数学建模期末复习

数学建模期末复习
数学建模期末复习

一、 线性规划

1.求解下列线性规划问题: 共20分 max z=2x 1+7x 2-3 x 3

x 1+3x 2+4x 3≤30 (第一种资源限制约束)

x 1+4x 2- x 3≤10 (第二种资源限制约束)

x 1、x 2、x 3≥0

(1) 求出该问题的最优解和最优值;

(2) 第二种资源限量由10变为20,最优解是否改变;若改变请求出新的最优解; (3) 增加一个新变量x 6,其目标函数系数为3,技术消耗系数为???

?

??=????

??212616a a ,最优解是否改变;若改变请求出新的最优解。

解:(1)lingo 程序 max =2*x1+7*x2-3*x3;

x1+3*x2+4*x3<=30; x1+4*x2-x3<=10;

最优解(x1 x2 x3)=(10 0 0) 最优值=20

(2) max =2*x1+7*x2-3*x3;

x1+3*x2+4*x3<=30; x1+4*x2-x3<=20;

最优解(x1 x2 x3)=(20 0 0) 最优值=40

或对第一题进行灵敏度分析(第二种资源限量可以在0到30范围内变化,

最优基解不变最优解(x1 x2 x3)=(20 0 0)最优值=40)

(3)max =2*x1+7*x2-3*x3+3*x4; x1+3*x2+4*x3+x4<=30; x1+4*x2-x3+2*x4<=10;

求解得到 最优解(x1 x2 x3 x4)=(10 0 0 0) 最优值=20

2.某校基金会有一笔数额为5000万元的基金,打算将其存入银行。当前银行存款的利率见下表2。取款政策与银行的现行政策相同,定期存款不提前取,活期存款可任意支取。

校基金会计划在5年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在5年末仍保留原基金数额。校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。请你帮助校基金会设计一个基金最佳使用方案,试建立其模型。(15分)

二年期 三年期 五年期

3、某公司打算在三个不同的地区设置4个销售点,根据市场预测部门估计,在不同的地区设置不同的数量的销售点,每月可得到的利润如表2所示。试问在各个地区应如何设置销售点,才能使每月获得的总利润最大其最大利润是多少并给出最优方案。(15分)

表2

销售点 利润

地区 0 1 2 3 4 1 0 16 25 30 32 2 0 12 17 21 22 3

10

14

16

17

解:变量 ij x 为0,1变量

x ij

0,(i =1,2, 3;j=1,2,3,4,5)

目标函数:Max 3

5

1

1

ij ij i j z x c ===

∑∑

约束条件:

5

13

5

11

1,1,2,3

[*(1)]4

ij j ij

i j x i x

j =====-=∑

∑∑

Cij=0 16 25 30 32 0 12 17 21 22 0 10 14 16 17

程序: model : sets :

s/1..3/; d/1..5/; link(s,d):c,x; Endsets

max =@sum (link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j))); ! 同上面相同的目标函数 ; @for (s(i ):@sum (d(j):x(i,j))=1);

@sum (s(i):@sum (d(j):(j-1)*x(i,j)))=4; data :

c=0 16 25 30 32 0 12 17 21 22 0 10 14 16 17; Enddata

结果:Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 4

Variable Value Reduced Cost

X( 1, 3)

X( 2, 2)

X( 3, 2)

答:地区1设2个销售点,地区2、3个设1个销售点,最大利润为47

4.一个木材储运公司有很大的仓库用以储运出售木材。由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分储存起来以后出售。已知该公司仓库的最大储存量为20万米3,储存费用为(70+100u)千元/万米3,u为存储时间(季度数)。已知每季度的买进卖出价及预计的销售量如表1所示。表1

由于木材不宜久贮,所有库存木材应于每年秋末售完。为使售后利润最大,试建立这个问题的线性规划模型。(15分)

解:xij:第i季度买进,第j季度卖出,(i<=j)

目标函数:Max=x11*(425-410)+x12*(440-410)+x22*(440-430)+x13*(465-410)+x23*(465-430)+x33*(465-46 0)+x14*(455-410)+x24*(455-430)+x34*(455-460)+x44*(455-450)-x12*(70+100*1)**(70+100*2)* *(70+100*3)**(70+100*1)**(70+100*2)**(70+100*1)*

约束条件:

