半导体材料的历史现状及研究进展(精)
半导体材料发展的历程

半导体材料发展的历程一、早期阶段半导体材料的发展始于20世纪初。
早期的半导体材料主要是以硒和碲等元素为基础的化合物。
这些化合物在电导率方面介于导体和绝缘体之间,因此被称为半导体。
然而,由于制备方法的限制以及材料本身的不稳定性,早期的半导体材料在实际应用中并不常见。
二、晶体管的发明20世纪40年代,晶体管的发明引领了半导体材料的发展。
晶体管是一种利用半导体材料的特性进行信号放大和开关控制的设备。
最早的晶体管是用硅和锗等材料制成的。
这些材料具有稳定的晶格结构和较高的电导率,使得晶体管能够稳定地工作在高频率下,为电子技术的发展提供了基础。
三、集成电路的诞生20世纪60年代,集成电路的诞生推动了半导体材料的进一步发展。
集成电路是将多个晶体管和其他电子元件集成在一块半导体芯片上的技术。
为了实现集成电路的制造,半导体材料的质量和稳定性提出了更高的要求。
这促使科学家不断改进制备方法,探索新的半导体材料,如硅和化合物半导体。
四、化合物半导体的崛起化合物半导体在半导体材料发展中扮演着重要的角色。
与硅相比,化合物半导体具有更高的电子迁移率,更适合高频和高速应用。
此外,化合物半导体还具有较宽的能带隙,使其在光电器件领域具有广阔的应用前景。
例如,氮化镓材料被广泛应用于发光二极管和激光器等光电器件中,其高效的发光性能为光通信和显示技术的发展做出了重要贡献。
五、新型材料的涌现近年来,随着科技的不断进步,一些新型半导体材料开始涌现。
例如,石墨烯作为一种二维材料,具有优异的电子输运性能和独特的光学特性,被认为是下一代半导体材料的候选者之一。
另外,钙钛矿材料由于其优异的光电性能,也引起了广泛的关注和研究。
这些新型材料的涌现为半导体技术的进一步发展提供了新的机遇。
六、应用领域的拓展随着半导体材料的不断发展,其应用领域也得到了广泛的拓展。
除了传统的电子器件领域,如计算机、手机和电视等,半导体材料还在能源、医疗和环境等领域发挥着重要作用。
半导体行业现状调研报告

半导体行业现状调研报告注:本报告基于大量文献资料和市场数据,涉及的内容较为广泛,部分内容可能存在某些片面或不准确之处,仅供参考。
1. 行业概况半导体(Semiconductor)通俗地讲,就是指介于导体和绝缘体之间的一类材料。
在电子器件中,半导体的作用相当于开关。
例如,晶体管的控制就依赖于半导体材料的导电性变化。
半导体的发明源于20世纪20年代,随着半导体领域的不断拓展和技术的不断进步,现如今,半导体已经成为信息社会的“基石”,应用于各种通信、计算、控制、存储等领域的电子器件和器材中。
在半导体行业内部,可以根据产品应用领域,将其划分为计算机器件、通讯器件、嵌入式系统、消费电子等四个主要应用领域。
其中,计算机器件占据了半导体市场的最大份额。
2. 行业发展历程自20世纪中叶开始,半导体行业依靠着一系列技术创新和市场推动,发展迅速。
而在中国这个全球最大的电子产品制造国家,“十三五”规划也将半导体制造列为国家支持的重点行业。
以下是半导体行业发展的几个阶段:1958年:杰克·基尔比在美国德州仪器公司发明了第一颗集成电路。
1960年:独立的半导体企业诞生,半导体产业走向成熟。
1980年代:应用大规模集成电路技术的个人电脑和智能手机等市场的兴起激励了半导体业的快速增长。
1990年代:半导体行业迎来第二次浪潮,VLSI技术的发展及其应用推动了器件集成度的迅速提高,诸如存储芯片、ASIC芯片等应用获得了广泛的市场。
21世纪:半导体行业继续快速发展,随着物联网、人工智能、云计算等技术的迅猛发展,半导体行业的市场空间和前景依然广阔。
3. 行业现状截至2019年底,全球半导体业总市值达到4696亿美元,其中美国、韩国、日本等国家成为全球半导体市场的主要竞争者。
而在中国,半导体行业作为新兴产业,国内半导体企业的市值和发展速度也在逐年攀升。
上市企业方面,三星电子、英特尔、台积电等公司是半导体行业内市值最大的企业,其紧随其后的还有博通、英伟达等公司。
半导体材料的发展及应用

半导体材料的发展及应用随着科技的不断发展,半导体材料成为现代工业和电子领域中最重要的材料之一、半导体材料的发展经历了多个里程碑,从最初的硅晶体到现在的先进半导体材料,对于电子器件的性能和功能起到了至关重要的作用。
本文将探讨半导体材料的发展历程以及其在各个领域的应用。
半导体材料最早可以追溯到二十世纪初期,最初被用于收音机和无线电设备中。
然而,随着对电子器件的需求不断增加,人们开始研究能够控制电流和电压的材料。
