集体备课教案反比例函数

合集下载

初中化学反比例函数教案

初中化学反比例函数教案

初中化学反比例函数教案
一、教学目标
1. 理解反比例函数的概念;
2. 掌握反比例函数的基本性质;
3. 能够解决与反比例函数相关的实际问题。

二、教学重点和难点
重点:反比例函数的概念和基本性质;
难点:实际问题与反比例函数的联系和解决。

三、教学准备
1. 教材:《初中化学》第二册;
2. 教具:黑板、彩色粉笔、教学PPT、实物示例。

四、教学过程
1.引入:通过实物示例引出反比例函数的概念,并让学生思考反比例关系的特点;
2.讲解:介绍反比例函数的定义和基本性质,包括函数的表达式、图像特征和反比例关系;
3.实践:设计一些实际问题让学生通过解题练习掌握反比例函数的应用方法;
4.归纳:总结学习内容,强化理解和记忆;
5.拓展:通过引导学生自主探究拓展知识,进一步加深对反比例函数的理解;
6.检测:设计反比例函数的题目,检验学生的学习效果。

五、课堂小结
通过本节课的学习,我们理解了反比例函数的概念和基本性质,并能够运用反比例函数解
决实际问题。

希望同学们能够在课后加强练习,提高对反比例函数的理解和运用能力。

六、课后作业
1. 完成课堂练习题;
2. 思考并总结反比例函数的特点和应用;
3. 查阅资料,了解反比例函数在化学中的应用案例。

七、教学反思
本节课通过引入实物示例和实际问题,帮助学生理解反比例函数的概念和应用方法,同时也注重学生的自主探究和思考能力。

希望在以后的教学中能够更好地引导学生发现问题、解决问题,提高他们的学习兴趣和学习能力。

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。

函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。

同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。

本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。

因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。

在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。

这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。

反比例函数集体备课

反比例函数集体备课

九四初中 九 年级 数学 学科集体备课教
案及研讨
主备人教学内

26.1反比例函数课时1课时
参与成员
教学目标
理解并掌握反比例函数的意义,能从实际问题中抽象出反比例函数的关系式; 能够识别反比例函数,会根据已知条件用待定系数法求函数解析式; 培养学生的合作交流意识和探索精神,发展学生的抽象思维能力。

重难点
理解并掌握反比例函数的意义; 能从实际问题中抽象出反比例函数的关系式.
学法自主学习和引导探究
个性修

教学过程
1.复习旧知问题导引
1、举例说明什么是函数?
2、什么是一次函数?举例说明。

3、什么是正比例函数?举例说明。

4、下列函数中哪些是一次函数,哪些是正比例函数?
思考: ③⑥⑦⑧四个函数有何特点?它们是怎样的一类函
数?它们表示的变量关系是怎样的?有哪些性质?
2.自主学习合作探究
下列问题中,变量间具有函数关系吗?
(1)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上
海驶往北京,汽车行驶的平均速度v(单位:km∕h)随汽车
的全程运行时间t(h)的变化而变化;
(2)学校要建一个面积为100平方米的矩形花坛,花坛的
1
y =
2x
3
y =
3
2x
y = 2x2 y = 3x-1 y = 3x y =
x
1
y =
1
3x。

反比例函数教学设计(通用6篇)

反比例函数教学设计(通用6篇)

反比例函数教学设计(通用6篇)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y 都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I= .(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t= .它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-113y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y 的值.[生]设反比例函数的表达式为y= .(1)当x=-1时,y=2;∴k=-2.∴表达式为y=- .(2)当x=-2时,y=1.当x=- 时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=- ;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,- .Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y= ,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

反比例函数全章教案(集体备课)

反比例函数全章教案(集体备课)

第十七章反比例函数一教材分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要数学概念,是研究现实世界变化的重要内容和数学模型,学生曾经学过一次函数等内容,对函数有了初步认识,在此基础上讨论反比例函数及其图像和性质可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为了后继学习打下基础。

本单元通过对具体情境的分析,概括出发比例函数的解析式,明确反比例函数的概念,通过例子和学生列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义,结合实例经历列表、描点作图等活动,理解函数的三种表示方法,逐步明确研究函数的一般要求,反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维的空间,通过对反比例函数的图象全面观察和比较,发现函数自身的规律,进行语言表述,在相互交流中发展从函数中获取信息的能力,同时可以使学生更牢固地掌握由他们自己发现的反比例函数的性质。

