波长的光最大限度地加强?(1 nm =10-9 m)3.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是 R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .(1) 求入射光的波长. (2) 设图中 OA =1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.4.在 Si 的平表面上氧化了一层厚度均匀的 SiO 2 薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的 AB段).现用波长为 600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中 AB 段共有 8 条暗纹,且 B处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为 3.42,SiO 2 折射率为1.50)5.在折射率为1.58 的玻璃表面镀一层MgF2(n = 1.38)透明薄膜作为增透膜.欲使它对波长为λ = 632.8 nm 的单色光在正入射时尽量少反射,则薄膜的厚度最小应是多少?一.选择题:二.光的衍射1 (A) a=2b.(B) a=b.(C) a=2b.(D) a=3 b.1.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )(A)对应的衍射角变小.(B)对应的衍射角变大.(C)对应的衍射角也不变.(D)光强也不变.2.一单色平行光束垂直照射在宽度为1.0m m的单缝上,在缝后放一焦距为2.0m的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm,则入射光波长约为( )(1nm=10−9m)(A) 100n m(B) 400n m(C) 500n m(D) 600n m3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于( )(A)λ.(B) 1.5λ.(C) 2λ.(D) 3λ.4.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )(A)对应的衍射角变小.(B)对应的衍射角变大.(C)对应的衍射角也不变.(D)光强也不变.5.测量单色光的波长时,下列方法中哪一种方法最为准确?( )(A)双缝干涉.(B)牛顿环.(C)单缝衍射.(D)光栅衍射.6.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为( )二.填空题:1.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于.2.在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角ϕ= .3.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d 的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为.4.若波长为625 nm(1nm=10−9m)的单色光垂直入射到一个每毫米有800 条刻线的光栅上时,则第一级谱线的衍射角为5.衍射光栅主极大公式(a+b) sinϕ=±kλ,k=0,1,2…….在k=2 的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差δ=6.设天空中两颗星对于一望远镜的张角为4.84×10−6 rad,它们都发出波长为550 nm 的光,为了分辨出这两颗星,望远镜物镜的口径至少要等于cm.(1 nm = 10-9 m)三.计算题:1.在用钠光(λ=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm,透镜焦距f=700 mm.求透镜焦平面上中央明条纹的宽度.(1nm=10−9m)2.某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm.缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm,求入射光的波长.3.用每毫米300 条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在0.63─0.76µm 范围内,蓝谱线波长λB 在0.43─0.49 µm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现.(1) 在什么角度下红蓝两谱线还会同时出现?(2) 在什么角度下只有红谱线出现?4.一平面衍射光栅宽2 cm,共有8000 条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=10­9m)5.某种单色光垂直入射到每厘米有8000 条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线?6.用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm-760 nm) 照射在该光栅上,求其第二级光谱的张角.(1 nm= 10-9 m)三.光的偏振一.空题:1.马吕斯定律的数学表达式为I = I0 cos2 α.式中I 为通过检偏器的透射光的强度;I0 为入射的强度;α为入射光方向和检偏器方向之间的夹角.2.两个偏振片叠放在一起,强度为I0 的自然光垂直入射其上,若通过两个偏振片后的光强为I0 / 8 ,则此两偏振片的偏振化方向间的夹角(取锐角)是,若在两片之间再插入一片偏振片,其偏振化方向与前后两片的偏振化方向的夹角(取锐角)相等.则通过三个偏振片后的透射光强度为.3.要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过块理想偏振片.在此情况下,透射光强最大是原来光强的倍.4.自然光以入射角57°由空气投射于一块平板玻璃面上,反射光为完全线偏振光,则折射角为.5.一束自然光以布儒斯特角入射到平板玻璃片上,就偏振状态来说则反射光为,反射光E 矢量的振动方向,透射光为.6.在双折射晶体内部,有某种特定方向称为晶体的光轴.光在晶体内沿光轴传播时,光和光的传播速度相等.二.计算题:1.将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60o ,一束光强为I0 的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.2.两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.3.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角.(1) 强度为I0 的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?波动光学解答一.光的干涉一. 选择题:1 2 3 4 5 6B A A B B B 二. 填空题:1.2π(n1 – n2) e / λ2.xd / (5D)3.变小变小4.7.32 mm35.λ26.λ / (2L)7. λ/(2nθ)8.3λ / (2n)9.2d/λ10.2( n – 1) d11.0.170 nm三.计算题:121.解:(1) 如图,设P 0为零级明纹中心 则 D O P d r r /012≈-(l 2 +r 2) - (l 1 +r 1) = 0 ∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()dD d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx明纹条件 λδk ±= (k =1,2,....)()d D k x k /3λλ+±= 在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆2.解:已知:d =0.2 mm ,D =1 m ,l =20 mm 依公式: λk l DdS ==∴ Ddl k =λ=4×10-3 mm =4000 nm故当 k =10 λ1= 400 nm k =9 λ2=444.4 nm k =8 λ3= 500 nm k =7 λ4=571.4 nm k =6 λ5=666.7 nm这五种波长的光在所给观察点最大限度地加强.3.解:(1) 明环半径 ()2/12λ⋅-=R k r()Rk r 1222-=λ=5×10-5 cm (或500 nm)(2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5故在OA 范围内可观察到的明环数目为50个.4.解:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2ne =21( 2k +1 )λ, (k =0,1,2,…) A 处为明纹,B 处第8个暗纹对应上式k =7()nk e 412λ+==1.5×10-3 mm5.解:尽量少反射的条件为2/)12(2λ+=k ne ( k = 0, 1, 2, …)令 k = 0 得 d min = λ / 4n= 114.6 nm二.光的衍射一. 选择题: 1 2 3 4 5 6 B C D B D B一. 填空题:1.λ / sin θ2.±30° (答30° 也可以)3.d sin ϕ =k λ ( k =0,±1,±2,···)4.30 °5.10λ6.13.9三.计算题:1.解: a sin ϕ = λ a f f f x /sin tg 1λφφ=≈== 0.825 mm ∆x =2x 1=1.65 mm2.解:设第三级暗纹在ϕ3方向上,则有 a sin ϕ3 = 3λ此暗纹到中心的距离为x 3 = f tg ϕ3因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f = 500 nm3.解: ∵ a +b = (1 / 300) mm = 3.33 μm(1) (a + b ) sin ψ =k λ∴ k λ= (a + b ) sin24.46°= 1.38 μm∵ λR =0.63─0.76 μm ;λB =0.43─0.49 μm对于红光,取k =2 , 则λR =0.69 μm对于蓝光,取k =3, 则 λB =0.46 μm红光最大级次 k max = (a + b ) / λR =4.8,取k max =4则红光的第4级与蓝光的第6级还会重合.设重合处的衍射角为ψ' , 则()828.0/4sin =+='b a R λψ∴ ψ'=55.9°(2) 红光的第二、四级与蓝光重合,且最多只能看到四级,所以纯红光谱的第一、三级将出现.()207.0/sin 1=+=b a R λψ ψ1 = 11.9° ()621.0/3sin 3=+=b a R λψ ψ3 = 38.4°4.解:由光栅公式 (a +b )sin ϕ = k λ sin ϕ = k λ/(a +b ) =0.2357kk =0 ϕ =0k =±1 ϕ1 =±sin -10.2357=±13.6°k =±2 ϕ2 =±sin -10.4714=±28.1°k =±3 ϕ3 =±sin -10.7071=±45.0°k =±4 ϕ4 =±sin -10.9428=±70.5°5.解:由光栅公式(a +b )sin ϕ =k λk =1, φ =30°,sin ϕ1=1 / 2∴ λ=(a +b )sin ϕ1/ k =625 nm 若k =2, 则 sin ϕ2=2λ / (a + b ) = 1, ϕ2=90° 实际观察不到第二级谱线6.解:(1) (a + b ) sin ϕ = 3λa +b =3λ / sin ϕ , ϕ=60°a +b =2λ'/sin ϕ' ϕ'=30° 3λ / sin ϕ =2λ'/sin ϕ' λ'=510.3 nm (2) (a + b ) =3λ / sin ϕ =2041.4 nm2ϕ'=sin -1(2×400 / 2041.4) (λ=400nm)2ϕ''=sin -1(2×760 / 2041.4) (λ=760nm) 白光第二级光谱的张角 ∆ϕ = 22ϕϕ'-''= 25°三.光的偏振一.填空题:1.线偏振光(或完全偏振光,或平面偏振光) 光(矢量)振动 偏振化(或透光轴)2.60°(或π / 3)9I 0 / 32 3.2 1/44.33°5.完全(线)偏振光 垂直于入射面 部分偏振光6.寻常非常 或:非常寻常二.计算题:1.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230°=3 I 0 / 4 透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2 I 2=I 1cos 260°=I 0 / 82.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为1211cos 21αI I =', 2222cos 21αI I ='按题意,21I I '=',于是 222121cos 21cos 21ααI I = 得 3/2cos /cos /221221==ααI I3.解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. (2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. I 1仍不变.4.解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知 tg i 1= n 1=1.33; tg i 2=n 2 / n 1=1.57 / 1.333,由此得 i 1=53.12°,i 2=48.69°.由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°5.解:设I 为自然光强;I 1、I 2分别表示转动前后透射光强.由马吕斯定律得8/330cos 2121I I I =︒=8/60cos 2122I I I =︒=故 3)8//()8/3(/21==I I I I。