1926年,物理学家朱利叶斯·埃德加·利尔德尔发现了由砷化镓和硒化铟组成的化合物,这些化合物表现出半导体特性。
这项发现标志着半导体材料的诞生。
二十世纪四五十年代,半导体材料的研究迈入了一个新的阶段。
1947年,贝尔实验室的威廉·肖克利和沃尔特·布拉滕等科学家首先制造出晶体管。
晶体管的发明开创了继电器和真空管时代的新纪元。
晶体管具有小型化、耐用性和低功耗等优点,很快取代了传统的继电器和真空管技术,为电子器件的发展带来了革命。
这一发明被誉为“电子革命的基石”。
从1950年代到1980年代,半导体材料的发展经历了空前的进展。
主要的突破之一是杰克·基尔比和罗伯特·诺伊斯等科学家在1954年发明了第一个硅太阳能电池。
硅太阳能电池利用光的能量产生电流,并且是第一个实用化的可再生能源技术之一、此外,半导体材料的纯化和制备技术也得到了极大的改进,如单晶生长技术和分子束外延等。
这些突破使得半导体材料的性能不断提高,为电子器件的制造提供了更好的条件。
随着半导体材料的不断发展,它在各个领域的应用也日益广泛。
最显著的应用之一是集成电路(Integrated Circuit, IC)。
集成电路是将无数个电子元件,如晶体管和电容器,集成在一个半导体芯片上。
这种技术使得电子器件变得更小巧,更高效,并且可以容纳更多的功能。
随着集成电路的不断演进,智能手机、电脑和其他现代电子设备的性能得到了极大的提升。
几种新型半导体发光材料的研究进展(精)

几种新型半导体发光材料的研究进展摘要:概述了三种新型半导体发光材料氮化镓、碳化硅、氧化锌各自的特性,评述了它们在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。
关键词:LED发光二极管;发光材料;ZnO, SiC,GaN1引言在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。
它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。
半导体照明是一种基于半导体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。
固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。
发展固态照明产业可以大规模节约能源,对有效地保护环境,有利于实现我国的可持续发展具有重大的战略意义。
从长远来看,新材料的开发是重中之重。
发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。
本文综述了近几年来对ZnQ SiC, GaN三种新型半导体发光材料的研究进展。
2几种新型半导体发光材料的特征及发展现状在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅(包括锗)材料为主元素半导体占统治地位•但随着信息时代的来临,以砷化镓(GaAS 为代表的第二代化合物半导体材料显示了其巨大的优越性•而以氮化物(包括SiC、ZnO等宽禁带半导体)为第三代半导体材料,由于其优越的发光特征正成为最重要的半导体材料之一.以下对几种很有发展前景的新型发光材料做简要介绍•2.1氮化傢(GaN)2.1.1氮化镓的一般特征GaN是一种宽禁带半导体(Eg=3.4 ev),自由激子束缚能为25mev,具有宽的直接带隙,川族氮化物半导体InN、GaN和A lN的能带都是直接跃迁型,在性质上相互接近,它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围•实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙•GaN!优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaNM有较高的电离度,在川-V的化合物中是最高的(0.5或0.43).在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS勺一半.GaN是极稳定的化合物,又是坚硬的高熔点材:1GaN室温禁带宽度为3. 4 eV,是优良的短波长光电子材料,其发光特性一般是在低温(2 K、12 K、15 K或77 K)下获得的“,文献较早地报道了低温下纤锌矿结构GaN 的荧光(PL)谱,文献⑹报道了闪锌矿结构GaN的阴极荧光光谱。