X11=100

X12+x22=140

X13+x23+x33=200

X14+x24+x34+x44=160

X12+x13+x14<=20

X13+x14+x23+x24<=20

X14+x24+x34<=20

模型:

Max=x11*(425-410)+x12*(440-410)+x22*(440-430)+x13*(465-410)+x23*(465-430)+x33*(465-46 0)+x14*(455-410)+x24*(455-430)+x34*(455-460)+x44*(455-450)-x12*(70+100*1)**(70+100*2)* *(70+100*3)**(70+100*1)**(70+100*2)**(70+100*1)*;

X11=100;

X12+x22=140;

X13+x23+x33=200;

X14+x24+x34+x44=160;

X12+x13+x14<=20;

X13+x14+x23+x24<=20;

X14+x24+x34<=20;

结果:Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 0

Variable Value Reduced Cost

X11

X12

X22

X13

X23

X33

X14

X24

X34

X44

Row Slack or Surplus Dual Price

1

2

3

4

5

6

7

8

答:最大利润为:5160,季度冬买进120,本季度卖出100,等到季度夏卖出20 季度春买进140,本季度卖出140 季度秋买进180本季度卖出140 季度秋买进160本季度卖出160

二、 对偶分析

1、求解下列线性规划问题: 共25分 max z=4x 1+x 2+2x 3

8x 1+3x 2+x 3≤2 (第一种资源限制约束)

6x 1+x 2+x 3≤8 (第二种资源限制约束) x 1、x 2、、x 3≥0 (1) 求出该问题的最优解和最优值;

(2) 第一种资源限量由2变为4,最优解是否改变,若改变请求出新的最优解;

(3) 现有新产品丁,每单位产品需消耗第一种资源2单位,消耗第二种资源3单位,问

该产品的售价至少为多少时才值得生产

(4) 由于资源缺乏,现有第三种原来并不受约束资源现在受到限制,限制方程为:

10x 4x 3x 2321≤++,问此时最优解是否受到影响,若需要改变,请求出新的最

优解

解:(1)最优解x1=x2=0,x3=2,最优值为4 程序:max =4*x 1+x 2+2*x 3;

8*x 1+3*x 2+x 3<=2 ; 6*x 1+x 2+x 3<=8 ;

结果:Global optimal solution found.

Objective value: Infeasibilities: Total solver iterations: 2

Variable Value Reduced Cost X3

Row Slack or Surplus Dual Price 2 (2)

法一:第一题进行灵敏度分析(第二种资源限量可以在0到8范围内变化,最优基解不变最优

解(x1 x2 x3)= 0 0 4)最优值=8)

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable Variable Coefficient Increase Decrease

X1 INFINITY

X2 INFINITY

X3 INFINITY

Righthand Side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

2

3 INFINITY

法二:

程序:max =4*x1+x2+2*x3;

8*x1+3*x2+x3<=4;

6*x1+x2+x3<=8 ;

结果:Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 2

Variable Value Reduced Cost

X1

X2

X3

Row Slack or Surplus Dual Price

1

2

3

(3)

程序:

max=4*x1+x2+2*x3+x4;

8*x1+3*x2+x3+2*x4<=2;

6*x1+x2+x3+3*x4<=8;

灵敏度分析:x4可由一个单位增加3个单位,即当x4>4时生产,故售价至少大于4 Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable Variable Coefficient Increase Decrease

X1 INFINITY

X2 INFINITY

X3 INFINITY

X4 INFINITY

Righthand Side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

2

3 INFINITY

(4)最优基解不变,最优解为(x1 x2 x3)= 0 0 2)最优值=4)

程序:max=4*x1+x2+2*x3;

8*x1+3*x2+x3<=2;

6*x1+x2+x3<=8;

2*x1+3*x2+4*x3<=10;

结果:Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 1

Variable Value Reduced Cost

X1

X2

X3

Row Slack or Surplus Dual Price

1

2

3

4

2. 某厂的二种产品I、II分别在四种设备A1 、A2 、A3 、A4上加工。产品所需的机器台时、设备在计划内的有效台时、每件产品利润如下表所示:

(1)请制定一份最佳生产计划,使其总收入达到最大。试建立此问题的数学模型。

(2)求解此问题。(3)若把机器台时出租, 问应如何定价(20%)解:设生产1型x1 ,生产2型x2,

目标函数:max z=2*x1+3*x2

约束条件:2*x1+2*x2<=12

X1+2*x2<=8

4*x1<=16

4*x2<=12

程序:max =2*x1+3*x2;