本单元最后讨论了反比例函数的某些应用,包括在实际中的应用和在数学内部的应用,在这些数学活动中,注意用函数观点来处理问题和对问题的解决用函数作出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。

二:三维目标1﹒知识与技能会画出反比例函数的图象,,根据图象和解析式探索并理解反比例函数的主要性质,能依据已知条件确定反比例函数,领悟用函数观点解决某些实际问题的基本思路。

2.过程和方法经历在具体问题中探索数量关系和变化规律的过程,抽象出反比例函数的概念,并结合具体情境领会反比例函数作为一种数学模型的意义。

3.情感、态度、价值观逐步提高观察和归纳分析能力,体验数形结合思想,感悟其应用价值。

三;重难点和关键1.重点;掌握反比例函数的图象及其性质,依据已知条件确定反比例函数。

2难点;理解反比例函数性质。

3关键;充分利用观察比较发现反比例函数的自身规律,结合数形来突破难点。

四课时划分17 1 反比例函数 3课时17 2 实际问题和反比例函数 2课时复习与交流 1课时八年级数学下册教案备课人:授课时间:_____年_____月____日八年级数学下册教案 备课人: 17.1.2反比例函数的图象和性质(1)教学目标会用描点法画反比例函数的图象 结合图象分析并掌握反比例函数的性质体会函数的三种表示方法,领会数形结合的思想方法 重点难点 理解并掌握反比例函数的图象和性质 理解并掌握反比例函数的图象和性质 教学准备教师准备 是否需要课件学生准备教学过程设计 课堂引入 提出问题: 1.一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 3.反比例函数的图象是什么样呢? 例习题分析例2.见教材P48,用描点法画图,注意强调: (1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线 (4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴例1.(补充)已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m值,并指出在每个象限内y 随x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件略解:∵32)1(--=m xm y 是反比例函数 ∴m 2-3=-1,且m -1≠0又∵图象在第二、四象限 ∴m -1<0 解得2±=m 且m <1 则2-=m例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、留白: (供教师个性化设计)D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B随堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 七、课后练习1.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是3. 已知反比例函数y a xa =--()226,当x >0时,y 随x 的增大而增大,求函数关系式 答案:3.xy a 25,5--=-=授课时间:_____年_____月____日八年级数学下册教案备课人:课题:17.2 实际问题与反比例函数教学内容:17.2 实际问题与反比例函数第1课时教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点用反比例函数解决实际问题.构建反比例函数的数学模型.教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课一位司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6•小时到达目的地.(1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系?(2)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少?(二)合作交流,解读探究探究(1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=480t的反比例函数关系式.(2)若要在4小时内回到甲地(原路),则速度显然不能低于4804=120(千米/时).归纳常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.(三)应用迁移,巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100x.留白:(供教师个性化设计)(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.(四)总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.授课时间:_____年_____月____日八年级数学下册教案备课人:课题:17.2 实际问题与反比例函数教学内容:第2课时教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力.3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点重点:用反比例函数解决实际问题.难点:构建反比例函数的数学模型教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N 和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1. 5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?【分析】(1)由杠杆定律有FL=1200×0.5,即F=600l,当L=1.5时,F=6001.5=400.(2)由(1)及题意,当F=12×400=200时,L=600200=3(m),∴要加长3-1.5=1.5(m).思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2,也可写为P=2uR.(三)应用迁移,巩固提高例1在某一电路中,电源电压U保持不变,电流I(A)与电阻R(Ω)之间的函数关系如留白:(供教师个性化设计)图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R•的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.解:(1)设,根据题目条件知,当I=6时,R=6,所以,所以K=36,所以I与R的关系式为:I=36R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(•千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,•气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,•所以所求的解析式为P=96V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.备选例题1.(中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=UR.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏.2.(中考·扬州)已知力F对一个物体作的功是15焦,则力F•与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是()【答案】1.(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2.B(四)总结反思,拓展升华1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.附:板书设计教后反思:授课时间:_____年_____月____日。

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。

集体备课教案反比例函数

集体备课教案反比例函数

课堂教学设计课 题 反比例函数第一课时主备人教 学 目 标 1.经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2.理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式。