半导体研究报告

半导体研究报告
半导体研究报告
半导体是一种能够在一定条件下,既能够导电又能够断电的材料。
它的独特性质使其在电子设备和电力系统中具有广泛的应用,如晶体管、太阳能电池和LED等。
本研究报告主要关注半导体的特性、发展历程和应用领域。
首先,我们介绍了半导体的基本概念和特性。
半导体的导电性主要取决于其电子能带结构,包括价带和导带。
当电子的能量处于导带中时,它们能够自由移动,并使物质具有导电性。
相反,当电子的能量处于价带中时,它们被束缚在原子周围,从而使物质具有断电性。
此外,半导体还具有芯、型和扩散等特性,这些特性对其电子行为和导电性也有重要影响。
其次,我们回顾了半导体的发展历程。
半导体材料最早在19
世纪末发现,但直到20世纪中叶才得到广泛应用。
在20世纪40年代,晶体管的发明使得半导体技术有了长足发展。
从此
以后,半导体领域取得了许多突破,如集成电路的问世和微电子学的兴起,推动了信息技术的飞速发展。
最后,我们列举了半导体在不同领域的应用。
半导体在电子设备制造中广泛应用,如计算机、手机和电视等。
此外,半导体还在能源产业中发挥重要作用,如太阳能电池和LED技术。
此外,半导体的应用还涉及到通信、医疗、军事等领域。
总结起来,半导体作为一种具有特殊导电性质的材料,对现代
科技的发展起到了重要推动作用。
随着技术的不断进步,半导体的应用范围将进一步扩大,为人类的生活和工作带来更多便利和创新。
半导体材料的新进展及应用前景

半导体材料的新进展及应用前景近年来,随着科技不断发展,半导体材料作为一种具有很高科技含量的材料,在各个领域中的应用也越来越广泛。
在这个背景下,半导体材料的研究和开发也不断得到了推动和进展,促使半导体材料在未来的应用前景越来越广阔。
一、新型半导体材料的研究进展1、碳化硅(SiC)碳化硅是一种具有广泛应用前景的材料,它不仅具有高温性能、耐化学腐蚀、强度高等优点,而且在高速电子器件和光电器件、半导体照明、太阳能电池等领域具有重要应用前景。
当前,世界各地先后建立了大量碳化硅材料的研究中心,不断推动碳化硅的研究进程。
2、氮化硅(SiN)氮化硅是一种优良的透明导电材料,在离子注入、光学多层膜、太阳能电池、光电子器件等领域具有广泛的应用前景。
氮化硅材料具有良好的晶体结构和稳定性,可以提高器件的效率和可靠性,广泛应用于机械零件、射频电子设备、光电器件等各个领域。
3、氧化铈(CeO2)氧化铈是一种广泛应用于半导体、光电、催化、能源等领域的材料,它具有高氧化还原性、稳定性等特点。
在能量转换方面,氧化铈可以用于固态电解质的开发以及太阳能电池、燃料电池、电液化器等领域。
此外,氧化铈也在光电子领域具有广泛应用,如氧化铈薄膜可以用于透明导电材料、光学多层膜等方面。
二、新型半导体材料的应用前景1、半导体照明半导体照明是应用半导体材料制成的LED照明,它具有高效率、长寿命、高品质、低成本等特点。
LED照明可以广泛应用于商业照明、室内照明、路灯、车灯等领域,具有大大降低能源消耗、减少环境污染、提高生活质量等诸多优点。
2、硅光电子学硅光电子学是应用硅片在通讯、计算机、储存、飞行控制、机器视觉等领域中的应用。
硅光子学可以提高器件的速度、容量和可靠性,具有广泛的应用前景。
3、太阳能电池太阳能电池是应用半导体材料制成的电池,它可以将太阳能转化为电能,具有清洁、可持续、稳定的优点。
太阳能电池可以广泛应用于航空航天、农牧等领域,为现代工业和生活创造出更广阔的应用前景。
半导体技术的发展现状与趋势

半导体技术的发展现状与趋势一、发展现状1.1半导体技术的历史半导体技术是20世纪最重要的技术之一,它改变了人类社会的方方面面。
20世纪50年代晶体管技术的发明让半导体技术获得了飞速发展的契机,之后的半个世纪里,半导体技术经历了晶体管、集成电路、微处理器等多个阶段的发展,不断推动着信息产业的发展。
1.2主要应用领域半导体技术已经深入到各个领域,如电子通信、计算机、电子消费品、汽车、医疗设备等。
在电子通信领域,半导体芯片是移动通信网络的核心部件;在计算机领域,半导体技术推动了计算机的不断升级和发展;在电子消费品领域,半导体技术使得电子产品变得更加小巧、功能更加强大;在汽车领域,半导体技术实现了智能化驾驶和无人驾驶技术;在医疗设备领域,半导体技术改进了医疗设备的性能,提高了医疗水平。
1.3技术发展水平半导体技术的当前发展水平已经非常成熟,主要表现在以下几个方面:(1)集成度不断提高。
