阐述深基坑施工的监测方法及特点
深基坑施工监测方案
深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。
本文将就深基坑施工监测方案进行探讨。
一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。
通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。
二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。
监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。
2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。
监测频次为每天、每班、每小时,并及时记录监测数据。
3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。
监测频次为每天、每周,并记录监测数据。
同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。
4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。
经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。
5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。
监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。
三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。
2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。
报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。
四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。
深基坑施工监测方案
深基坑施工监测方案近年来城市建设工程越来越高、大、深,特别是在土壤松软地区和中心城区,开挖深基坑施工是一种常用的地下工程施工方式。
深基坑的施工安全存在很大的风险,因此,对于深基坑的监测方案和技术要求,也越来越高。
深基坑的施工监测方案是建设深基坑工程的非常重要的一步,合理的监测方案可以监测到施工中出现的任何问题,及时的发现并解决施工中的安全问题,保障施工顺利进行。
一、深基坑施工监测方案的重要性开挖深基坑工程施工,严格按照施工监测的要求开展监测工作非常重要。
对于开挖深基坑工程,我们要根据实际情况设计监测方案,方案合理、施工要求严格,只要监测系统有效的监测施工过程中出现的各种异常,就可以及时发现问题并加以解决,以保证施工安全、质量和进度。
一般来说,深基坑工程施工时,监测方案是施工许可申请的重要文件之一,施工前须向相关部门报备,并经专家组审核后才能获得施工许可。
同时,监测方案还应及时报送施工监理单位,以及施工现场各分包单位。
这样做的目的是为了提高深基坑施工方案的安全性和施工质量,同时也保障了居民和周边建筑的安全性。
二、深基坑施工监测的方法为了监测深基坑在施工过程中出现的任何异常情况,很多专家研究出了多种监测方法。
1、现场监测法现场监测法是传统的监测方法,它主要是通过对深基坑现场进行实时监控,并及时反馈现场情况。
在现场施工时,通常会手持监测仪器对深基坑周围建筑物进行监测,了解关键施工过程的情况,并汇总信息反馈给项目团队。
2、遥感监测法遥感技术通常使用激光扫描和无人机等技术,对地面和建筑物进行高清数据的采集和处理,以后的相邻施工过程记录和相邻地方施工情况的对比分析提供了标准化、可靠的基础数据。
3、模拟仿真法深度搭建仿真模型,可以对施工过程中的各项参数进行模拟和优化。
模拟仿真法大大降低了现场施工的监测负担,并提高了安全性和准确性。
三、应用案例洛阳深基坑项目监测工作可以提供典型的案例。
项目纵深超过35米,钢筋混凝土板柱框架结构超过1000平方米,中央壁厚达到800毫米。
施工方案深基坑施工的监测与控制方法
施工方案深基坑施工的监测与控制方法深基坑施工是在建筑工程中常见的一项工作,而在深基坑施工过程中,监测与控制方法起着重要的作用。
本文将介绍一些常用的深基坑施工的监测与控制方法,以帮助施工方案实施。
一、介绍深基坑施工的概念和目的深基坑施工是指在建筑工程中所挖掘的深度超过周边地面的基坑。
深基坑施工的主要目的一般有两个方面,一是为了提供工程施工的条件,二是为了保障施工过程的安全。
二、监测与控制方法的重要性深基坑施工过程中需要进行监测与控制的原因主要有以下几点。
首先,深基坑施工过程中会受到地质条件的制约,如地下水位的变化、土壤的稳定性等,这些因素可能会对基坑的稳定性和施工进度产生影响,因此需要进行监测与控制。
其次,深基坑施工会产生较大的土体位移和变形,这些变形可能对周围环境和结构物造成不利影响,为了保障施工的安全性,需要进行监测与控制。
最后,深基坑施工中可能会涉及到附近的地下管线和地下设施,如地下电缆、排水管道等,为了避免对这些设施造成损害,需要进行监测与控制。
三、监测与控制方法的分类深基坑施工的监测与控制方法可以分为以下几类。
1. 地下水位监测与控制在深基坑施工过程中,地下水位的变化对基坑的稳定性和施工进度起到关键的影响。
因此,需要通过安装水位监测仪器,实时监测基坑中的地下水位,并采取相应的措施进行控制。
2. 土体位移监测与控制深基坑施工中土体的位移是一个十分关键的问题。
通过安装位移监测仪器,可以实时监测土体的位移情况,并根据监测结果调整施工方式,以避免土体位移过大。
3. 周边环境监测与控制深基坑施工往往会对周边环境和结构物产生影响,为了保护周边环境和结构物的安全,需要进行周边环境监测与控制。
具体方法可以包括安装振动监测仪器、噪声监测仪器等,以及采取隔离措施等。
4. 地下管线和设施监测与控制深基坑施工可能会影响到附近的地下管线和设施,为了保护这些管线和设施的完好性,需要进行监测与控制。