3.经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。

重 难 点 教学重点:理解和领会反比例函数的概念,确定反比例函数解析式。

教学难点:反比例函数解析式的确定。

教具 准备多媒体教学过程集体研讨【自主学习,基础过关】 一、自主学习: (一)复习巩固1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: .(二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示? (1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么?(1) (2) (3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:1、以上三个函数表达式有何共同特征?你能用一个一般形式来表示吗?2、对于函数关系式xy 1000,完成下表:教学过程集体研讨x1020 30 40 50 80 100 xy 1000=当x 越来越大时y 怎样变化?这说明x 与y 具备怎样的关系?3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:1、反比例函数xky =中自变量x 在分式的什么位置?自变量取值范围是什么? 2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。

反比例函数教学设计【优秀10篇】

反比例函数教学设计【优秀10篇】

反比例函数教学设计【优秀10篇】《反比例函数》教学设计篇一教学重点:理解和领会反比例函数的概念.教学难点:领悟反比例的概念.教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t (单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。

学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生:①能否积极主动地合作交流.②能否用语言说明两个变量间的关系.③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数.二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.师生行为学生先独立思考,在进行全班交流.教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念.分析及解答:(1);(2);(3)概念:如果两个变量x,y之间的关系可以表示成的`形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.活动3做一做:一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:①生能否理解反比例函数的意义,理解反比例函数的概念;②学生能否顺利抽象反比例函数的模型;③学生能否积极主动地合作、交流;活动4问题1:下列哪个等式中的y是x的反比例函数?问题2:已知y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值.师生行为:学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:①学生能否领会反比例函数的意义,理解反比例函数的概念;②学生能否积极主动地参与小组活动.分析及解答:1.只有xy=123是反比例函数.2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.解:(1)设,因为x=2时,y=6,所以有解得k=12三、巩固提高活动51.已知y是x的反比例函数,并且当x=3时,y=?8.(1)写出y与x之间的函数关系式.(2)求y=2时x的值.2.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.《反比例函数》教师教案篇二教学目标(一)教学知识点1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。

《反比例函数》反比例函数集体备课

《反比例函数》反比例函数集体备课
在某些特定区间上,反比 例函数可以分段定义,以 满足特定条件或限制。
复合函数
反比例函数可以与其他函 数复合,形成复合函数, 如 (f(g(x))),其中 (g(x)) 是其他函数。
参数化
反比例函数可以通过参数 化方式进行扩展,以引入 更多的变量和复杂性。
与其他函数的对比
与线性函数的对比
与三角函数的对比
与其他数学知识的结合
反比例函数可以与其他的数学知识结 合起来,例如代数、三角函数等,形 成更加复杂的问题。
03
反比例函数的变种与扩展
反比例函数的变种
01
02
03
指数反比例函数
形如 (f(x) = a * x^n / k^n) 的函数,其中 (a > 0, n > 0, k > 0) 且 (n neq 1)。
趋向于0。这些性质使得反比例函数在数学和实际问题中有广泛的应用。
02
反比例函数的应用
在实际问题中的应用
描述现实世界中的反比例关系
反比例函数可以用来描述现实世界中一些反比例关系的现象,例如速度与时间 的关系、密度与体积的关系等。
解决实际问题
通过建立反比例函数模型,可以解决一些实际问题,例如工程设计、经济分析 等。
反比例函数集体备课
• 反比例函数的定义与性质 • 反比例函数的应用 • 反比例函数的变种与扩展 • 反比例函数的解题技巧 • 反比例函数的教学策略与建议
01
反比例函数的定义与性质
反比例函数的定义
总结词
反比例函数是一种数学函数,其定义为y=k/x(k为常数且 k≠0)。
详细描述
反比例函数是一种特殊的函数,其表达式为y=k/x,其中x和y 是自变量和因变量,k是常数且k≠0。当x增大时,y减小,当x 减小时,y增大,因此图像分布在第二和第四象限。

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。

运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。

案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。

师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。

通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。

二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。

复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。

案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。

师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。

那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。

生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。

反比例函数教案设计(优秀篇)

反比例函数教案设计(优秀篇)

反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像特点;能够运用反比例函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质;学会用图像和解析式表示反比例函数。