2*x1+2*x2<=12;

x1+2*x2<=8;

4*x1<=16;

4*x2<=12;

解得:(x1 x2)=(4 2)

最优值=14

(2)

三、运输问题及整数规划

1.某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者,规定每个承包商只能且必须承包一个项目,试在总费用最小的条件下确定各个项目的承包者,总费用为多少各承包商对工程的报价如表3所示:(共10分)

A B C D

项目

投标者

甲15182124

乙19232218

丙26171619

丁19212317

解:

程序:model:

sets:

s/1..4/;

d/1..4/;

link(s,d):c,x;

Endsets

min=@sum(link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j)));! 同上面相同的目标函数;

@for(s(i):@sum(d(j):x(i,j))=1);

@for(d(j):@sum(s(i):x(i,j))=1);

data:

c=15 18 21 24

19 23 22 18

26 17 16 19

19 21 23 17;

Enddata

结果:Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 7

Variable Value Reduced Cost

X( 1, 2)

X( 2, 1)

X( 3, 3)

X( 4, 4)

答:甲承包B乙承包A丙承包C 丁承包D

总费用:为70

2.已知运输问题的调运和运价表如下,求最优调运方案和最小总费用。(共10分)。(用

B1B2B3产量销地

产地

A159215

A231718

A362817

销量181216

结果如下:

程序:model:

sets:

s/1..3/:a;

d/1..3/:b;

link(s,d):c,x;

Endsets

min=@sum(link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j)));! 同上面相同的目标函数;

@for(s(i):@sum(d(j):x(i,j))<=a(i));

@for(d(j):@sum(s(i):x(i,j))=b(j));

data:

a=15 18 17;

b=18 12 16;

c=5 9 2

3 1 7

6 2 8;

Enddata

end

结果:Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 6

Variable Value Reduced Cost

X( 1, 1)

X( 1, 2)

X( 1, 3)

X( 2, 1)

X( 2, 2)

X( 2, 3)

X( 3, 1)

X( 3, 2)

X( 3, 3)

答:A1运15个单位到B3 A2运18个单位到B1 A3运16个单位到B2 A3运1个单位到B3

总费用:124

3、石油公司有三个石油贮存点,四个石油需求点。其容量和单位运价如表所示:

制定一个贮存点到需求点的运输计划,使总的运输费用最小。试建立此问题的数学模型并且求解。(10%)

4. 许多非洲国家由于恶劣气候而使农业蒙受损害,联合国组织决定派5位农业专家去帮助5个非洲不发达国家,以提高他们的粮食供应。,每位专家能帮助不同国家提高粮食供应达到不同水平,提高的期望值如下表:

专家\国家 A B C D E

1 1

2 15 1

3 1

4 17

2 11 17 14 16 19

3 1

4 1

5 11 18 18

4 1

5 13 12 17 16

5 13 15 12 15 14

假定每个国家有同样的人口,试提出一个专家指派计划,使粮食供应的增长达到极大。试建立此问题的数学模型并且求解。(10%)

5. 某汽车厂与一些单位签订了生产70辆汽车的合同,按合同规定明年每季度末分别提供10,15,25和20台汽车。该厂各季度的生产能力及生产每辆汽车的成本如表所示:

根据生产能力,该厂能提前完成合同,但因此要付出相应的贮存费。现规定每辆汽车积压一

个季度需付万元贮存费。试问该厂应怎样安排各季的生产计划,使总的生产费用最少试建立此问题的数学模型并且求解。(15%)

解:xij:第i季度生产第j季度交的车辆

目标函数:min=x11*+x12*++x22*+x13*++x23*++x33*11+x14*++x24*++x34*+11)+x44*

X11=10

X12+x22=15

X13+x23+x33=25

X14+x24+x34+x44=20

X11+x12+x13+x14<=25

X22+x23+x24<=35

X33+x34<=30

X44<=10

程序:min=x11*+x12*++x22*+x13*++x23*++x33*11+x14*++x24*++x34*+11)+x44*;

X11=10;

X12+x22=15;

X13+x23+x33=25;

X14+x24+x34+x44=20;

X11+x12+x13+x14<=25;

X22+x23+x24<=35;

X33+x34<=30;

X44<=10;