一种常见的方法是通过安装应变计、测量管线的位移和应力情况,并相应地采取控制措施。
阐述深基坑施工的监测方法及特点
阐述深基坑施工的监测方法及特点摘要:该文主要论述了深基坑施工中的变形监测的特点、精度要求、监测项目及监测方法。
关键词:深基坑变形监测特点精度监测方法随着城市现代化的进程加快,城市交通也日益拥挤,修建地下铁道和地下隧道是城市建设可持续发展,大幅度改善城市交通状况的重要途径。
在地铁和隧道工程中,当需开挖基坑进行地下施工时,由于场地的局限,在基坑平面范围以外通常不可能有足够的空间供放坡开挖,必须设计规模较大的开挖围护系统。
监测工作既是检验深基坑设计理论正确性和发展设计理论的重要手段,同时又是及时指导正确施工,避免基坑工程事故发生的必要措施。
目前常用的监测方法有:(1)采用钢丝,钢卷尺两用式位移收敛计对围护结构顶部进行收敛量测;(2)用精密光学经纬仪进行观测;(3)前方交会法。
1 深基坑施工监测的特点1.1时效性基坑监测通常是配合降水和开挖过程,有鲜明的时间性。
测量的结果是动态变化的,一天以前或几个小时之间的测量结果都将会失去直接的意义,因此深基坑施工中监测需随时进行通常是1次/d,在测量对象变化快的关键时期,可能每天需进行数次。
1.2高精度普通工程测量中的误差限值通常保持在数毫米之内,而正常情况下基坑施工中的环境变形速率可能会在0.1mm/d以下,要测到这样的变形精度,普通的测量方法和仪器都不能胜任,因此在测量基坑施工中的通常采用一些特殊的高精度仪器。
1.3等精度基坑施工中的监测通常只要求测得相对应的变化值,而不要求测量的绝对值。
在基坑边壁变形测量中,只要求测定边壁相对于原来基准位置的位移即可,而边壁的绝对位置可以完全不需要知道。
由于这个鲜明的特点,使得深基坑施工监测有其自身规律。
2 监测的基本要求无论采用何种具体的监测方法,都要满足下列技术要求:2.1观测工作是必须有计划的,要严格按照有关的技术文件执行。
2.2监测数据必须是可靠的。
2.3观测必须要及时。
2.4对于观测的项目,应按照工程的具体情况预先设定好预警值,预警值应包括变形值、内力值以及其它变化速率。
深基坑施工监测方案
深基坑施工监测方案深基坑施工是一项技术难度较高的建筑工程,它的建设需要实施科学的监测和管理。
为了保障深基坑施工的安全和顺利进行,需要制定合理的监测方案,对施工过程中的各种因素进行实时监测和数据采集。
一、深基坑施工监测的重要性深基坑施工是建筑工程中的一个重要环节,涉及到土木工程、地铁建设、隧道工程等领域。
然而,由于地质环境的复杂性和工程本身的技术难度,深基坑施工的安全性和可靠性存在一定的风险。
这时,深基坑施工监测便显得尤为重要。
深基坑工程主要具有以下几个特点:1. 基坑深度大,施工周期长,工程量大;2. 施工过程中受到地质和地形条件的影响;3. 建设过程中需要使用大量设备机械和人力,对土体结构造成一定的影响;4. 深基坑施工对周围环境有一定的影响,需要注意环境保护问题。
综上所述,深基坑施工监测的重要性不言而喻。
建立一个全方位、科学合理的监测方案,能够有效预防和控制潜在的安全风险,为施工的安全和可靠提供有力保障。
二、深基坑施工监测的内容深基坑施工监测的内容主要包括三个方面:地面位移监测、基坑内水位监测、基坑周围建筑物变形监测。
1. 地面位移监测地面位移监测主要是为了控制施工过程中可能会出现的变形情况,以保证工程的稳定性和安全性。
地面位移监测原理较为简单,将一定数量的监测点布设在基坑周围,定期进行数据采集和分析。
监测点的位置应该考虑到地质条件、基坑大小以及基坑周围建筑物等因素,以使监测结果更加准确和可靠。
2. 基坑内水位监测基坑内水位监测是深基坑施工中的另一项重要内容。
深基坑施工常常会遇到地下水的问题,基坑内的水位变化会直接影响到施工的进度和效率。
基坑内水位监测的主要目的是为了保证基坑内的水位在可控范围内,避免因无法控制水位而导致的安全事故。
常用的监测方法有静压水位、动态水位、水量监测。
3. 基坑周围建筑物变形监测施工基坑建设过程中,基坑周围的建筑物变形状态需要被监测,以便及时处理。
在基坑施工过程中,由于切、挖、垫等施工作业可能会引起基坑周边建筑物的不同程度的沉降和变形。
土木工程知识点-怎样监测建筑施工深基坑水平、竖向位移?监测频率是怎样的?
土木工程知识点-怎样监测建筑施工深基坑水平、竖向位移?监测频率是怎样的?一、监测方法1、竖向位移观测竖向位移监测可采用几何水准或液体静力水准等方法。
坑底隆起(回弹)宜通过设置回弹监测标, 采用几何水准并配合传递高程的辅助设备进行监测, 传递高程的金属杆或钢尺等应进行温度、尺长和拉力等项修正。
围护墙(边坡)顶部、立柱、基坑周边地表、管线和邻近建筑的竖向位移监测精度应根据竖向位移报警值按下表确定。
竖向位移监测精度(mm)(表格出自建筑基坑工程监测技术规范(GB50497))2、水平位移观测测定特定方向上的水平位移时, 可采用视准线法、小角度法、投点法等;测定监测点任意方向的水平位移时可视监测点的分布情况, 采用前方交会法、后方交会法、极坐标法等;当测点与基坑点无法通视或距离较远时, 可采用GNSS 测量法或三角、三边、边角测量与基准线法相结合的综合测量方法。
基坑围护墙(边坡)顶部、基坑周边管线、邻近建筑水平位移监测精度应根据水平位移报警值按下表确定。
水平位移监测精度要求(mm) (表格出自建筑基坑工程监测技术规范(GB50497))3、其他监测支护结构内力可采用安装在结构内部或表面的应变计或应力计进行量测。
混凝土构件可采用钢筋应力计或混凝土应变计进行量测;钢构件可采用轴力计或应变计等量测。
围护墙或土体深层水平位移的监测宜采用在墙体或土体中预埋测斜管, 通过测斜仪观测各深度处水平位移的方法。
测斜仪的系统精度不宜低于0.25mm/m, 分辨率不宜低于0.02mm/500mm。
建筑倾斜观测应根据现场观测条件和要求, 选用投点法、前方交会法、激光铅直仪法、垂吊法、倾斜仪法和差异沉降法等方法。
裂缝监测应监测裂缝的位置、走向、长度、宽度, 必要时尚应监测裂缝深度。
裂缝监测可采用以下方法:裂缝宽度监测宜在裂缝两侧贴埋标志, 用千分尺或游标卡尺等直接量测;也可用裂缝计、粘贴安装千分表量测或摄影量测等;裂缝长度监测宜采用直接测量法。
深基坑施工监测方案
深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。