波动光学习题

波动光学习题

解:1.判断零级条纹( 0)的移动方向,
相折射率大的n2方向移动
S
S1 n1, d
P
O
2. (n2 1)d (n1 1)d
(n2 n1)d N
S2 n2 , d
d 8106 m
3.间距不变
例3 白光垂直照射在空气中厚度为 0.40mm旳玻璃片 上,玻璃旳折射率为1.50,试问在可见光范围内 (
3
因为 2 级缺级,实际呈现条纹旳全部级数为
0, 1, 3
例9、要测定硅片上二氧化硅薄膜旳厚度,
将薄膜旳一端做成劈尖形,用波长为
0
5461 A
旳绿光从空气照射硅片,观察反射光第7条暗
纹在与平行膜旳交线M处,二氧化硅旳折射率
为n2=1.5, 硅旳折射率为n3=3.4
求:二氧化硅薄膜旳厚度 n1 1
向平行于入射面;
(D)是部分偏振光。
例15 自然光以60°旳入射角照射到某一透明介质表面 时,反射光为线偏振光,则由此可拟定:
(A)折射光为线偏振光,折射角为30° (B)折射光为线偏振光,折射角为60°
(C)
(C)折射光为部分偏振光,折射角为30°
(D)折射光为部分偏振光,折射角为60°
分析: 此时入射角为布儒斯特角,ib 60
因为反射光较弱,不可能某一
振动方向旳光被完全反射,所以折
600
射光仍为部分偏振光。
又因为在入射角为布儒斯特角旳情
况下,反射光与折射光相互垂直,所以 折射角为300。
例16 在双缝干涉试验中,用单色自然光,在屏 上形成干涉条纹.若在两缝后放一种偏振片,则 (A) 干涉条纹旳间距不变,但明纹旳亮度加强. (B) 干涉条纹旳间距不变,但明纹旳亮度减弱. (C) 干涉条纹旳间距变窄,且明纹旳亮度减弱. (D) 无干涉条纹.

波动光学(习题与答案)

波动光学(习题与答案)

第11章波动光学一.基本要求1. 解获得相干光的方法。

掌握光程的概念以及光程差与相位差的关系。

2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。

3. 了解惠更斯一一菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。

4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 理解自然光和偏振光及偏振光的获得方法和检验方法。

6. 理解马吕斯定律和布儒斯特定律。

二.内容提要1. 相干光及其获得方法能产生干涉的光称为相干光。

产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。

获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。

2. 光程、光程差与相位差的关系光波在某一介质中所经历的几何路程I与介质对该光波的折射率n的乘积nl称为光波的光学路程,简称光程。

若光波先后通过几种介质,其总光程为各分段光程之和。

若在界面反射时有半波损失,则反射光的光程应加上或减去一。

2来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差厶$与光程差3的关系为2其中入为光在真空中的波长。

3. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2n的整数倍,合成振幅最大一干涉加强;另一种是相位差为n的奇数倍,合成振动最弱或振幅为零一一称干涉减弱或相消。

其对应的光程差为k(k0,1,2 )干涉加强(2k 1)—2(k1,2,)干涉减弱杨氏双缝干涉的光程差还可写成x dD,式中d为两缝间距离,x为观察屏上纵轴坐标,D为缝屏间距。

杨氏双缝干涉明、暗条纹的中心位置x相邻明纹或暗纹中心距离4.平面膜的等倾干涉当单色平行光垂直入射薄膜上时,其反射光的光程差为en(反射光有半波损失)2en22 0(反射光无半波损失)5. 劈尖的等厚干涉 单色平行光垂直入射到劈尖膜上时, i=0,光程差为相邻明(或暗)纹的间距厶I 与其对应的劈尖厚度(高度)差其中B 为劈尖的夹角,其值很小。