结果:Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 4

Variable Value Reduced Cost

X11

X12

X33

X24

X34

X44

Row Slack or Surplus Dual Price

2

3

4

5

6

8

9

答:最小费用为773,第一季度生产25,本季度交10,等到第二季度交15

第二季度生产25,等到第4季度交5

第三季度生产30,本季度交25,等到第4季度交5

第4季度生产10

6. 某服务公司有4名技术员(A1,A2,A3,A4)为四位顾客(B1,B2,B3,B4)提供服务,由于技术员专长不同其服务时间随顾客而变化。具体服务时间由下表给出:

服务时间B1B2B3B4

A136710

A25638

A328416

A48659

试为该公司制定一份指派计划,使其总服务时间达到最小。试建立此问题的数学模型并求解。(10%)

解:xij:i技术员服务j顾客,为0,1变量

Cij=3 6 7 10

5 6 3 8

2 8 4 16

8 6 5 9

目标函数:

44

11

min*

ij ij

i j

x c

==

=∑∑

约束条件:

4

1

4

1

1,1,2,3,4

1,1,2,3,4

ij

j

ij

i

x i

x j

=

=

==

==

程序:model:

sets:

s/1..4/;

d/1..4/;

link(s,d):c,x;

Endsets

min=@sum(link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j)));! 同上面相同的目标函数;

@for(s(i):@sum(d(j):x(i,j))=1);

@for(d(j):@sum(s(i):x(i,j))>=1);

data:

c=3 6 7 10

5 6 3 8

2 8 4 16

8 6 5 9;

Enddata

end

结果:Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 8

Variable Value Reduced Cost

X( 1, 2)

X( 2, 3)

X( 3, 1)

X( 4, 4)

答:A1服务B2 A2服务B23 A3服务B1 A4服务B4

四、目标规划

1、设有一纺织厂可生产衣料和窗帘布共两种产品。该厂两班生产,每周的生产时间为80小时,无论生产哪种产品,该厂每小时的产量都是1千米。据市场预测,每周窗帘布的销售量为70千米,而衣料的销售量为45千米。假定窗帘布和衣料的单位利润分别为千元/千米和千元/千米,上级主管部门对该厂提出了以下四个顺序目标:

(1)尽可能避免开工不足;

(2)尽可能限制每周加班时间不超过10小时;

(3)尽可能满足市场需求;

(4)尽可能减少加班时间。

问该厂应如何安排生产才能使这些目标依序实现,试建立其数学模型。(15分)

解: 约束条件:

11223344128001290017002450

x x d d x x d d x d d x d d -+-+-+-++-+-=+-+-=-+-=-+-=

QSB---Goal programming

一级目标:min=0,x1=45,x2=45,d1+=10,d3+=30 二级目标:min=0,x1=45,x2=45,d1+=10,d3+=30 三级目标:min=0,x1=45,x2=45,d1+=10,d3+=30 四级目标:min=0,x1=45,x2=45,d1+=10,d3+=30

2、求解如下目标规划的满意解:

??

???????≥=-+=-++=-++++=+-+-+-+-+

-+

-+-+0

,,,,,,,71000100100401510)()(33221

1213322221112132211d d d d d d x x d d x d d x x d d x x d P d d P Minw 3.某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物。各种作物每亩需施肥

料分别为吨、吨、吨。预计秋后玉米每亩可收获500千克,售价为元/千克,大豆每亩可收获200千克,售价为元/千克,小麦每亩可收获300千克,售价为元/千克。农场年初规划时依次考虑以下的几个方面:

P1:年终收益不低于350万元; P2:总产量不低于万吨; P3:小麦产量以万吨为宜; P4:大豆产量不少于万吨; P5;玉米产量不超过万吨;

P6:农场现能提供5000吨化肥,若不够,可在市场高价购买,但希望高价采购量愈少愈好。试建立该目标规划问题的数学模型(不需要求解)。(16分

五、图与网络及关键路线

六、1.已知四个城市间的距离如下表所示,求从A城市出发,经其余城市一次且仅一

次,最后返回到A城市的最短路径与距离。(18分)

A B C D

A--112028

B12--1825

C239--10

D34326--

解:

2.某企业拟开发一新产品,该新产品投产前工序资料如下表(15分):

工序A B C D E F G H I J K L工序

紧前关系//A A D C,E F B,G B,G H G I,J,K紧前关系工时(周)4103682328521工时(周)

试求:1、绘制网络图;

2、计算时间参数;

3、确定关键线路。

2.某石油公司其输油管网如下图所示,试求该网络中的最大流(15分)。

.