本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。
二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。
2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。
3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。
三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。
2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。
3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。
四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。
3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。
五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。
2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。
3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。
六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。
深基坑施工监测方案
深基坑施工监测方案一、背景介绍深基坑施工是建筑工程中一项重要的地下工程施工活动。
由于基坑较深、土壤条件复杂,施工过程中可能会面临一系列的安全隐患。
为了及时发现和解决问题,确保施工的顺利进行,深基坑施工监测方案应运而生。
二、监测目标1. 地面沉降:监测地表沉降情况,及时评估并控制地面沉降的范围和速度。
2. 地下水位:监测基坑周边地下水位的变化,防止地下水涌入基坑,导致工程事故。
3. 地下管线:监测基坑周边地下管线的位移情况,避免工程施工对管线造成破坏。
4. 地面建筑物:监测基坑施工对周边建筑物的影响,保证周边建筑物的安全。
三、监测方法1. 地面沉降监测:a. 使用全站仪实时监测地面水平和垂直位移的变化。
b. 设置沉降点网格,在关键位置进行连续监测。
c. 编制沉降监测曲线,分析沉降速度和变化趋势。
2. 地下水位监测:a. 安装水位计监测基坑周边地下水位的变化。
b. 建立水位监测井,定期采集地下水位数据。
c. 分析地下水位变动趋势,及时采取排水措施。
3. 地下管线监测:a. 使用高精度测距仪监测地下管线的位移情况。
b. 定期巡检地下管线,发现问题及时修复或迁移。
4. 地面建筑物监测:a. 安装倾斜仪、位移传感器等监测周边建筑物的位移情况。
b. 实时监测建筑物的倾斜角度、位移量等数据。
c. 设立安全预警值,一旦超过预警值,及时采取措施保护建筑物。
四、监测报告1. 每周编制监测报告,详细记录各项监测数据和分析结果。
2. 报告中应包括监测数据的变化曲线图、分析结果及建议措施。
3. 监测报告应及时上报给相关负责人,并定期进行讨论和总结。
五、紧急情况处理1. 当监测数据超过安全范围或出现异常情况时,立即采取紧急措施。
2. 紧急措施包括但不限于停工、加固、排水等,以保证工程的安全进行。
六、总结深基坑施工监测方案是保证施工安全和质量的重要保障措施。
通过合理的监测方法和及时的监测报告,可以及早发现问题、预防事故的发生,保证工程的正常进行。
简述某建筑工程深基坑施工技术特点与质量监测
建材发展导向 2 1 0 2年 0 月 1
简述某建筑工程深基坑施工技术特点与质量监
韦光会
( 天峨县林朵林场)
摘 要: 高层建筑深基坑是一个综 合性和 实践性很强的岩土工程问题 , 地区性特征很强, 基坑工程 设计和施工应结合地 区特征 ( 如气候状 况、 环境特 征、
水文地质等) 工程特点和实践经验进行 。 、 以某工程为例 , 讨了建筑工程深基坑技术的特 点与应用 , 探 在施 工过程 中, 综合运用 了地下连续墙、 降承压水 、 岛式 和对称 、 均衡、 分层开挖等施工技术 以及碰桩 区地下墙补强、 电梯井 围护 方案优化等措 施, 并结合全过程信息化监测 , 保证 了圆形无支撑深基坑和周围环境 的安全 与质量 。 关键词 : 深基坑; 无支撑; 地下墙; 信息化 ; 工技术 ; 旋 质量监测
1 工 程概 况
1 地质条件 . 1
本工程 的地基土它主要是 由饱和粘性土 、 粉性土 、土, 第⑥层土是一层非常好 的不透 隔水层, 自第⑥层 以 下埋 藏有高 水头的承压含水层 , 为某城市第 1 Ⅱ、 、 Ⅲ承压含水层 的连通区 ,
承压含水层埋深为 2 。 m, 78 承压水的水头高差达到 1.8 电梯井开挖 8 81m。 深度达 2 . m 坑底 已经进 入第⑥层土 , 离承压水 层只有 2 m 左右 59, 8 距 . , O 的覆土。
() 4 本工程地 下墙基坑 围护结构厚度 1 m, . 基坑 直径达 10O 厚 0 0 .m, 碰桩区地下墙施工非常艰难, 四幅地下墙旌 工时问占整 个地 下墙旌 度与直径之 比 11o 技术含量高。 ,0 , 施工难度大 。 工时间的 l 但是, , 3 基坑开挖后, 接缝处混凝 土密实, 墙面 平整 , 为基 坑 () 5 本工程基坑面积 7 5 m , 大面积圆形深基坑 , 土量 约 1 8 5 s属 取 6万 的安全开挖创造 了有利条件 。 m, ] 必须加强周边环境 的观察 , 实旖信息化旅工 , 最大 限度地减小基坑的 23 碰桩 区地下墙局部补强措施 . 变形是施工 的又一关键技术 。 为 确 保基 坑 的 安 全 ,在 碰桩 区 的 外 围护 壁 旋喷 桩 内 套 打一 排 + 00 10 10 @ 20钻孔排桩 , 深度 3 m; 内被动区土体 加固 由 4 m加宽到 4 坑 . O 2 关键 施工 技术 9O 深度 由 50加深 到 1 . 压顶 圈梁加宽到 43 将钻孔排桩 与地 . m, . 3O m, .m, 21超深地下墙施工 .