波动光学基础练习

波动光学基础练习

第13章 波动光学基础§13.3 获得相干光的方法 杨氏双缝实验一.选择题和填空题1.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ ](A) 干涉条纹的宽度将发生改变. (B) 产生红光和蓝光的两套彩色干涉条纹. (C) 干涉条纹的亮度将发生改变. (D) 不产生干涉条纹. 2.在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹[ ](A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. 3.光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是______________________.4.如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.5.一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________mm .(设水的折射率为4/3)二.计算题1.在双缝干涉实验中,用波长λ=500 nm 的单色光垂直入射到双缝上,屏与双缝的距离D =200 cm ,测得中央明纹两侧的两条第十级明纹中心之间距离为Δx =2.20 cm ,求两缝之间的距离d .(1nm=10­9m)2.如图所示,在杨氏双缝干涉实验中,若3/1212λ=-=-r r P S P S ,求P 点的强度I 与干涉加强时最大强度I max 的比值.OSS 1S 2 e屏21SS SS =S 1S 2P r 1 r 2§13.4 光程与光程差一.选择题和填空题1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ](A) 1.5 λ. (B) 1.5 λ/ n . (C) 1.5 n λ. (D) 3 λ. 2.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ ](A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等. (D) 传播的路程不相等,走过的光程不相等.§13.5 薄膜干涉一.选择题和填空题1.两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃慢慢地向上平移,则干涉条纹[ ](A) 向棱边方向平移,条纹间隔变小.(B) 向棱边方向平移,条纹间隔变大 (C) 向棱边方向平移,条纹间隔不变.(D) 向远离棱边的方向平移,条纹间隔不变.(E) 向远离棱边的方向平移,条纹间隔变小.2.用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ](A)凸起,且高度为λ / 4. (B)凸起,且高度为λ / 2. (C)凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.3.在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为[ ] (A)全明.(B)全暗.(C)右半部明,左半部暗.(D)右半部暗,左半部明.4.把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环[ ](A) 向中心收缩,条纹间隔变小. (B) 向中心收缩,环心呈明暗交替变化.(C) 向外扩张,环心呈明暗交替变化. (D) 向外扩张,条纹间隔变大.5.在玻璃(折射率n 2=1.60)表面镀一层MgF 2 (折射率n 2=1.38)薄膜作为增透膜.为了使波长为500 nm(1nm=10­9m)的光从空气(n 1=1.00)正入射时尽可能少反射,MgF 2薄膜的最少厚度应是[ ](A) 78.1 nm (B) ) 90.6 nm (C) 125 nm (D) 181 nm (E) 250nm 6.波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.7.折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_________________________.平玻璃 工件空气劈尖P 1.52 1.75 1.52 图中数字为各处的折射 λ1.62 1.62 n 1 = 1.00 n 2 = 1.30 n 3 = 1.50 λ e8.波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ =__________________________.9.波长为λ的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为e ,折射率为n ,透明薄膜放在折射率为n 1的媒质中,n 1<n ,则上下两表面反射的两束反射光在相遇处的相位差∆φ=__________________.二.计算题1.用波长λ=500 nm 的单色光作牛顿环实验,测得第k 个暗环半径r k =4 mm , 第k +10个暗环半径r k +10 =6 mm ,求平凸透镜的凸面的曲率半径R .2.用波长λ=500 nm 的平行光垂直照射折射率n =1.33的劈形膜,观察反射光的等厚干涉条纹.从劈形膜的棱算起,第5条明纹中心对应的膜厚度是多少?3.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm . (1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目n 1n n 1e λ O A4.在折射率n=1.50的玻璃上,镀上n'=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600 nm的光波干涉相消,对λ2=700 nm的光波干涉相长.且在600 nm到700 nm之间没有别的波长是最大限度相消或相长的情形.求所镀介质膜的厚度.(1 nm = 10-9 m)5. 用白光垂直照射置于空气中的厚度为0.50 μm的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?(1 nm=10-9 m)§13.6 迈克耳孙干涉仪一.选择题和填空题1.在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是[ ] (A) λ / 2. (B) λ / (2n ).(C) λ / n . (D)()12-n λ.2. 在迈克耳孙干涉仪的一条光路中,插入一块折射率为n ,厚度为d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________. 3.已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离d 的过程中,干涉条纹将移动________________条.二.计算题1. 折射率n =1.40的薄膜放入迈克尔逊干涉仪的一臂,如果由此产生了7.0条条纹的移动,求膜厚。

第13章-波动光学基础练习试题.docx

第13章-波动光学基础练习试题.docx

第13章波动光学基础练习题班级 ____________ 学号 ____________ 姓名 _______________一、选择题1、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是()(A)使屏靠近双缝. (B)把两个缝的宽度稍微调窄. (0使两缝的间距变小. (D)改用波长较小的单色光源P11413. 3杨氏双缝实验2、如图13.1所示,在一个空长方形箱子的一边刻上一个双 /缝,当把一个钠光灯照亮的狭缝放在刻有双缝一边的箱子外Q I 边时,在箱子的对面壁上产生干涉条纹•如果把透明的油缓慢 0 y 地灌入这箱子时,条纹的间隔将会发生什么变化?答:( )(A)保持不变. (B)条纹间隔增加. (0条纹间隔有可能增加. (D)条纹间隔减小. P11213.2光的干涉3、 用白光(波长为4000A 〜7600A)垂直照射间距为a=0. 25mni 的双缝,距缝50cm 处放屏幕,则 观察到的第一级彩色条纹和第五级彩色条纹的宽度分别是 ()(A) 3. 6X10-4m , 3. 6X10—4m. (B) 7. 2X10-4m , 3.6 X 10—3m.(C) 7.2X10-4m , 7.2X10-4m. (D) 3.6X10-4m , 1.8X 10-4m.P115 13.3 (2)洛埃镜4、 如图13. 2所示,薄膜的折射率为入射介质的折射率为m,透射介质为门3,且山<口2<皿 入射光线在两介质交界面的反射光线分别为仃)和(2),则产生半 波损失的情况是( )(1)光产生半波损失,(2)光不产生半波损失. (1)光(2)光都产生半波损失. (1)光(2)光都不产生半波损失.(1)光不产生半波损失,(2)光产生半波损失.P11813.5薄膜干涉5、由两块玻璃片(m 二1.75)所形成的空气劈尖,其一端厚度为零,另一端厚度为0. 002cm, 现用波长为7000 A 的单色平行光,从入射角为30。

大学物理-波动光学习题(包括振动、波动、波的干涉、光的干涉、光的衍射、光的偏振)

大学物理-波动光学习题(包括振动、波动、波的干涉、光的干涉、光的衍射、光的偏振)

第四篇 光学第一章 振动一、选择题1. 一质点作简谐振动, 其运动速度与时间的关系曲线如下图。

假设质点的振动规律用余弦函数描述,那么其初相应为:[ ] (A)6π (B) 65π (C) 65π- (D) 6π- (E) 32π-2. 如下图,一质量为m 的滑块,两边分别与劲度系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。

滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。

现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。

取坐标如下图,那么其振动方程为:[ ] ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos(A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D) ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (E)3. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。

假设t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,那么质点第二次通过x = -2cm 处的时刻为:[ ](A) 1s ; (B)s 32; (C) s 34; (D) 2s 。

4. 一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。

与其对应的振动曲线是: [ ]5. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的:[ ](A)167; (B) 169; (C) 1611; (D) 1613; (E) 1615。

(A)-(B)(C)(D)-06. 图中所画的是两个简谐振动的振动曲线,假设 这两个简谐振动可叠加,那么合成的余弦振动 的初相为: [ ] π21(A) π(B) π23(C) 0(D)二、填空题1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,0=t 时的初位移为0.04m, s -1,那么振幅A = ,初相位 =2. 两个弹簧振子的的周期都是0.4s, 设开始时第一个振子从平衡位置向负方向运动,经过0.5s 后,第二个振子才从正方向的端点开始运动,那么这两振动的相位差为 。

波动光学练习题

波动光学练习题

波动光学练习题1. 介绍波动光学是物理学中的一个重要分支,研究光在传播过程中的波动性质。

它深入研究了光的传播和干涉、衍射、偏振、散射等现象,对于理解光的本质和应用具有重要意义。

本文将为大家介绍一些波动光学的练习题,以帮助读者更好地理解相关概念和原理。

2. 题目一:干涉现象一束波长为550nm的单色光以垂直入射的方式照射到一块玻璃薄膜上,该薄膜的折射率为1.5,厚度为500nm,折射率与入射角度无关。

求在此条件下,该薄膜表面反射光的相位差和干涉条纹的间距。

解析:根据菲涅尔公式,入射角为垂直入射的情况下,反射光的相位差为2δ,其中δ为反射光的相位改变:δ = 2πnt/λ其中n为玻璃的折射率,t为薄膜的厚度,λ为入射光的波长。

代入具体数值,可得:δ = 2π * 1.5 * 500 * 10^(-9) / 550 * 10^(-9) ≈ 5.455rad干涉条纹的间距d可以由以下公式计算得到:d = λ / (2sinθ)其中θ为反射光的角度。

由于入射角为垂直入射,故θ = 0,因此d无穷大,即干涉条纹间距无限宽。

3. 题目二:衍射光斑有一束波长为600nm的单色光通过一条宽度为0.1mm的狭缝照射到屏幕上,屏幕距离狭缝的距离为1m。

求衍射光斑的宽度和位置。

解析:根据夫琅禾费衍射公式,衍射光斑的宽度可以由以下公式计算得到:δy = (λL) / (2d)其中δy为衍射光斑的宽度,λ为入射光的波长,L为狭缝到屏幕的距离,d为狭缝的宽度。

代入具体数值,可得:δy = (600 * 10^(-9) * 1) / (2 * 0.1 * 10^(-3)) ≈ 3mm衍射光斑的位置可以由以下公式计算得到:y = (λL) / d其中y为光斑离中心的偏移距离。

代入具体数值,可得:y = (600 * 10^(-9) * 1) / (0.1 * 10^(-3)) ≈ 6mm所以,衍射光斑的宽度为3mm,位置偏移约为6mm。

波动光学习题(二)给学生

波动光学习题(二)给学生
2k

2 a sin (2k 1) 2
( k 1,2) 减弱 ( k 1,2) 加强
条纹位置
x f tan f sin
( k 1,2) 暗纹 ( k 1,2) 明纹
x
kf a f (2k 1) 2a
条纹间距 中央明纹宽度
f x xk 1 xk a
2 f 2x a
(三)光栅衍射
光栅衍射是每一狭缝衍射的同一方向 的子波间相互干涉的结果,因而光栅 衍射是单缝衍射与缝间干涉的总效果。 与单缝衍射相比,在黑暗的背景上显 现窄细明亮的谱线,且缝数越多,谱 线越细越亮。
b a d
k

o x

f
P
•光栅方程
解:由单缝衍射的明纹公式
3 2 3 ( 1 )取k 1, a sin 1 (2k 1) 1,a sin 2 (2k 1) 2 2 2 2 2 3 3 sin x / f x1 1 f / a , x2 2 f / a 2 2 3 x x2 x1 f / a 0.27cm 2
( a b) sin k ( k 0,1,2) 主极大明纹
•明纹位置 kf x a b
( k 0,1,2) 明纹
•缺级条件
I单
d k a k
-2
-1
0 I
1
单缝衍射 轮廓线
2
(k 1, 2, 3)
d -8 在 k k 处出现缺级。 a
•自然光 •线偏振光
•部分偏振光
2.马吕斯定律
I0
P1
I1

I2
I 2 I1 cos
2

光学练习题光的波动性质

光学练习题光的波动性质

光学练习题光的波动性质光学是研究光的产生、传播、特性以及与物质相互作用的学科。

而光的波动性质是光学中最基本、最重要的内容之一。

通过练习题的形式来巩固和深化对光的波动性质的理解,既能帮助读者检验自己的学习成果,又能提升解题能力。

下面将提出一些光学练习题,以帮助读者更好地理解和掌握光的波动性质。

一、选择题1. 光的传播速度与下列因素中哪个因素没有直接关系?A. 光的频率B. 光的波长C. 光在介质中的折射率D. 光的强度2. 当光由真空射入玻璃中时,下列说法中正确的是:A. 光的波长在玻璃中变短B. 光的频率在玻璃中变大C. 光的波速在玻璃中变大D. 光的传播方向不发生变化3. 下列哪个物理量与光的波动性质无关?A. 光的频率B. 光的波长C. 光的振幅D. 光的速度4. 光的波动性质可以解释下列现象中的哪一个?A. 光的反射B. 光的折射C. 光的干涉D. 光的衍射5. 当光通过一个狭缝时,发生衍射现象。

以下哪种说法是正确的?A. 光的波长越小,衍射效果越明显B. 光的频率越高,衍射效果越明显C. 光的波速越大,衍射效果越明显D. 光的传播方向与衍射效果无关二、填空题1. 光的波长是_____________。

2. 光通过两个平行介质时,发生折射现象。

根据折射定律,入射角、折射角和两个介质的折射率之间有关系:__________。

3. 光的波动性质可以解释狭缝干涉现象和 _____________现象。

4. 光的频率与光的波长之间的关系可以用__________来表示。

三、解答题1. 请简要解释光的波动性质是什么,以及光的波动性质对于光学的重要性。

2. 当光通过一个狭缝时,发生衍射现象。

请解释衍射现象的产生原因,并画出衍射的示意图。

3. 在实验室中,将光射入玻璃杯中,发现光在玻璃杯内发生了折射现象。

请解释光的折射是如何发生的,以及折射的原理是什么?四、应用题1. 一束波长为600 nm的光通过一个10 μm的狭缝时,产生明纹的条件是什么?2. 一个宽度为2 mm的狭缝,被波长为450 nm的光照射,观察到在屏幕上一对相邻干涉条纹的间距为1 cm。