结果为:

MODEL:

sets:

nodes/s,1,2,3,4,t/;

arcs(nodes,nodes)/

s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:c,f;

endsets

data:

c= 8 7 5 9 9 2 5 6 10;

enddata

max = flow;

@for(nodes(i)|i #ne# 1 #and# i #ne# @size(nodes):

@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);

@sum(arcs(i,j)|i #eq# 1:

f(i,j)) = flow;

@for(arcs:@bnd(0,f,c));

END

Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations: 4

Variable Value Reduced Cost

FLOW

C( S, 1)

C( S, 2)

C( 1, 2)

C( 1, 3)

C( 2, 4)

C( 3, 2)

C( 3, T)

C( 4, 3)

C( 4, T)

F( S, 1)

F( S, 2)

F( 1, 2)

F( 1, 3)

F( 2, 4)

F( 3, 2)

F( 3, T)

F( 4, 3)

F( 4, T)

Row Slack or Surplus Dual Price

1

2

3

4

5

6

3、某公司一新产品投产前全部准备工作如下表所示,试绘制网络图、计算时间参数和确定

关键路线(25分)。

工作工作内容紧前工作工时(周)

A市场调查/4

B资金筹备/10

C需求分析A3

D产品设计A6

E产品研制D8

F制定成本计划C、E2

G制定生产计划F3

H筹备设备B、G2

I筹备原材料B、G8

J安装设备H5

K调集人员G2

L准备开工投产I、J、K1

QSB---PERT-CPM

关键路线:A D E F G I L 时间参数:最早/最晚开工,最早/最晚结束

数学建模写论文过程中应该注意的问题

写论文过程中应该注意的问题: (一)问题提出和假设的合理性 (1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。 (2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。 (3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设;或者由观察所给数据的图象,得到变量的函数形式; 也可以参考其他资料由类推得到。对于后者应指出参考文献的相关内容。 (二)模型的建立在作出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形 式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了 解得到模型的过程上下文,之间切忌逻辑推理过程中跃度过大,影响论文的说服力, 需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要 先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表 达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依 据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注 意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。 (四)模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出 由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时 不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。

数学建模竞赛题目

西安科技大学第二届数学建模竞赛题目 A题:垃圾分类处理与清运方案设计 垃圾分类化收集与处理是有利于减少垃圾的产生,有益于环境保护,同时也有利于资源回收与再利用的城市绿色工程。在发达国家普遍实现了垃圾分类化,随着国民经济发展与城市化进程加快,我国大城市的垃圾分类化已经提到日程上来。2010年5月国家发改委、住房和城乡建设部、环境保护部、农业部联合印发了《关于组织开展城市餐厨废弃物资源化利用和无害化处理试点工作的通知》,并且在北京、上海、重庆和深圳都取得一定成果,但是许多问题仍然是垃圾分类化进程中需要深入研究的。 在深圳,垃圾分为四类:橱余垃圾、可回收垃圾、有害垃圾和其他不可回收垃圾,这种分类顾名思义不难理解。其中对于居民垃圾,基本的分类处理流程如下:

在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料。不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明。2)可回收垃圾将收集后分类再利用。 3)有害垃圾,运送到固废处理中心集中处理。 4)其他不可回收垃圾将运送到填埋场或焚烧场处理。 所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心。显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益。 本项研究课题旨在为深圳市的垃圾分类化进程作出贡献。为此请你们运用数学建模方法对深圳市南山区的分类化垃圾的实现做一些研究,具体的研究目标是: 1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案。以期达到最佳经济效益和环保效果。 2)假设转运站允许重新设计,请为问题1)的目标重新设计。 仅仅为了查询方便,在题目附录2所指出的网页中,给出了深圳市南山区所有小区的相关资料,同时给出了现有垃圾处理的数据和转运站的位置。其他所需数据资料自行解决。 附录1 1)大型厨余垃圾处理设备(如南山餐厨垃圾综合利用项目,处理能力为200吨/日,投资额约为4500万元,运行成本为150元/吨。小型餐厨垃圾处理机,处理能力为200-300公斤/日,投资额约为28万元,运行成本为200元/吨。橱余垃圾处理后产物价格在1000-1500元/吨。 2)四类垃圾的平均比例 橱余垃圾:可回收垃圾:有害垃圾:其他不可回收垃圾比例约为4:2:1:3。可回收垃圾划分为纸类、塑料、玻璃、金属四大类,大概比例分别是:55%、35%、6%、4%。纸类、塑料、玻璃、金属四类的废品回收价格是每公斤:1元、2.5元、0.5元、2.5元。