深基坑施工中的工程测量要求
深基坑施工中的工程测量要求深基坑施工是指在地下施工中挖掘的一种大型基坑,一般用于建筑物的地下室或地下车库等工程。
深基坑施工具有复杂性高、风险大等特点,对工程测量的要求也非常高。
本文将从基坑的测量目的、测量方法、测量技术等方面进行详细介绍。
1.基坑的准确定位和确定基坑开挖的范围。
通过测量可以确定基坑的位置和大小,为后续的施工提供准确的基础数据。
2.基坑开挖的控制和监测。
基坑开挖过程中需要对基坑的变形和沉降进行监测,以保证安全施工。
3.基坑支护结构的施工和监测。
基坑支护结构的施工和监测对于基坑的稳定和安全施工至关重要。
1.全站仪法。
全站仪是一种多功能的现代测量仪器,可以实现位置、方位和高程的三维测量,适用于各种工程测量任务。
2.激光测距仪法。
激光测距仪可以通过发射和接收激光束的时间差来准确测量两个点之间的距离,适用于测量基坑开挖的深度、坑底的平整度等。
3.GPS定位法。
GPS定位系统可以通过卫星定位来确定测量点的位置和高程,适用于大面积的基坑测量。
4.施工测量法。
施工测量法是指在施工现场根据实际需要进行的简单测量,如使用经纬仪、曲线板等进行测量。
1.高精度测量。
基坑施工对精度的要求非常高,因此需要选用高精度的测量仪器和技术,并且进行定期的校验和校准。
2.动态监测。
基坑施工过程中需要对基坑的变形和沉降进行动态监测,可以使用动态测量仪器进行实时监测。
3.数据处理和分析。
基坑施工过程中会产生大量的测量数据,需要通过专业的软件进行数据处理和分析,得出准确的结果。
在深基坑施工中,测量工作需要与其他工种密切合作,进行实时的沟通和协调。
同时,测量工作要严格按照设计要求和施工规范进行,确保测量结果的准确性和可靠性。
总之,深基坑施工中的工程测量是保证施工质量和安全的重要环节,其要求包括准确定位和确定基坑范围、基坑开挖的控制和监测、基坑支护结构的施工和监测等。
常用的测量方法包括全站仪法、激光测距仪法、GPS定位法和施工测量法。
深基坑工程安全监测方案设计
深基坑工程安全监测方案设计深基坑工程是城市建设中常见的一种基础工程,在建设过程中需要进行安全监测以确保工程施工的安全性和稳定性。
本文将就深基坑工程安全监测方案设计进行详细阐述,包括监测内容、监测方法和监测措施等方面。
一、监测内容深基坑工程的安全监测主要包括以下几个方面的内容:1. 地下水位监测:深基坑工程一般会进入地下水层,因此需要监测地下水位的变化情况,以及地下水位对工程稳定性的影响。
2. 地表沉降监测:深基坑施工可能会引起地表的沉降,因此需要对地表的沉降情况进行实时监测,以确保施工过程中地表的稳定性。
3. 地下水压力监测:深基坑施工会改变周围地下水的流动情况,导致地下水压力的变化,因此需要监测地下水压力的变化情况,以确保施工过程中地下水的稳定性。
4. 土体位移监测:深基坑施工会对周围土体产生较大的变形和位移,因此需要监测土体位移的情况,以及位移对周围建筑的影响。
5. 基坑支护结构监测:深基坑施工需要进行支护结构的设置,因此需要对支护结构的变形和位移进行监测,以确保支护结构的稳定性和安全性。
二、监测方法深基坑工程安全监测需要借助一系列的监测方法来实现,主要包括:1. 监测孔:通过在基坑周围设置监测孔,可以对地下水位、地下水压力、土体位移等进行监测。
监测孔需要合理设置,数量和位置要能够充分反映监测目的。
2. 自动观测站:在深基坑工程周围设置自动观测站,可以实现对多个监测点的实时监测。
自动观测站可以通过传感器等设备实现对各种监测参数的采集和记录。
3. 激光测距仪:可以用于测量地表沉降和土体位移等参数。
激光测距仪具有高精度和高速度的特点,适用于实时监测需求较为紧迫的监测项目。
4. 数字测网:通过在基坑周围布设一定数量的监测点,可以实现对地下水位、地下水压力和土体位移等参数的实时监测。
数字测网可以通过传感器和数据采集仪实现对各个监测点的数据采集和传输。
三、监测措施深基坑工程安全监测需要采取一系列的监测措施来确保监测的有效性和科学性,主要包括:1. 监测计划制定:在施工前制定详细的监测计划,包括监测目的、监测内容、监测方法和监测频率等,以确保监测工作的有序进行。
深基坑施工监测方案
深基坑施工监测方案深基坑工程是由于场地有限、建筑要求或地下空间的需要等条件引起的工程形式。
深基坑施工属于地下施工,在施工期间,受力环境、土体变形、地下水位的变化等因素均会对施工造成影响。
因此,在深基坑施工中,需要进行一定的监测和管控措施,以降低施工风险。
本文将就深基坑施工监测方案进行探讨。
一、监测对象深基坑施工中,需要进行多项监测。
其中,监测对象主要包括:周边建筑物、挡土墙、支撑结构、地下水位、土体变形等。
周边建筑物:深基坑施工过程中,支护结构的载荷可能会对周边建筑物的承载力产生影响,因此需要采用不同的监测方法进行测量,以保证周边建筑物的安全性。
例如采用水平变形测量技术,追踪建筑物的水平变形情况;采用应力应变测量技术,监测建筑物的应变情况等。
挡土墙:挡土墙是深基坑施工的关键部分,其破坏会对施工造成影响。
因此,需对挡土墙进行一定的监测措施,例如采用水平变形测量、挡土墙内部应力应变测量等技术,确保挡土墙的安全性。
支撑结构:深基坑施工中,支撑结构起着桥梁的作用,因此其安全性至关重要。
支撑结构的监测需要兼顾不同监测技术,例如采用应力应变测量、变形测量等技术综合考虑,以确保支撑结构的安全性。
地下水位:地下水位是深基坑施工中需要重点关注的监测对象,它的变化可能会对施工造成直接影响。
因此,需要对地下水位进行实时监测,并及时调整支撑结构的支撑力度,以保障施工安全。