3. 情感态度价值观:培养学生的数学思维能力,提高学生对数学的兴趣;培养学生合作交流的能力,提高学生的团队协作精神。

二、教学内容1. 反比例函数的概念:反比例函数的定义、形式。

2. 反比例函数的性质:比例系数、定义域、值域、图像特点。

3. 反比例函数的图像:绘制反比例函数的图像,观察图像的形状和特点。

4. 反比例函数的实际应用:解决实际问题,如面积、速度、浓度等问题。

三、教学重点与难点1. 重点:反比例函数的概念、性质和图像特点。

2. 难点:反比例函数的实际应用,特别是复杂问题的解决。

四、教学方法与手段1. 教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极参与。

2. 教学手段:利用多媒体课件、反比例函数图像软件等辅助教学,提高教学效果。

五、教学过程1. 导入新课:通过一个实际问题,引入反比例函数的概念。

2. 自主学习:学生自主学习反比例函数的定义和性质,理解反比例函数的概念。

3. 合作探究:学生分组讨论,探索反比例函数的图像特点,总结反比例函数的性质。

4. 课堂讲解:教师讲解反比例函数的性质和图像特点,引导学生理解反比例函数的概念。

5. 练习巩固:学生进行课堂练习,运用反比例函数解决实际问题。

6. 课堂小结:教师总结本节课的反比例函数知识点,强调重点和难点。

7. 课后作业:布置相关的课后作业,巩固反比例函数的知识。

六、教学评价1. 评价目标:检查学生对反比例函数的概念、性质和图像特点的理解程度。

2. 评价方法:课堂提问、课堂练习、课后作业、小组讨论等。

3. 评价内容:反比例函数的定义、性质、图像特点,以及实际应用能力的展示。

七、教学反馈1. 课堂反馈:通过课堂提问、练习等环节,及时了解学生的学习情况,对学生的疑惑进行解答。

反比例函数教案6篇

反比例函数教案6篇

反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。

反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。

(2)能解决确定反比例函数中常数志值的实际问题。

(3)会处理涉及不等关系的实际问题。

(4)继续培养学生的交流与合作能力。

重点:用反比例函数知识解决实际问题。

难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。

教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。

今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。

例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。

轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。

即每天至少要48吨。

这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。

实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。

九年级数学教师集体备课教案反比例函数的概念和解析式

九年级数学教师集体备课教案反比例函数的概念和解析式

九年级数学教师集体备课教案一、新课导入1.课题导入情景:如图,舞台灯光可以瞬间将黑夜变成如白昼般明亮,这样的效果是如何实现的?是通过改变电阻来控制电流的变化实现的.因为当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮.问题:电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时,你能用含有R的代数式表示I吗?那么I是R的函数吗?I是R的什么函数呢?二、分层学习1.自学指导(1)自学内容:教材P2.(2)自学时间:5分钟.(3)自学方法:探究、思考、归纳、总结.(4)自学参考提纲:①形如y=kx(k为常数,k≠0)的函数叫做反比例函数,自变量x的取值范围是x≠0.数.y=4xy x =3 y=2x - y=6x+1 y=x 2-1 y=21xxy=123 答案:反比例函数:y=2x-,比例系数为-2;xy=123,比例系数为123.正比例函数:y=4x ,比例系数为4;yx=3,比例系数为3. ③若函数y=63mx- 是反比例函数,则m 的取值范围是m≠2. 1.自学指导(1)自学内容:教材P3例1. (2)自学时间:5分钟.(3)自学方法:先学习例题的方法,然后模仿例题解答自学参考提纲中的问题.(4)自学参考提纲:①已知y 是x 的反比例函数,求其解析式时,一般先设y=kx,再由已知条件求出k 即可.②已知y 是x 的反比例函数,则y 与x 成反比例吗?如果y 与x 2成反比例,怎样设其解析式?y 与x 成反比例.可设y=2k x . ③已知y 与x2成反比例,并且当x=3时,y=4.a.写出y 关于x 的函数解析式;236y x ⎛=⎫ ⎪⎝⎭b.当x=1.5时,求y 的值;(y=16)c.当y=6时,求x 的值.(x=±6) 2.自学:学生可结合自学指导进行自学. 3.助学(1)师助生:①明了学情:关注学生对成反比例与反比例函数的理解. ②差异指导:指导学生辨析反比例函数与成反比例. (2)生助生:同桌之间、小组内交流、研讨. 4.强化:用待定系数法求反比例函数式的要点. 三、评价 1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).在学习了一次函数和二次函数后,反比例函数是初中学习阶段的第三种函数类型.在反比例函数教学过程中,应注意将反比例函数和正比例函数进行类比,帮助学生区分其异同,真正理解反比例函数的概念.另外要辨析反比例函数与成反比例的区别,引导学生通过交流研讨来弄清其区别.本节的教学重点是理解反比例函数的概念和求解函数解析式,教学过程中应强调自变量的取值范围以及反比例函数与实际问题的联系.教师最好能够多举实例,联系生活实际,将抽象问题具体化,从而帮助学生理解新知.一、基础巩固(70分)1.(10分)下列等式中,y 是x 的反比例函数的是(B )A.y=21x B.xy=3 C.y=5x+6 D.x=1y2.(10分) 矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为4y x =3.(10分) 面积为30 cm2的三角形的底y (cm )与底边上的高x (cm )的函数关系式是60y x = 4.(10分) 指出下列函数中哪些是反比例函数,并指出k 的值.(1)y=2x(2)y=53x -(3)y=x2 (4)y=2x+1。