半导体技术的集成度从最初的几个晶体管到现在的数十亿甚至上百亿个晶体管,集成度的提高使得芯片的功能越来越强大。
(2)工艺精度持续提高。
半导体制造工艺的微观化、精细化和复杂化是半导体技术不断发展壮大的基础,如工艺已经进入纳米尺度,工艺的精度已经达到了几十个纳米。
(3)新材料不断涌现。
半导体技术的发展离不开各种新型材料的推动,如氮化镓、碳化硅等材料的应用正在推动半导体技术的发展。
1.4产业现状半导体产业已经成为国民经济的支柱产业,在全球范围内有着巨大的影响力。
当前,全球半导体产业呈现以下几个特点:(1)全球产业集中度逐步提高。
全球主要的半导体企业集中在美国、韩国、日本等国家,这些国家的半导体企业占据了全球市场的绝大部分份额。
(2)产业链日趋完善。
半导体产业链已经形成完整的生产体系,从设备制造到芯片设计、生产、封装测试等环节,各个环节的企业都在不断努力提高产品水平和降低成本。
1.5发展机遇与挑战半导体技术的发展面临着一系列的机遇和挑战:(1)人工智能、物联网等新兴领域的兴起为半导体技术带来了新的发展机遇,这些新的领域对于半导体芯片的要求更高,也为半导体技术提供了更广阔的应用场景。
化合物半导体的发展现状

化合物半导体的发展现状1. 介绍化合物半导体是一种具有特殊能带结构和良好电学特性的半导体材料。
随着半导体技术的发展,化合物半导体在光电子、光伏、纳米电子等领域中扮演着重要角色。
本文将全面、详细、完整且深入地探讨化合物半导体的发展现状。
2. 历史回顾2.1 早期发展早在20世纪初,人们就开始研究化合物半导体。
例如,砷化镓(GaAs)在20世纪50年代首次用于半导体器件。
然而,早期的化合物半导体技术受到材料的缺陷和制造工艺的限制,限制了其应用范围和性能。
2.2 近期进展随着材料科学和制备技术的进步,化合物半导体取得了重要进展。
例如,氮化镓(GaN)材料的发展使得高亮度LED的商业化成为可能。
此外,砷化铟镓(InGaAs)材料的应用在高速通信和红外探测中取得了突破。
3. 化合物半导体的优势3.1 宽带隙材料化合物半导体与传统的硅材料相比,具有更大的能带隙。
这意味着化合物半导体在高温、高频率和高功率等条件下表现出更好的电学性能。
3.2 光电转换效率高由于化合物半导体的带隙能够匹配太阳光谱的特性,因此在光伏领域具有重要应用。
例如,砷化镓材料的光伏转换效率已经超过30%,将成为太阳能技术的重要组成部分。
3.3 优异的电子迁移率化合物半导体具有优异的电子迁移率,使其在高速电子器件中有广泛应用。
这对于实现高速、低功耗的电子设备至关重要。
4. 化合物半导体的应用4.1 光电子领域化合物半导体在光电子领域中有广泛的应用。
例如,半导体激光器广泛应用于光通信和激光切割。
此外,太阳能电池、光电二极管和光探测器等光电子器件的发展也离不开化合物半导体。
4.2 光伏领域化合物半导体的广泛应用使得高效率光伏电池的商业化成为可能。
砷化镓太阳能电池、硫化镉太阳能电池等已经取得了较高的光电转换效率,促进了可再生能源的发展。
4.3 纳米电子领域化合物半导体的优异电学性能使其在纳米电子领域中有重要应用。
例如,砷化铟镓材料可实现高速、低功耗的纳米电子器件,有望推动新一代高性能计算机的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体材料的历史现状及研究进展(精)半导体材料的研究进展摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。
半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。
本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。
关键词:半导体材料、性能、种类、应用概况、发展趋势一、半导体材料的发展历程半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。
宰二十世纪初,就曾出现过点接触矿石检波器。
1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。
1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。
50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。
60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。