地下水位的监测通常采用液位计、电测和潜孔测压等技术。
土体变形:土体变形是深基坑施工过程中无法避免的问题。
其合理监测和处理,能够及时报警,有效避免施工风险的发生。
土体变形的监测通常采用变形监测技术,如支撑结构内测点、土壤应变测点等。
二、监测方法深基坑施工监测方法主要分为静态监测和动态监测两类。
静态监测:静态监测是指在施工期间或施工前后采用有限数目的测量点,通过周期性监测来评估基坑工程在整个施工周期内的受力环境和形变情况。
静态监测主要包括水平变形监测、变形监测和应力应变监测等。
深基坑施工监测方案
深基坑施工监测方案近年来,随着城市的不断发展和人口的增加,建筑工程也日益增多。
而建筑工程中一个重要的环节便是深基坑的施工。
深基坑施工不仅需要合理的施工方案,还需要科学的监测方案,以确保工程的安全和稳定。
本文将探讨深基坑施工监测方案,并提出一些建议。
一、引言深基坑的施工是指在建筑工程中,为了修建建筑物或地下结构物而需要挖掘的深井。
在施工过程中,由于土壤的移动以及地下水的变化等因素,可能会给工程带来一定的风险。
因此,施工监测方案的制定和执行是非常重要的。
二、深基坑施工监测的必要性1.保证工程的安全性:深基坑的施工过程中,由于土壤的改变和地下水的涨落,有可能导致工程出现不稳定的情况,甚至发生坍塌等严重事故。
因此,监测方案的制定可以及时掌握工程的变化情况,从而采取相应的措施。
2.提高工程的质量:通过监测方案,可以实时监测工程的变形和沉降情况,及时掌握工程质量的变化,并进行针对性的调整和改善,从而提高工程的质量。
3.节约施工成本:如果在施工过程中出现了问题,没有进行及时监测和调整,可能导致不必要的维修和改造,增加施工成本。
而监测方案的制定可以及时发现问题,从而采取相应的措施,避免不必要的损失。
三、深基坑施工监测的方法和技术1.现场观测法:这是一种最常用的监测方法。
通过设置观测点位,通过定期观测和测量,可以实时掌握工程的变形情况。
观测点位的设置应该覆盖整个基坑区域,以确保数据的全面性和准确性。
常见的观测点位包括水平位移观测点、竖向位移观测点和沉降观测点等。
2.应用遥感技术:遥感技术可以通过无人机或卫星等手段,获取大范围的数据,并实时监测基坑的变形情况。
这种方法具有高效、及时的特点,可以很好地监测大范围的基坑变形情况,提高工作效率。
3.应用数字化技术:数字化技术可以通过传感器等设备,实时监测基坑的变形情况,并将数据直接传输到计算机上进行分析和处理。
这种方法可以大大提高监测的精度和效率,减少人为误差。
四、深基坑施工监测方案的制定和执行1.制定监测方案:在深基坑施工前,应该制定详细的监测方案,包括监测的方法、观测点位的设置、监测频率和数据处理等。
深基坑施工监测方案
深基坑施工监测方案深基坑施工是指在建筑工地中挖掘较深的坑道,以便进行地下工程的施工。
由于深基坑施工涉及到地质条件、土壤力学和安全等多个方面的问题,因此需要制定一套完善的施工监测方案来确保施工的安全和顺利进行。
一、施工前准备在进行深基坑施工前,应先进行详细的工程勘察和地质勘探,以了解地下情况、土层状况和地下水位等信息。
同时,还需要制定相应的施工方案,明确施工过程和所需的监测参数。
二、监测设备和方法1. 地下水位监测为了及时了解地下水位的变化情况,需要在基坑周边设置水位监测点,使用水位计等设备定期进行监测,并记录监测数据。
在施工过程中,需要根据监测结果采取相应的排水措施,以保证基坑内部的稳定。
2. 基坑变形监测为了监测深基坑周边土体的变形情况,可以采用测量仪器和遥感技术。
常用的监测方法包括全站仪测量、激光扫描仪和遥感监测等。
这些监测设备可以实时记录基坑周边土体的位移和形态变化,并生成监测报告。
根据监测结果,可以及时调整施工方案,以减少变形对深基坑安全的影响。
3. 基坑周边建筑物的监测在深基坑施工过程中,需要密切关注周边建筑物的安全情况。
可以采用测量仪器和振动监测系统来监测周边建筑物的振动情况。
通过实时监测周边建筑物的振动变化,可以及时采取相应的措施来防止建筑物的受损。
三、监测结果处理和应对措施1. 数据分析和报告监测期间所采集到的数据需要进行统计和分析,以得出相应的结论。
监测报告应当清晰明了地陈述监测数据、变化趋势及其对施工安全的影响,并提出相应的建议和措施。
2. 应对措施根据监测结果和报告的分析,需要及时采取相应的措施来应对可能出现的问题。
比如,在地下水位上升时,可以增加排水量来维持基坑的稳定;在土体变形较大时,可以增加加固措施或调整施工工艺。
四、监测方案的调整和完善在施工过程中,如果监测结果发现有异常情况或超出了设计预期的范围,应及时调整监测方案,并完善施工措施。
监测方案的调整需要经过工程负责人和专业技术人员的评估,并及时通知相关人员进行相应的操作。
深基坑开挖监测工法
深基坑开挖监测工法深基坑开挖是土木工程中常见的一项施工工艺,它主要用于建筑物地下室、地下车库等工程的开挖与施工。
由于深基坑开挖涉及到大量的土方工程,涉及的风险较高,因此在施工过程中,对深基坑的开挖监测显得尤为重要。
本文将介绍深基坑开挖监测工法的相关内容。
一、深基坑开挖监测的目的深基坑开挖监测的目的是为了实时监测开挖工程中可能出现的地面下沉、变形等问题,以及地下水位变化等情况。
监测的目的是为了及时发现问题,采取相应的措施,避免可能的施工事故和安全隐患。
二、深基坑开挖监测的方法1.地面监测:地面监测是深基坑开挖监测工法中的一种常见方法。