《反比例函数》反比例函数集体备课

《反比例函数》反比例函数集体备课
(3)x的取值范围有何不同?常数k的符号改变时 对两种函数图象所处象限的影响有何异同?
对于这些问题,不要急于给出答案,应该注意鼓 励学生积极探究,在这样的氛围中,学生思维和 兴趣会被激发出来,这样对所学的内容掌握的更 牢固。
《反比例函数》反比例函数集体备课
3、把突出函数中蕴涵的重要数学思想作为本 章的主要线索
《反比例函数》集体备课
《反比例函数》反比例函数集体备课
课标要求 内容分析 课时安排 建议
《反比例函数》反比例函数集体备课
一、课标要求
①结合具体情境体会反比例函数的意义,能根 据已知条件确定反比例函数表达式。
②能画出反比例函数的图象,根据图象和表达 式y= (k k≠ 0)探索并理解其性质(k>0或 k<0时,x 图象的变化)。 ③能用反比例函数解决某些实际问题。
变化;
(3)正方形面积y与随边长x的变化而变化;
(4)游泳池的容积为5000m3,向池内注水,注满水所需时间
t(h)随注水速度v(m3/h)的变化而变化;
(5)商店有100支铅笔,剩下的铅笔y(支)随卖出的铅笔x
(支)的变化而变化;
(6)实数m与n的积为-200,m随n的变化而变化;
(7)某种汽油4.5元/L,加油x(L),应付费y(元)随x的
《反比例函数》反比例函数集体备课
教材中给出的函数定义突出了数学中的变化与对 应的数学思想。
通过对图象的研究和分析可以确定函数本身的性 质体现了数形结合的数学思想方法,结合本章内 容可以对这种思想方法顺其自然地理解,并逐步 加以灵活运用,发挥从数和形两个方面共同分析 解决问题的优势。教学过程中,可以安排较多的 通过图象分析函数关系式、通过函数关系式分析 图象的题目,从而体现了数形结合思想 ,也体现 了转化的数学思想。深刻领会函数关系式和函数 图象之间的联系,突出两者间的转化对分析解决 问题的特殊作用。

关于反比例函数数学教案5篇

关于反比例函数数学教案5篇

关于反比例函数数学教案5篇关于反比例函数数学教案5篇数学教学鼓励学生进行创新思维和批判性思考。

学生应该有独立思考能力,能够对于数学问题进行分析、评价和解决方案的提出。

下面给大家分享反比例函数数学教案,欢迎阅读!反比例函数数学教案篇1教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

教学目的:1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程:一、复习1.让学生说说什么是成正比例的量:2.用投影片出示下面的题:(1)下面各题中哪两种量成正比例为什么①笔记本单价一定,数量和总价:⑨汽车行驶速度一定.行驶的路程和时间。

②工作效率一定.’工作时间和工作总量。

①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。

在什么条件下,其中两种量成正比例二、导入新课教师:如果加工零件总数一定。

每小时加工数和加工时间会成什么样的变化.关系怎样就是我们这节课要学习的内容。

三、新课1.教学例4。

出示例4;丰机械厂加工一批机器零件。

每小时加工的数量和所需的加工时间如下表。

让学生观察这个表,然后每四人一组讨论下面的问题:(1)表中有哪两种量(2)所需的加工时间怎样随着每小时加工的个数变化(3)每两个相对应的数的乘积各是多少学生分组讨论后集中发言。

然后每个小组选代表回答上面的问题。

随着学生的回答,教师板书如下:每小时加工数加工时间10 × 60 =600。

30 × 20 =600。

40 × 15 =600,“这个积600。

实际上是什么”在“加工时间”后面板书:零件总数“积一定,就说明零件总数怎样”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢”学生回答后,教师小结:通过刚才的观察分析.我门可以看出。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:(1)理解反比例函数的定义;(2)掌握反比例函数的性质;(3)能够运用反比例函数解决实际问题。