1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。
90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。
新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光通状态所需的能量。
电阻率、载流子迁移率反映材料的导电能力。
非平衡载流子寿命反映半导体材料在外界作用(如光或电场下内部载流子由非平衡状态向平衡状态过渡的弛豫特性。
位错是晶体中最常见的一类缺陷。
位错密度用来衡量半导体单晶材料晶格完整性的程度,对于非晶态半导体材料,则没有这一参数。
半导体材料的特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下,其特性的量值差别。
三、半导体材料的种类半导体材料按化学成分和内部结构,大致可分为以下几类。
1、元素半导体有锗、硅、硒、硼、碲、锑等。
50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到 60 年代后期逐渐被硅材料取代。
用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。
因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。
2、化合物半导体由两种或两种以上的元素化合而成的半导体材料。
它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。
其中砷化镓是制造微波器件和集成电的重要材料。
碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。
3、无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。
这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。
4、有机半导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。
四、主要的半导体材料1、半导体硅材料从目前电子工业的发展来看,尽管有各种新型的半导体材料不断出现,半导体硅材料以丰富的资源、优质的特性、日臻完善的工艺以及广泛的用途等综合优势而成为了当代电子工业中应用最多的半导体材料。
硅是集成电路产业的基础,半导体材料中98%是硅。
半导体器件的95%以上是用硅材料制作的,90%以上的大规模集成电路(LSI、超大规模集成电路(VLSI、甚大规模集成电路(ULSI都是制作在高纯优质的硅抛光片和外延片上的。
硅片被称作集成电路的核心材料,硅材料产业的发展和集成电路的发展紧密相关。
半导体硅材料分为多晶硅、单晶硅、硅外延片以及非晶硅、浇注多晶硅、淀积和溅射非晶硅等。
现行多晶硅生产工艺主要有改良西门子法和硅烷热分解法。
主要产品有棒状和粒状两种,主要是用作制备单晶硅以及太阳能电池等。
生长单晶硅的工艺可分为区熔(FZ和直拉(CZ两种。
其中,直拉硅单晶(CZ-Si广泛应用于集成电路和中小功率器件。
区域熔单晶(FZ-Si目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。
2、gaas和inp单晶材料gaas和inp是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。
gaas和inp单晶的发展趋势是:增大晶体直径,目前4英寸的si-gaas已用于生产,预计本世纪初的头几年直径为6英寸的si-gaas也将投入工业应用;提高材料的电学和光学微区均匀性;降低单晶的缺陷密度,特别是位错;gaas和inp单晶的vgf生长技术发展很快,很有可能成为主流技术。
3、宽带隙半导体材料宽带隙半导体材主要指的是金刚石,iii族氮化物,碳化硅,立方氮化硼以及氧化物( zno等及固溶体等,特别是sic、gan和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。
另外,iii族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(led和紫、蓝、绿光激光器(ld以及紫外探测器等应用方面也显示了广泛的应用前景。
宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如gan/蓝宝石(sapphire,sic/si和gan/si等。
大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。
如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。
这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。
4、低维半导体材料实际上这里说的低维半导体材料就是纳米材料,之所以不愿意使用,主要是不想与现在热炒的所谓的纳米衬衣、纳米啤酒瓶、纳米洗衣机等混为一谈、从本质上看,发展纳米科学技术的重要目的之一,就是人们能在原子、分子或者纳米的尺度水平上来控制和制造功能强大、性能优越的纳米电子、光电子器件和电路,纳米生物传感器件等,以造福人类。
可以预料,纳米科学技术的发展和应用不仅将彻底改变人们的生产和生活方式,也必将改变社会政治格局和战争的对抗形式。
这也是为什么人们对发展纳米半导体技术非常重视的原因。
电子在块体材料里,在三个维度的方向上都可以自由运动。
但当材料的特征尺寸在一个维度上比电子的平均自由程相比更小的时候,电子在这个方向上的运动会受到限制,电子的能量不再是连续的,而是量子化的,我们称这种材料为超晶格、量子阱材料。
量子线材料就是电子只能沿着量子线方向自由运动,另外两个方向上受到限制;量子点材料是指在材料三个维度上的尺寸都要比电子的平均自由程小,电子在三个方向上都不能自由运动,能量在三个方向上都是量子化的。
基于GaAs和InP基的超晶格、量子阱材料已经发展得很成熟,广泛地应用于光通信、移动通讯、微波通讯的领域。
量子级联激光器是一个单极器件,是近十多年才发展起来的一种新型中、远红外光源,在自由空间通信、红外对抗和遥控化学传感等方面有着重要应用前景。
它对MBE制备工艺要求很高,整个器件结构几百到上千层,每层的厚度都要控制在零点几个纳米的精度,中国在此领域做出了国际先进水平的成果;又如多有源区带间量子隧穿输运和光耦合量子阱激光器,它具有量子效率高、功率大和光束质量好的特点,中国已有很好的研究基础;在量子点(线材料和量子点激光器等研究方面也取得了令国际同行瞩目的成就。
5、半导体超晶格、量子阱材料半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD的新一代人工构造材料。
它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料Ⅲ-V族超晶格、量子阱材料GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。
五、半导体材料的发展趋势电子信息材料的总体发展趋势是向着大尺寸、高均匀性、高完整性、以及薄膜化、多功能化和集成化方向发展。
当前的研究热点和技术前沿包括柔性晶体管、光子晶体、SiC、GaN、ZnSe等宽禁带半导体材料为代表的第三代半导体材料、有机显示材料以及各种纳米电子材料等。
随着电子学向光电子学、光子学迈进,微电子材料在未来5~10年仍是最基本的信息材料。
电子、光电子功能单晶将向着大尺寸、高均匀性、晶格高完整性以及元器件向薄膜化、多功能化、片式化、超高集成度和低能耗方向发展。
半导体微电子材料由单片集成向系统集成发展。
微电子技术发展的主要途径是通过不断缩小器件的特征尺寸,增加芯片面积以提高集成度和信息处理速度,由单片集成向系统集成发展。
1、Si、GaAs、InP等半导体单晶材料向着大尺寸、高均质、晶格高完整性方向发展。
椎8英吋硅芯片是目前国际的主流产品,椎12英吋芯片已开始上市,GaAs芯片椎4英吋已进入大批量生产阶段,并且正在向椎6英吋生产线过渡;对单晶电阻率的均匀性、杂质含量、微缺陷、位错密度、芯片平整度、表面洁净度等都提出了更加苛刻的要求。
2、在以Si、GaAs为代表的第一代、第二代半导体材料继续发展的同时,加速发展第三代半导体材料——宽禁带半导体材料SiC、GaN、ZnSe、金刚石材料和用Si Ge/Si、SOI等新型硅基材料大幅度提高原有硅集成电路的性能是未来半导体材料的重要发展方向。
3、继经典半导体的同质结、异质结之后,基于量子阱、量子线、量子点的器件设计制造和集成技术在未来5~15年间,将在信息材料和元器件制造中占据主导地位,分子束外延MBE和金属有机化合物化学汽相外延MOCVD技术将得到进一步发展和更加广泛的应用。