通过设置地面监测点,使用相关的监测设备,如测距仪、水准仪、全站仪等,实时监测地面的沉降、倾斜等变形情况,并将监测数据传输到监测中心进行分析和处理。
2.支撑结构监测:深基坑开挖过程中,常常使用支撑结构来加固开挖周边的土体。
对这些支撑结构进行监测,可以及时发现支撑结构的变形和承载力等问题。
常见的支撑结构监测方法包括使用倾斜计、应变计等设备进行监测。
3.地下水位监测:深基坑开挖过程中,地下水位的变化对施工有很大影响。
定期监测地下水位的变化,可以及时发现地下水位的上升或下降情况,采取相应的排水措施,保证施工的顺利进行。
地下水位监测可以借助水位计、埋藏式压力传感器等设备进行。
4.变形监测:深基坑开挖过程中,土体会发生不可避免的变形。
变形监测的主要目的是及时发现土体的变形,以及确定变形的范围和变形的变化趋势。
常用的变形监测方法包括使用水准仪、全站仪、测距仪等设备进行实时监测。
三、深基坑开挖监测的意义深基坑开挖监测不仅可以保证施工的安全和顺利进行,还可以提供实时的监测数据,为设计人员提供可靠的数据支持,优化设计方案。
监测数据对于土木工程的研究和发展也有着重要的意义,可以积累施工和监测经验,为今后的类似工程提供参考。
四、深基坑开挖监测的注意事项在深基坑开挖监测中,需要注意以下几个问题:1.选择合适的监测设备,确保其准确性和可靠性。
深基坑开挖监测方案
深基坑开挖监测方案深基坑的开挖是一个复杂而风险较高的施工过程,需要进行严格的监测,以确保开挖过程的安全和稳定。
下面是一个针对深基坑开挖的监测方案,旨在为开挖施工提供有力的支持和控制:一、监测参数和目标:1.地表沉降监测地表沉降是深基坑开挖的一种常见影响,因此需要进行实时监测,以掌握沉降速度和变化趋势。
监测目标是确保地表沉降量控制在可接受的范围内,避免对周边建筑和基础设施造成损害。
2.周边建筑物倾斜监测3.地下水位监测4.地面周边土体应力监测二、监测方法和技术:1.地表沉降监测可以采用全站仪、GNSS定位仪等设备对基坑周边地表进行定位测量,通过测量点与基准点的位置变化,计算出地表沉降量。
监测频率可根据施工进展和工况的变化进行调整,以保证监测的及时性和准确性。
2.周边建筑物倾斜监测可以采用倾斜仪、自动水平仪等设备对周边建筑物进行倾斜监测,通过监测倾斜角度和倾斜方向的变化,判断建筑物是否发生倾斜。
监测频率也可根据施工进展和工况的变化进行调整。
3.地下水位监测可以采用水位计、压力传感器等设备对基坑周边的井点和监测孔进行水位监测,及时获取地下水位的变化情况。
监测频率可根据施工进展和工况的变化进行调整。
4.地面周边土体应力监测可以采用应变计、标准屈光仪等设备对周边土体进行应力监测,通过监测应变值和变形分布,判断土体的力学性质和稳定状态。
监测频率可根据施工进展和工况的变化进行调整。
三、监测数据处理与分析:1.监测数据的实时处理和分析监测系统应能够实时采集、处理和分析监测数据,并及时生成监测报告和预警信息。
监测数据的处理和分析应该由专业的技术人员进行,以确保数据的准确性和可靠性。
2.监测数据的比对分析监测数据应与设计值、历史数据进行比对分析,判断开挖过程中是否存在异常情况,并及时采取相应措施进行调整。
比对分析结果可用于优化施工方案和风险预警。
3.监测数据的可视化展示监测数据应以图形、表格等形式进行可视化展示,使监测人员和管理人员能够直观地了解监测结果,并及时做出决策。
深基坑工程监测方案
深基坑工程监测方案1.监测对象深基坑工程监测的对象主要包括基坑边坡、土体位移、地下水位和地下管道等。
其中,基坑边坡是工程安全的重要因素,需要通过监测来及时掌握其变形情况。
土体位移是判断工程变形和稳定性的重要指标,需要通过监测来评估土体的变形和沉降情况。
地下水位的变化对基坑工程施工和周围建筑物稳定性有直接的影响,需要通过监测来掌握地下水位的变化情况。
地下管道是工程施工过程中需保护的重要设施,需要通过监测来确保其安全。
2.监测方法深基坑工程监测可采用传统的测量方法以及现代化的无线监测系统相结合的方式。
传统测量方法包括全站仪测量、水准测量和位移传感器测量等。
全站仪测量可以实时获取基坑边坡的变形情况;水准测量可以用于监测基坑周围土体的沉降情况;位移传感器测量可以用于监测地下管道的位移情况。
无线监测系统可以实时监测深基坑工程的各种参数,包括土壤应力、地下水位和渗流等。
3.监测措施为确保监测工作能够顺利进行,需要采取一系列措施保障监测设备的正常运行。
首先,选用高质量和可靠性的监测设备,包括高精度的全站仪、精密的水准仪和稳定的位移传感器。
其次,合理布置监测点位,根据深基坑的具体情况和设计要求,确定监测点位的布置位置和数量。
同时,保障监测设备的日常维护和保养工作,定期校准设备并检查设备的工作状态。
最后,及时收集并分析监测数据,建立完整的监测数据库,通过数据分析和模型验证,及时评估工程的安全性和稳定性,并采取相应的措施进行调整和改进。
综上所述,深基坑工程监测方案包括监测对象、监测方法和监测措施三个方面。
通过合理选择监测对象、采用适当的监测方法和实施有效的监测措施,可以确保深基坑工程的安全和稳定,并为深基坑工程的设计和施工提供可靠的数据支持。
深基坑施工监测方案
深基坑施工监测方案一、项目背景在城市建设中,为了满足城市发展需要,经常需要进行深基坑的施工。
深基坑施工是指在建筑物基础施工过程中,为了适应场地限制或其他考虑因素,需要在较深的地下进行开挖施工。
由于深基坑施工涉及土壤、地下水等复杂的地质环境因素,施工过程中可能会带来一定的风险和影响。
为了保证施工的安全性、减轻环境影响,提前制定合理的施工监测方案是十分必要的。