波动光学基础训练

波动光学基础训练

一 选择题1. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ ]2. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹. (D) 无干涉条纹.[ ]3. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的(A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [ ]4. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变. [ ]5. 如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n =1.60的液体中,凸透镜可沿O O '移动,用波长λ=500nm(1nm=10-9m)的单色光垂直入射.从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是 (A) 156.3 nm (B) 148.8 nm (C) 78.1 nm (D) 74.4 nm (E) 0 [ ]6. 在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ]7. 波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ]8. 某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ......(B) 2 ,5 ,8 ,11......(C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ]9. 如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]10. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3.(C) 1 / 4. (D) 1 / 5. [ ]11.一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光 (A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光.[ ]二 填空题12. 图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A点处所对应的空气薄膜厚度为e =________.13. 惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的_________________,决定了P 点的合振动及光强.图b 图a14. 波长为λ的单色光垂直入射在缝宽a =4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带.15. 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为________________.16. 自然光以布儒斯特角i 0从第一种介质(折射率为n 1)入射到第二种介质(折射率为n 2)内,则tg i 0=______________.三 计算题17. 在牛顿环装置的平凸透镜和平玻璃板之间充以折射率n =1.33的液体(透镜和平玻璃板的折射率都大于1.33 ). 凸透镜曲率半径为300 cm ,用波长λ=650 nm (1 nm=10-9 m)的光垂直照射,求第10个暗环的半径(设凸透镜中心刚好与平板接触,中心暗斑不计入环数).18. 在Si 的平表面上氧化了一层厚度均匀的SiO 2薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的AB 段).现用波长为600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中AB 段共有8条暗纹,且B 处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为3.42,SiO 2折射率为1.50)19. 两块平板玻璃,一端接触,另一端用纸片隔开,形成空气劈形膜.用波长为λ的单色光垂直照射,观察透射光的干涉条纹.(1) 设A 点处空气薄膜厚度为e ,求发生干涉的两束透射光的光程差;(2) 在劈形膜顶点处,透射光的干涉条纹是明纹还是暗纹?20. 波长范围在450~650 nm 之间的复色平行光垂直照射在每厘米有5000条刻线的光栅上,屏幕放在透镜的焦面处,屏上第二级光谱各色光在屏上所占范围的宽度为35.1 cm .求透镜的焦距f . (1 nm=10-9 m)A ,膜。

大学物理--波动光学题库及其答案

大学物理--波动光学题库及其答案

一、选择题:(每题3分)1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ ]5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2>n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 13λn 3n 3[ ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它S S '们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [ ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ ]20、一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加. [ ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ . [ ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm ,则单缝宽度为(A) 2.5×10-5 m . (B) 1.0×10-5 m .(C) 1.0×10-6 m . (D) 2.5×10-7 . [ ]25、一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (1nm=10−9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm [ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小. [ ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 . (C) 单缝衍射. (D) 光栅衍射. [ ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲λ使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm . (C) 1.0×10-2 mm . (D) 1.0×10-3mm . [ ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2. [ ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ]二、填空题:(每题4分)41、若一双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介 质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ=_____________________________.42、波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ = __________________________.43、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.44、波长为λ的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为e ,折射率为n ,透明薄膜放在折射率为n 1的媒质中,n 1<n ,则上下两表面反射的两束反射光在相遇处的相 位差 ∆φ=__________________.45、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为r 1和r 2.设双缝和屏之间充满折射率为n 的媒质,则P 点处二相干光线的光程差为________________.46、在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=_______________________.47、如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.48、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49、一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放 在水中,干涉条纹的间距将为____________________mm .(设水的折射率为4/3)50、在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察n 11 λp d r 1 r 2 S 2 S 1 n屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________;若使单色光波长减小,则干涉条纹间距_________________.52、把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相邻明纹的间距是_______________________.53、在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央 零级明纹与第五级明之间的距离为x ,则入射光的波长为_________________.54、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝 的距离为D ,则屏上相邻明纹的间距为_______________ .55、用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm .(1 nm=10-9 m)56、在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材料的折射率n =______________________.(1 nm=10-9 m)57、用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________________.58、用波长为λ的单色光垂直照射如图所示的、折射率为n 2的劈形膜(n 1>n 2 ,n 3>n 2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e =___________________.59、用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.60、用波长为λ的单色光垂直照射如图示的劈形膜(n 1>n 2>n 3),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度e =___________________________.61、已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移 动距离d 的过程中,干涉条纹将移动________________条.n 1n 2n 3 n 1n 2n 3 n 1n 2n 362、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片.插入这块薄片使这条光路的光程改变了_______________.63、在迈克耳孙干涉仪的可动反射镜移动了距离d的过程中,若观察到干涉条纹移动了N条,则所用光波的波长λ =______________.64、波长为600 nm的单色平行光,垂直入射到缝宽为a=0.60 mm的单缝上,缝后有一焦距f'=60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm=10﹣9 m)65、He-Ne激光器发出λ=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=________.66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P点处将是______________级__________________纹.68、波长为λ的单色光垂直入射在缝宽a=4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带.69、惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的_________________,决定了P点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为_____________________m.72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央明条纹边缘对应的衍射角ϕ =______________________.73、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个.74、如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为______________.75、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =______________________________.76、在如图所示的单缝夫琅禾费衍射装置示意图中,用波长为λ的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则由单缝边缘的A 、B 两点分别到 达P 点的衍射光线光程差是__________.77、测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.78、某单色光垂直入射到一个每毫米有800 条刻线的光栅上,如果第一级谱线的 衍射角为30°,则入射光的波长应为_________________.79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为______________晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是 __________波.三、计算题:(每题10分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为1.2 mm 双缝与屏相距500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离D =1.2 m ,双缝间距d =0.45 mm ,若测得屏上干涉条纹相邻明条纹间距为1.5 mm ,求光源发出的单色光的波长λ.83、用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?aλλP84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?(1 nm=10-9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10-9 m)87、一平面衍射光栅宽2 cm ,共有8000条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=10­9m)88、如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上.(1) 求通过P 2后的光强I .(2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).89、三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.90、两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光, (1) 入射角i 是多大?(2) 图中玻璃上表面处折射角是多大? (3) 在图中玻璃板下表面处的反射光是否也是线偏振光?94、在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i .95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求:(1) 该液体的折射率.(2) 折射角.97、一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?98、一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33,求布儒斯特角.大学物理------波动光学参考答案一、选择题01-05 ACBCA 06-10 ABABB 11-15 BBDAB 16-20 BADBB21-25 DCBCC 26-30 ABD D D 31-35 BD B DB 36-40 BABAC水玻璃二、填空题41. e n n )(21- or e n n )(12-; 42. e 60.2; 43.3.0e +λ/2 or 3.0e -λ/2; 44. πλ)14(+e n or πλ)14(-e n; 45. )(12r r n -; 46. λπen n )(212-;47. λθπ/sin 2d ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大; 49. 75.0; 50. mm 45.0; 51. 变小, 变小; 52.dn D λ; 53. D dx 5; 54. N D ; 55. m μ2.1; 56. 40.1; 57. 249n λ; 58. 243n λ; 59. rad nl2λ; 60. 22n λ; 61. λ/2d ; 62. d n )1(2-; 63. N d /2; 64. mm 2.1,mm 6.3;65. mm 21060.7-⨯; 66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4;69. 子波, 子波相干叠加; 70. 相干叠加; 71. m 610-; 72. 030±; 73. 2; 74. π; 75. 030; 76. λ2; 77. l D /2λ; 78. nm 625;79. 传播速度, 单轴; 80. 波动, 横波。