2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用图形演示反比例函数的特点;(3)运用数学建模的方法,解决生活中的反比例函数问题。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力;(3)培养学生的团队协作和交流能力。

二、教学重点与难点1. 教学重点:(1)反比例函数的定义;(2)反比例函数的性质;(3)反比例函数在实际问题中的应用。

2. 教学难点:(1)反比例函数图形的特点;(2)解决实际问题时,如何建立反比例函数模型。

三、教学过程1. 导入新课:(1)引导学生回顾正比例函数的知识;(2)通过提问,激发学生对反比例函数的好奇心。

2. 自主学习:(1)让学生阅读教材,理解反比例函数的定义;(2)学生相互讨论,总结反比例函数的性质。

3. 课堂讲解:(1)利用图形演示反比例函数的特点;(2)讲解反比例函数在实际问题中的应用。

4. 课堂练习:(1)布置一些反比例函数的题目,让学生独立完成;(2)挑选学生回答,总结解题思路。

5. 课后作业:(1)巩固反比例函数的知识;(2)培养学生运用反比例函数解决实际问题的能力。

四、教学评价1. 课堂讲解:评价学生对反比例函数的理解程度;2. 课堂练习:评价学生运用反比例函数解决问题的能力;3. 课后作业:评价学生对反比例函数知识的掌握情况。

五、教学资源1. 教材:提供反比例函数的相关知识;2. 图形演示软件:帮助学生直观地理解反比例函数的特点;3. 实际问题案例:培养学生运用反比例函数解决实际问题的能力。

六、教学策略1. 实例引导:通过展示实际生活中的反比例关系,如人口增长、radioactive decay等,让学生直观地感受反比例函数的应用。

反比例教研活动(3篇)

反比例教研活动(3篇)

第1篇一、活动背景在数学教学中,反比例函数是学生难以掌握的内容之一。

为了提高教师对反比例函数教学的理解和把握,提升课堂教学效果,我校数学教研组于2023年3月15日开展了以“深入探讨反比例函数教学策略”为主题的教研活动。

本次活动旨在通过集体备课、课堂教学观摩、教学反思和专题讲座等形式,提高教师对反比例函数教学的认知水平,促进教师专业成长。

二、活动内容1. 集体备课活动开始,教研组长组织全体数学教师对反比例函数的教学内容进行了深入探讨。

教师们共同分析了教材,明确了教学目标,并针对教学重难点进行了详细讨论。

在此基础上,制定了详细的教学方案,包括教学设计、课堂活动、作业布置等。

2. 课堂教学观摩为了更好地展示反比例函数的教学策略,教研组安排了两节公开课。

第一节由青年教师张老师主讲,以“认识反比例函数”为主题,通过实例引入,引导学生探究反比例函数的特点。

张老师采用多媒体教学手段,使课堂生动有趣,学生积极参与,取得了良好的教学效果。

第二节由经验丰富的老教师李老师主讲,以“反比例函数的应用”为主题,通过实际问题的解决,让学生体会反比例函数在生活中的应用价值。

李老师注重培养学生的逻辑思维能力和解决问题的能力,引导学生通过小组合作、探究式学习等方式,深入理解反比例函数。

3. 教学反思课后,全体教师对两节课进行了深入反思。

青年教师张老师表示,通过本次教研活动,自己对反比例函数的教学有了更深入的认识,在今后的教学中,将更加注重学生的主体地位,激发学生的学习兴趣。

老教师李老师则认为,反比例函数的教学要注重理论与实践相结合,让学生在实际问题中体会数学的价值。

4. 专题讲座最后,教研组长结合自身教学经验,为全体教师做了一场题为“反比例函数教学策略”的专题讲座。

讲座中,教研组长从以下几个方面进行了阐述:(1)反比例函数的概念和性质(2)反比例函数的教学方法(3)反比例函数的应用(4)反比例函数教学中的常见问题及对策讲座内容丰富,实用性强,为教师们提供了宝贵的教学经验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂教学设计
课 题 反比例函数第一课时
主备人
教 学 目 标 1.经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2.理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式。