二、监测目的深基坑施工监测方案的主要目的是监测深基坑施工过程中的安全性和环境影响,包括以下几个方面的目标:1. 监测基坑施工过程中的变形情况,包括基坑周边土体的变形、沉降情况等,确保施工过程中的稳定性;2. 监测基坑开挖对周围建筑物的影响,防止因挖坑而导致的结构损坏;3. 监测基坑排水系统的运行情况,确保施工期间地下水位的有效控制;4. 监测基坑施工过程中产生的噪声、震动、粉尘等环境影响,控制对周围环境的污染。
三、监测内容与方法1. 土体变形监测土体变形是深基坑施工过程中最关键的监测内容之一。
常用的土体变形监测方法包括:(1)GPS(全球定位系统)监测:通过在基坑周边设置GPS监测点,实时记录土体的位移变化,并通过数据分析判断土体的稳定性。
(2)测量仪器监测:使用倾斜仪、水准仪等工具对基坑周边的监测点进行定期测量,获得土体变形数据。
2. 建筑物影响监测深基坑施工可能对周围的建筑物造成影响,因此需要监测建筑物的变形情况。
常用的监测方法包括:(1)测量仪器监测:对建筑物的表面进行定期测量,分析变形情况,判断对建筑物的影响。
(2)振动监测:通过设置振动传感器,监测深基坑施工过程中产生的振动情况,确保振动不超过建筑物的承受范围。
3. 地下水位监测深基坑施工过程中需要进行有效的地下水位控制,避免出现地下水涌入或渗漏等问题。
常用的地下水位监测方法包括:(1)水位计监测:在基坑周围设置水位计,实时监测地下水位的变化情况。
(2)水泵监测:监测基坑排水系统的运行情况,确保水位保持在设计范围内。
深基坑施工监测方案
深基坑施工监测方案1. 引言深基坑施工是在城市建设过程中常见的一项工程,其施工期间可能会对周围土层、建筑物以及地下管线等造成一定的影响。
为了确保施工安全和保护周围环境,施工监测变得尤为重要。
本文将介绍深基坑施工监测的方案,包括监测目标、监测内容、监测方法以及监测频率等方面的内容。
2. 监测目标深基坑施工监测的主要目标是在施工期间及时掌握施工工程所产生的变形、沉降、位移等情况,以及对周围环境的影响,从而保证工程的施工安全和周围环境的保护。
3. 监测内容深基坑施工监测的内容包括但不限于以下几个方面:3.1 地表沉降地表沉降是深基坑施工中常见的问题,通常通过在施工周围设置水平测网进行监测。
监测点应均匀分布在周围区域,并根据施工进度及时调整监测点的位置。
3.2 结构变形深基坑施工对周围建筑物的结构产生一定的影响,因此需要对建筑物的变形情况进行监测。
监测点通常设置在建筑物的重要结构部位,如墙体、柱子等。
结构变形监测可以通过安装应变计、测斜仪、位移传感器等设备进行。
3.3 周围地下管线监测深基坑施工需要对周围的地下管线进行监测,特别是对于各种管线的位移情况需要及时掌握。
监测方法可以使用测斜仪、位移传感器等设备进行。
4. 监测方法深基坑施工监测可以结合传统的现场监测方法和现代的无线监测技术进行。
具体的监测方法包括但不限于以下几种:4.1 传统监测方法传统的监测方法通常包括现场测量和监测设备的安装。
现场测量通常使用水平仪、经纬仪、测距仪等设备进行,可以得到地表沉降、建筑物变形等数据。
监测设备的安装包括应变计、测斜仪、位移传感器等,需要专业的技术人员进行。
4.2 无线监测技术现代的无线监测技术可以大大提高监测的效率和准确性。
通过使用无线传感器网络,可以实现远程监测和数据传输,减少了人力和物力的投入。
无线监测技术可以实时监测变形情况,并通过数据分析提供预警和决策支持。
5. 监测频率深基坑施工监测的频率应根据工程的特点和监测目标来确定。
深基坑施工监测方案
深基坑施工监测方案1. 简介深基坑施工是指在建筑工程中,为了满足特定的建设需求而挖掘较深的土方体,常常用于地下停车场、地铁站等工程。
由于深基坑的施工过程中存在一定的风险和安全隐患,因此需要制定相应的监测方案,以确保施工的安全和稳定。
2. 监测目标深基坑施工监测的主要目标是对基坑边界土层的变形和支护结构的变化进行实时监测,以及对施工过程中可能出现的地下水位变化进行监测。
通过监测数据的分析和处理,可以及时掌握施工过程中的变形和变化情况,提前采取相应的措施,确保施工的安全性和稳定性。
3. 监测方法3.1 地表测量法地表测量法是最常用的监测方法之一,该方法通过使用全站仪或者自动水准仪进行测量,对基坑周边地表的沉降和变形情况进行监测。
通过定期测量并比对测量结果,可以及时发现地表下陷和倾斜等问题,从而采取相应的补救措施。
3.2 支护结构监测法深基坑的施工中常常采用支护结构,如钢支撑、混凝土墙等,用于稳定挖掘的土方体。
支护结构监测法主要通过在支护结构上安装压力应力计、位移传感器等监测设备,实时监测支护结构的受力变化和变形情况。
通过对监测数据的分析,可以确定支护结构的稳定性,并及时采取措施加固或修复。
3.3 地下水位监测法地下水位的变化对于深基坑施工来说具有重要意义,因为地下水的变化可能导致土层的液化和基坑的失稳。
地下水位监测一般使用浮标式或压力式水位计进行监测,通过实时监测地下水位的变化,可以及时采取抽水或加固等措施,以确保施工过程中的安全。
4. 数据处理与分析深基坑施工监测数据量大、频率高,需要进行有效的数据处理和分析,以获取有价值的信息。
数据处理和分析的方法包括数据计算、数据插值、数据挖掘等,通过这些方法可以得出土层变形的趋势和规律,提前预测可能发生的问题,并及时采取相应的措施。
5. 安全措施与应急预案深基坑施工监测方案中还应包含相关的安全措施和应急预案,以应对可能发生的意外情况。