波动光学习题(一)给学生(1)

波动光学习题(一)给学生(1)

L2 L1
11/5
光经过透镜不引起附加光程差。 光从光巯到光密—反射光有半波损失
3
(三)讨论几种干涉情况 1、双缝干涉(分波阵面法) r1
S
S1
d
S2
r2
x O
P
o
x k d d ( 2k 1)

D
I
11/5

明纹
暗纹
d x k d d x (2k 1) d 2
2 n2 d
增反膜

2
增透膜
6
3、等厚干涉
(a).劈尖 (等间距直条纹)
单色光垂直照射劈尖
条纹特点




d
n
2
b sin b
n

n
2 棱边明暗条纹取决于 n
2ndk 2 (2k 1) 2
11/5
反射光:
k
( k 1,2) 加强 ( k 0,1,2) 减弱
11/5
3 500nm; k 10 5 400nm
k 9
2 571.4nm 4 444.4nm
23
例:在Si的平表面上氧化了一层厚度均匀的SiO2薄膜,为了测 量薄膜厚度,将它的一部分磨成劈形(示意图中的AB段), 现用波长为600nm的平行光垂直照射,观察反射光形成的等厚 干涉条纹,在图中AB段共有8条暗纹,且B处恰好是一条暗纹, 求薄膜的厚度( Si的折射率为3.42,SiO2的折射率为1.50)
(A)向下平移,且间距不变 (B)向上平移,且间距不变 (C)不移动,但间距改变 (D)向上平移,且间距改变
11/5
答: (B)

波动光学练习题及答案

波动光学练习题及答案

波动光学练习题及答案一、选择题1、对于普通光源,下列说法正确的是:[ C ](A)普通光源同一点发出的光是相干光(B)两个独立的普通光源发出的光是相干光(C)利用普通光源可以获得相干光(D)普通光源发出的光频率相等2、杨氏双缝干涉实验是:[ A ](A) 分波阵面法双光束干涉(B) 分振幅法双光束干涉(C) 分波阵面法多光束干涉(D) 分振幅法多光束干涉3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ C ](A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等4、光在真空中和介质中传播时,正确的描述是: [ C ](A)波长不变,介质中的波速减小(B) 介质中的波长变短,波速不变(C) 频率不变,介质中的波速减小(D) 介质中的频率减小,波速不变5、用单色光做双缝干涉实验,下述说法中正确的是[ A C ](A)相邻干涉条纹之间的距离相等(B)中央明条纹最宽,两边明条纹宽度变窄(C)屏与缝之间的距离减小,则屏上条纹宽度变窄(D)在实验装置不变的情况下,红光的条纹间距小于蓝光的条纹间距6、用单色光垂直照射杨氏双缝时,下列说法正确的是:[ C ](A) 减小缝屏距离,干涉条纹间距不变(B) 减小双缝间距,干涉条纹间距变小(C) 减小入射光强度, 则条纹间距不变(D) 减小入射波长, 则条纹间距不变7、如图所示, 薄膜的折射率为n 2,入射介质的折射率为n 1,透射介质为n 3,且n 1<n 2<n 3,入射光线在两介质交界面的反射光线分别为(1)和(2),则产生半波损失的情况是:(A) (1)光产生半波损失, (2)光不产生半波损失 [ B ] (B) (1)光 (2)光都产生半波损失 (C) (1)光 (2)光都不产生半波损失(D) (1)光不产生半波损失,(2)光产生半波损失8、在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。

波动光学练习题

波动光学练习题

第11章波动光学练习题(总9页) -本页仅作为预览文档封面,使用时请删除本页-第十一章波动光学一、填空题(一)易(基础题)1、光学仪器的分辨率R= 。

2、若波长为625nm的单色光垂直入射到一个每毫米有800条刻线的光栅上时,则第一级谱线的衍射角为。

3、在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波面可划分为个半波带。

4、当光由光疏介质进入光密介质时,在交界面处的反射光与入射光有相位相反的现象,这种现象我们称之为。

5、干涉相长的条件是两列波的相位差为π的(填奇数或偶数)倍。

6、可见光要产生干涉现象必须满足的条件是:。

7、在麦克耳逊干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片,插入薄片使这条光路的光程改变了;8、波长为λ的单色光垂直照射在由两块平玻璃板构成的空气劈尖上,测得相邻明条纹间距为L,若将劈尖角增大至原来的2倍,则相邻条纹的间距变为。

9、单缝衍射中狭缝愈窄,条纹间距愈。

10、在单缝夫琅和费衍射实验中,第一级暗纹发生在衍射角300的方向λ=,则缝宽为。

上,所用单色光波长为500nm11、用波长为λ的单色光垂直照射置于空气中厚度为e的折射率为的透明薄膜,两束反射光的光程差为;12、光学仪器的分辨率与和有关,且越小,仪器的分辨率越高。

13、当一束自然光通过两片偏振化方向成30o的偏振片后,其出射光与入射光的光强之比为。

(二)中(一般综合题)1、若麦克耳逊干涉仪的可动反射镜M 移动的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为 mm 。

2、在杨氏双缝干涉实验中,如果相干光源1S 和2S 相距0.20d mm =,1S 、2S 到屏幕E 的垂直距离为 1.0D m =。

若第二级明纹距中心点O 的距离为,则单色光的波长为 ;相邻两明条纹之间的距离为 。

3、用单色光垂直照射空气劈形膜,当劈形膜的夹角减小时,干涉条纹_______劈棱方向移动,干涉条纹间距__________。

第十二章_波动光学(一)_光的干涉作业答案

第十二章_波动光学(一)_光的干涉作业答案

一. 选择题[C ]1. (基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1 λ1) (B )[4πn 1e /(n 2 λ1)] + π(C ) [4πn 2e /(n 1 λ1)]+ π (D ) 4πn 2e /(n 1 λ1)★提示:两束反射光在相遇点的光程差为222n e λδ=+,相位差为242n eππϕδπλλ∆==+,其中λ为真空中的波长,11n λλ=.[ B ]2.(基础训练6) 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).★提示:反射光干涉增强,则光程差应等于波长的整数倍,2222ne ne k λδδλ=+=+=;当k=1时,膜厚最小,min 22ne λλ+=,min 4e nλ∴=.[ B ]3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。