3.经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。

重 难 点 教学重点:理解和领会反比例函数的概念,确定反比例函数解析式。

教学难点:反比例函数解析式的确定。

教具 准备
多媒体
教学过程
集体研讨
【自主学习,基础过关】 一、自主学习: (一)复习巩固
1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y ,则称x 为 ,y 叫x 的 .
2.一次函数的解析式是: ;当 时,称为正比例函数.
3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: .
(二)自主探究
提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示? (1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;
(2)某住宅小区要种植一个面积为1000m 2
的矩形草坪,草坪的长为y 随宽x 的变化;
(3)已知北京市的总面积为1.68×104
平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.
1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么?(1) (2) (3)
2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:
1、以上三个函数表达式有何共同特征?你能用一个一般形式来表示吗?
2、对于函数关系式x
y 1000
,完成下表:
教学过程
集体研讨
x
10
20 30 40 50 80 100 x
y 1000=
当x 越来越大时y 怎样变化?这说明x 与y 具备怎样的关系?
3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:
1、反比例函数x
k
y =
中自变量x 在分式的什么位置?自变量取值范围是什么? 2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。

(四)自我尝试:
例1下列哪些式子表示y 是关于x 的反比例函数?每一个反比例函数中相应的
k 值是多少?
⑴ x y 4=;⑵x y 5-
=;⑶16+=x y ;⑷3=x y ;⑸123=xy ⑹x
y 32-=;⑺x y -=
例2:已知y 是x 的反比例函数,当2=x 时,6=y ⑴写出y 与x 的函数关系式。

⑵求当4=x 时,y 的值 【总结提炼,知识升华】 1、本节课学习的知识点
2、本节课学习的方法和数学思想 【课后训练,巩固拓展】
已知y 与2
x 成反比例,当x =3时,y =4,
(1)写出y 和x 之间的函数解析式.(2)求x=2时y 的值。

教学 反思
反比例函数导学案
学习目标:1.理解并掌握反比例函数的概念
2.能判断一个给定函数是否为反比例函数,并会用待定系数法求函数解析式
学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式; 学习难点:理解反比例函数的概念及建模; 学习过程 知识链接:
1、形如 的函数叫做正比例函数,
2、形如 的函数叫做一次函数。

当b=0时称为 函数。

一、自主学习:
1、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.反比例函数的基本形式还能表示为
2、下列等式中,哪些是反比例函数? (填序号) (1)3x y =
(2)x y 2-= (3)xy =21 (4)25
+=
x y
(5)x y 23-
= (6)31
+=x y
(7)y =x -4
3、苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为
4、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为
5、函数2
1
+-
=x y 中自变量x 的取值范围是 6、y 是x 的反比例函数,下表给出了x 与y 的一些值:
(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。

二、探究、合作、交流:(根据掌握的知识,认真填写下列内容)
1、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 ,当x =-3时,y =
2、已知y-2与x 成反比例,当x=3时,y=1,则y 与x 间的函数关系式是 。

x -2
-1 21-
2
1 1 3 y
3
2
2
-1
3、当n 何值时,y =(n 2+2n )2
1
n
n x +-是反比例函数?。

4、已知y 与x 成反比例,且当x=2时,y=6,求y 与x 的函数关系式.
5、已知y 与x-1成反比例函数,当x=2时y=1,则这个函数的表达式是( )
A 、11-=
x y B 、1-=x k y C 、11+=x y D 、11-=x
y 6、已知y 与x 2成反比例,并且当x=3时y=4.
(1)写出y 与x 之间的函数关系式。

(2)求x=1.5时y 的值。

7、已知y=y 1+y 2,y 1与X 成正比例,y 2与x 成反比例,且当x=1时,y=0;当x =4时,y =9.求y 与x 的函数关系式。

8.若函数2
8)3(m x m y -+=是反比例函数,求m 。

三、当堂训练
1、写出下列函数关系式,并指出它们各是什么函数
(1)平行四边形面积是24cm 2,它的一边长xm 和这边上的高hcm 之间的关系是 .
(2)小明用10元钱与买同一种菜,买这种菜的数量mkg 与单价n 元/kg•之间的关系是 (3)老李家一块地收粮食1 000kg ,这块地的亩数S 与亩产量tkg/亩之间的关系是 2、若y 是x-1的反比例函数,则x 的取值范围是
3、若函数2
8)3(m x m y -+=是反比例函数,则m 的取值是 4、已知y 与x 2成反比例,并且当x=3时y=4.
(1)写出y 与x 之间的函数关系式。

(2)求x=1.5时y 的值。

相关文档
最新文档