如在施工过程中,如果发现土层变形超出安全值,或者支护结构出现破损等情况,应立即采取紧急措施,确保施工现场的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阐述深基坑施工的监测方法及特点
摘要:该文主要论述了深基坑施工中的变形监测的特点、精度要求、监测项目及监测方法。
关键词:深基坑变形监测特点精度监测方法
随着城市现代化的进程加快,城市交通也日益拥挤,修建地下铁道和地下隧道是城市建设可持续发展,大幅度改善城市交通状况的重要途径。
在地铁和隧道工程中,当需开挖基坑进行地下施工时,由于场地的局限,在基坑平面范围以外通常不可能有足够的空间供放坡开挖,必须设计规模较大的开挖围护系统。
监测工作既是检验深基坑设计理论正确性和发展设计理论的重要手段,同时又是及时指导正确施工,避免基坑工程事故发生的必要措施。
目前常用的监测方法有:(1)采用钢丝,钢卷尺两用式位移收敛计对围护结构顶部进行收敛量测;(2)用精密光学经纬仪进行观测;(3)前方交会法。
1 深基坑施工监测的特点
1.1时效性
基坑监测通常是配合降水和开挖过程,有鲜明的时间性。
测量的结果是动态变化的,一天以前或几个小时之间的测量结果都将会失去直接的意义,因此深基坑施工中监测需随时进行通常是1次/d,在测量对象变化快的关键时期,可能每天需进行数次。
1.2高精度
普通工程测量中的误差限值通常保持在数毫米之内,而正常情况下基坑施工中的环境变形速率可能会在0.1mm/d以下,要测到这样的变形精度,普通的测量方法和仪器都不能胜任,因此在测量基坑施工中的通常采用一些特殊的高精度仪器。
1.3等精度
基坑施工中的监测通常只要求测得相对应的变化值,而不要求测量的绝对值。
在基坑边壁变形测量中,只要求测定边壁相对于原来基准位置的位移即可,而边壁的绝对位置可以完全不需要知道。
由于这个鲜明的特点,使得深基坑施工监测有其自身规律。
2 监测的基本要求
无论采用何种具体的监测方法,都要满足下列技术要求:
2.1观测工作是必须有计划的,要严格按照有关的技术文件执行。
2.2监测数据必须是可靠的。
2.3观测必须要及时。
2.4对于观测的项目,应按照工程的具体情况预先设定好预警值,预警值应包括变形值、内力值以及其它变化速率。
2.5每个工程的基坑支护监测,应该有完整的观测记录,形象的图表、曲线和观测报告。
3 监测精度要求和方法(见表)
4 监测项目及方法
4.1沉降监测
根据经验知道,基坑施工对环境的影响范围为坑深的3-4倍,因此,沉降观测所选的后视点应选在施工的影响范围之外;后视点不应该少于二点。
沉降观测的仪器应选用精密的水准仪,按二等精密的水准观测方法测二测回,测回校差应该小于±1mm。
地下管线、地下设施、地面建筑都应该在基坑开工前测取初始值。
在开工期间,应根据需要不断的测取数据,从几天观测一次到一天观测几次都可以的;每次的观测值与初始值比较即可以为累计量,与前次的观测数据相比较即为日变量。
4.2位移监测
位移监测点的观测一般最常用的方法是偏角法.同样测站点应选在基坑的施工影响范围之外。
外方向的选用应该不少于3点,每次观测都必须要定向,为防止测站点被破坏应该在安全地段再设一个点作为保护点,以便在必要时作恢复测站点之用。
初次观测时,须同时测取测站至各测点的距离,有了距离就可以算出各测点的秒差,以后各次的观测只要测出每个测点的角度变化就可以推算出各测点的位移量。
观测次数和报警值与沉降监测相同。
当然也可用坐标法来测取位移量。
4.3支护结构侧向位移监测(测斜)
测斜仪是一种可以精确地测量沿铅垂方向土层或围护结构内部水平位移的工程测量仪器,可以用来测量单向位移,也可以测量双向位移,再由两个方向的位移求出其矢量和,得到位移的最大值和方向。
4.4测斜管的埋设
(1)在预定的测斜管埋,设位置钻孔。
(2)将测斜管底部装上底盖,逐节开始组装,并放大钻孔内。
(3)测斜管固定完毕后,用清水将测斜管内冲洗干净将探头模型放进测斜管里,沿导槽上下滑行一遍,以便检查导槽是否畅通无阻,滚轮是否有滑出导槽的现象。
(4)测量测斜管管口的坐标以及高程,做出醒目的标志,以便保护管口。
4.5土体水平位移测量
(1)连接探头和测读仪。
(2)将探头插入测斜管,使滚轮卡在导槽上,缓慢下至孔底以上0.5m处。
注意不要把探头降到套管的底部,以免损伤探头。
测量自下而上地沿导槽全长每隔0.5m测读一次。
为提高测量结果的可靠度,每一测量步骤中均需一定的时间延迟,以确保读数系统与环境温度及其他条件平稳。
(3)测量完毕后,将探头旋转180°,插入同一对导槽,按以上方法重复测量,前后两次测量时的各测点应在同一位置上;在这种情况下,两次测量同一测点的读数绝对值之差应小于10%,且符号相反,否则应重测本组数据。
(4)用同样的方法和程序,可以测量另一对导槽的水平位移。
(5)侧向位移的初始值应取基坑降水之前,连续3次测量无明显差异之读数的平均值。
(6)观测间隔时间通常取定为3d。
(7)RT-20MU型测斜仪配有RS-232接口,可以与微机相连,将系统设置与测量数据在微机与测斜仪之间传输。
5 地下水位监测
地下水位观测,首次一定要测取水位管管口标高。
从而可测得地下水位的初始标高。
在以后的施工工程进展中,可以按照需要的周期和频率,测得地下水位和地下各土层标高的每一次变化量和累计变化量。
地下水位沉降的报警值,应该由设计人员根据地质水文条件来严格确定。
6 讨论
深基坑施工中测量的目的和特点与普通工程的测量截然不同,该测量的方法
和设备与传统的测量也完全不一样。
其中最重要的测量设备除深层沉降仪与测斜仪外,还有振弦式钢筋应力计、土压力盒、孔隙水压力计等,分别适用于不同的专门需求。