当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移★提示:一个牛顿环就代表一种厚度,当平凸透镜垂直向上缓慢平移而远离平面玻璃时,该厚度往中心移动,所以条纹也向中心收缩。

[ A ]4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。

若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 (A ) 间隔变小,并向棱边方向平移(B ) 间隔变大,并向远离棱边方向平移 (C ) 间隔不变,向棱边方向平移 (D ) 间隔变小,并向远离棱边方向平移★提示:若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则θ增大。

大学物理第十四章波动光学习题+答案省名师优质课赛课获奖课件市赛课一等奖课件

大学物理第十四章波动光学习题+答案省名师优质课赛课获奖课件市赛课一等奖课件
4n
(C)
2
(D)
2n
2ne k k 1, 2, 3
2
要使e最小,令k =1
e
4n
4-3 若把由平凸玻璃和平玻璃(折射率1.50)制成旳 牛顿环装置由空气搬入水中(折射率1.33),则干涉 条纹
(A) 中心暗环变成明环
✓(C) 间距变密
(B) 间距变疏 (D) 间距不变
4-4 在单缝衍射试验中,缝宽a = 0.2mm,透镜焦距
(1)求透过每块偏振片后旳光束强度; (2)若将原入射光束换为强度相同旳自然光,求 透过每块偏振片后旳光束强度。
解:(1)根据马吕斯定律,线偏振光透过第一 个
偏振片后光强度为
I1
I0
cos2
30
3 4
I0
再透过第二个偏振片后光强度为
I2
I1
cos2
60
3 16
I0
(2)自然光透过第一种偏振片后光强度为
; 该光栅旳光栅常
数(a+b) =

(a b) sin k1
(k 1)2 k1
(a b) sin (k 1)2
k 2 2 1 2
(a b) sin 21
tan x 0.1 sin
f
(a b) 201 1.2103cm
4-8 一束自然光经过两个偏振片,若两偏振片旳偏
振化方向间夹角由1转到2,且不考虑吸收,则转动
d
3、薄膜等厚干涉 劈尖干涉
垂直入射: 2ne
2
相邻明纹(暗纹)间旳厚度差: e
2n
C
相邻明纹(暗纹)中心间距离: l 2n
R
牛顿环
r 2Re
明环和暗环旳半径分别为:

大学物理学练习题-波动光学(干涉、衍射与偏振)

大学物理学练习题-波动光学(干涉、衍射与偏振)

专业班级____________ 学号 ____________姓名__________ 序号大学物理练习题波动光学一、选择题1. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹[ ]。

(A)向棱边方向平移,条纹间隔发生变化;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔发生变化;(D)向远离棱的方向平移,条纹间隔不变。

2. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃以棱边为轴缓慢向上旋转,则干涉条纹[ ] 。

(A)向棱边方向平移,条纹间隔变小;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔变大;(D)向远离棱的方向平移,条纹间隔不变。

3. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ ]。

(A) 干涉条纹的宽度将发生改变;(B) 产生红光和蓝光的两套彩色干涉条纹;(C) 干涉条纹的亮度将发生改变;(D) 不产生干涉条。

4. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则[ ]。

(A) 干涉条纹的间距变宽;(B) 干涉条纹的间距变窄;(C) 干涉条纹的间距不变,但原极小处的强度不再为零;(D) 不再发生干涉现象。

5. 把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D >>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是[ ](A) λD / (nd);(B) nλD/d;(C) λd / (nD);(D) λD / (2nd)。

6. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]。

(A) 中心暗斑变成亮斑;(B) 变疏;(C) 变密;(D) 间距不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13章 波动光学基础§13.3 获得相干光的方法 杨氏双缝实验一.选择题和填空题1.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ ](A) 干涉条纹的宽度将发生改变. (B) 产生红光和蓝光的两套彩色干涉条纹. (C) 干涉条纹的亮度将发生改变. (D) 不产生干涉条纹. 2.在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹[ ](A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. 3.光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是______________________.4.如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.5.一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________mm .(设水的折射率为4/3)二.计算题1.在双缝干涉实验中,用波长λ=500 nm 的单色光垂直入射到双缝上,屏与双缝的距离D =200 cm ,测得中央明纹两侧的两条第十级明纹中心之间距离为Δx =2.20 cm ,求两缝之间的距离d .(1nm=10­9m)2.如图所示,在杨氏双缝干涉实验中,若3/1212λ=-=-r r P S P S ,求P 点的强度I 与干涉加强时最大强度I max 的比值.OSS 1S 2 e屏21SS SS =S 1S 2P r 1 r 2§13.4 光程与光程差一.选择题和填空题1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ](A) 1.5 λ. (B) 1.5 λ/ n . (C) 1.5 n λ. (D) 3 λ. 2.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ ](A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等. (D) 传播的路程不相等,走过的光程不相等.§13.5 薄膜干涉一.选择题和填空题1.两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃慢慢地向上平移,则干涉条纹[ ](A) 向棱边方向平移,条纹间隔变小.(B) 向棱边方向平移,条纹间隔变大 (C) 向棱边方向平移,条纹间隔不变.(D) 向远离棱边的方向平移,条纹间隔不变.(E) 向远离棱边的方向平移,条纹间隔变小.2.用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ](A)凸起,且高度为λ / 4. (B)凸起,且高度为λ / 2. (C)凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.3.在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为[ ] (A)全明.(B)全暗.(C)右半部明,左半部暗.(D)右半部暗,左半部明.4.把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环[ ](A) 向中心收缩,条纹间隔变小. (B) 向中心收缩,环心呈明暗交替变化.(C) 向外扩张,环心呈明暗交替变化. (D) 向外扩张,条纹间隔变大.5.在玻璃(折射率n 2=1.60)表面镀一层MgF 2 (折射率n 2=1.38)薄膜作为增透膜.为了使波长为500 nm(1nm=10­9m)的光从空气(n 1=1.00)正入射时尽可能少反射,MgF 2薄膜的最少厚度应是[ ](A) 78.1 nm (B) ) 90.6 nm (C) 125 nm (D) 181 nm (E) 250nm 6.波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.7.折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_________________________.平玻璃 工件空气劈尖P 1.52 1.75 1.52 图中数字为各处的折射 λ1.62 1.62 n 1 = 1.00 n 2 = 1.30 n 3 = 1.50 λ e8.波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ =__________________________.9.波长为λ的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为e ,折射率为n ,透明薄膜放在折射率为n 1的媒质中,n 1<n ,则上下两表面反射的两束反射光在相遇处的相位差∆φ=__________________.二.计算题1.用波长λ=500 nm 的单色光作牛顿环实验,测得第k 个暗环半径r k =4 mm , 第k +10个暗环半径r k +10 =6 mm ,求平凸透镜的凸面的曲率半径R .2.用波长λ=500 nm 的平行光垂直照射折射率n =1.33的劈形膜,观察反射光的等厚干涉条纹.从劈形膜的棱算起,第5条明纹中心对应的膜厚度是多少?3.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm . (1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目n 1n n 1e λ O A4.在折射率n=1.50的玻璃上,镀上n'=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600 nm的光波干涉相消,对λ2=700 nm的光波干涉相长.且在600 nm到700 nm之间没有别的波长是最大限度相消或相长的情形.求所镀介质膜的厚度.(1 nm = 10-9 m)5. 用白光垂直照射置于空气中的厚度为0.50 μm的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?(1 nm=10-9 m)§13.6 迈克耳孙干涉仪一.选择题和填空题1.在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是[ ] (A) λ / 2. (B) λ / (2n ).(C) λ / n . (D)()12-n λ.2. 在迈克耳孙干涉仪的一条光路中,插入一块折射率为n ,厚度为d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________. 3.已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离d 的过程中,干涉条纹将移动________________条.二.计算题1. 折射率n =1.40的薄膜放入迈克尔逊干涉仪的一臂,如果由此产生了7.0条条纹的移动,求膜厚。

设入射光的波长为589nm§13.8 单缝的夫琅和费衍射 一.选择题和填空题1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为[ ](A) 2 个. (B) 4 个. (C) 6 个. (D) 8 个. 2.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹[ ](A) 间距变大.(B) 间距变小.(C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化.3.在如图所示的单缝的夫琅禾费衍射实验中,将单缝K沿垂直于光的入射方向(沿图中的x 方向)稍微平移,则[ ](A) 衍射条纹移动,条纹宽度不变. (B) 衍射条纹移动,条纹宽度变动.(C) 衍射条纹中心不动,条纹变宽. (D) 衍射条纹不动,条纹宽度不变. (E) 衍射条纹中心不动,条纹变窄.4.波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 θ=±π / 6,则缝宽的大小为[ ](A) λ / 2. (B) λ. (C) 2λ. (D) 3 λ . 5.惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的_________________,决定了P 点的合振动及光强.6.在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央明条纹边缘对应的衍射角ϕ =______________________.7.波长为λ=480.0 nm 的平行光垂直照射到宽度为a =0.40 mm 的单缝上,单缝后透镜的焦距为f =60 cm ,当单缝两边缘点A 、B 射向P 点的两条光线在P 点的相位差为π时,P 点离透镜焦点O 的距离等于_______________________.8.一会聚透镜,直径为 3 cm ,焦距为20 cm .照射光波长550 nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于_________rad .这时在透镜焦平面上两个衍射图样的中心间的距离不小于_________________ μm . (1 nm = 10-9 m)二.计算题1.用波长λ=632.8nm(1nm=10-9m) 的平行光垂直入射在单缝上,缝后用焦距f=40cm 的凸透镜把衍射光会聚于焦平面上.测得中央明条纹的宽度为 3.4mm ,单缝的宽度是多少?屏幕fL单缝 λEL 2L 1 x S K O Pθ fAB θ λ2.在某个单缝衍射实验中,光源发出的光含有两秏波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问 (1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合?§13.9 衍射光栅及光栅光谱一.选择题和填空题1.测量单色光的波长时,下列方法中哪一种方法最为准确?[ ](A) 双缝干涉. (B) 牛顿环 . (C) 单缝衍射. (D) 光栅衍射. 2.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?[ ] (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . 3.一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是[ ] (A) 紫光. (B) 绿光. (C) 黄光. (D) 红光.4.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 [ ] (A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ...... (D) 3 ,6 ,9 ,12...... 5.设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ](A) 变小. (B) 变大. (C) 不变. (D) 的改变无法确定. 6.一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.二.计算题1.波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21 范围内可能观察到的全部主极大的级次.2.一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm ,在光栅后放一焦距f=1 m的凸透镜,现以λ=600 nm (1 nm=10-9 m)的单色平行光垂直照射光栅,求:(1) 透光缝a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内,有几个光栅衍射主极大?§13.11 偏振片的起偏与检偏马吕斯定律一.选择题和填空题1.在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则[](A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为[](A) 1 / 2.(B) 1 / 3.(C) 1 / 4.(D) 1 / 5.3.要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过__________块理想偏振片.在此情况下,透射光强最大是原来光强的________________倍.4.一束光垂直入射在偏振片P上,以入射光线为轴转动P,观察通过P的光强的变化过程.若入射光是__________________光,则将看到光强不变;若入射光是__________________,则将看到明暗交替变化,有时出现全暗;若入射光是__________________,则将看到明暗交替变化,但不出现全暗.5.光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是__________波.二.计算题1.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?2. 两偏振片P 1、P 2叠在一起.强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.测得穿过P 1后的透射光强为入射光强的1 / 2;相继穿过P 1、P 2之后透射光强为入射光强的1 / 4.若忽略P 1、P 2对各自可透过的分量的反射和吸收,将它们看作理想的偏振片.试问:(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向间夹角 为多大? (2) P 1、P 2的偏振化方向之间的夹角a 为多大?§13.12 反射和折射产生的偏振 布儒斯特定律一.选择题和填空题1.自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为[ ](A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°. (C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°.2. 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光 [ ] (A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面.(D) 是部分偏振光.3.一束自然光以布儒斯特角入射到平板玻璃片上,就偏振状态来说则反射光为____________________,反射光E矢量的振动方向______________________,透射光为________________________.二.计算题1.一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求: (1) 该液体的折射率. (2) 折射角.i 0122. 如图安排的三种透明介质Ⅰ、Ⅱ、Ⅲ,其折射率分别为n 1=1.00 、n 2=1.43和n 3,Ⅰ、Ⅱ和Ⅱ、Ⅲ的界面相互平行.一束自然光由介质Ⅰ中入射,若在两个交界面上的反射光都是线偏振光,则(1) 入射角i 是多大? (2) 折射率n 3是多大?§13.13 双折射现象一.选择题和填空题1.一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它___________________________定律;另一束光线称为非常光,它____________________定律.2.在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的____________相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为______________晶体.ⅠⅡⅢn 3n 2n 1 i。

相关文档
最新文档