数学建模答题模板

例:某公司有6个仓库,库存货物总数分别为60,55,51,43,41,52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38.各仓库到8个客户处得单位货物运价见下表。 问题分析:本问题中,各仓库的供应总量为302个单位,需求量为280个单位,为一个供需不平衡问题。目标函数为运输费用,约束条件有两个:分别是供应方和需求方的约束。 解: 引入决策变量ij x ,代表着从第i 个仓库到第j 个客户的货物运量,用符号ij c 表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 则本问题的数学模型为: 68 11 min ij ij i j z c x ===∑∑ s.t 8 1 61,1,2,6,1,2,,80,1,2,6,1,2,,8ij i j ij j i ij x a i x d j x i j ==? ≤=???? ? ? ≤=????? ?≥=???=?????∑∑ 模型求解:用LINGO 语言编写程序(程序见题后附录),运行得到以下求解结果:

以下省略了其他变量的具体数值。 计算结果表明:目标函数值为664.00,最优运输方案见下表 【参考文献】 [1]李大潜,中国大学生数学建模竞赛(第三版)[M],北京:高等教育出版社,2009 [2]叶其孝,大学生数学建模竞赛辅导教材(五)[M],长沙:湖南教育出版社,2008 [3]袁新生,邵大宏,郁时炼.LINGO和EXCEL在数学建模中的应用[M],北京:科学出版社,2007 附录:LINGO程序 model: sets: wh/w1..w6/:ai;vd/v1..v8/:dj; links(wh,vd):c,x; endsets data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; enddata min=@sum(links(i,j):c(i,j)*x(i,j));

数学建模论文写作—模型假设

数学建模论文写作—模型假设 1.每个交巡警服务平台的职能、警力配备都基本相同 2.事故发生地都近似模拟在各路口节点。 3.每个交巡警服务平台配备一辆警车,一旦遇到突发事件,即刻从平台驶向案 发地,不考虑期间的反应时间。 4.不考虑平台所在节点本身作为案发处的出警情况。 5.相邻两个路口节点之间的道路认为是直线且无其他小道。并且各处的路况都 是相同的,不考虑交通意外(如汽车抛锚、堵塞、路口停顿等)、气候的影响,不考虑转弯时的车速变化等等,这些都是为了保证警车任意时刻在任意路段上的行驶速度均为60km/h。 6.两个不同节点处的发案率是相互独立的,即任意时刻,两互异节点的法案情 况两个不同节点处的案发情况不发生单向或双向的影响 7.不存在越点管辖和交叉管辖的情况。 以下是对上述假设的一些说明,及对在解决问题的过程中,我们发现的题中需要阐述的部分概念、条件与因素的分析: 对于假设一,每个交巡警服务平台的职能、警力配备这两个基本参数都大致相同,这是我们分析整个问题的前提假设,实质就是各平台在我们模型中的权数是相同的。 对于假设二,我们将案发的地点限制在各节点上。其一,在实际生活中,道路上的任何一点都有发案的可能,但通过查阅全国多个大中型城市道路网络案发的资料数据,完全可以得出交通网络中路口节点的案发率远远高于其他路段的结论;其二,考虑到题目给出的该市六区交通网络和平台设置的相关信息数据表(附录二)中只相应地给出了各路口节点的发案率,所以要将非节点处的发案情况计入在内,必须先模拟出道路上各点发案率的函数,这在实际操作中是极为困难的,很难把握其精确度,易造成较大误差。所以可以采用将其离散化的方法,仅选取节点便是最朴素的一种离散化思想的运用。 对于假设三,为何平台所配警车始终以相应平台所在节点为起点驶向案发地,将在下文“模型求解”中详细讨论,这里就不再赘述。不考虑期间的反应时间也是为了简化模型、去除次要因素的影响。 对于假设四,一旦突发事件发生在平台所在节点,那么所需时间一定是零,也就失去了其讨论的价值,所以不考虑平台所在节点本身作为案发处的出警情况。 特别是定量分析的基础。 在假设七中,所谓“越点管辖”是指平台A的管辖区域中存在一部分(甚至全部)与A所在节点间还隔有其他(至少一个)平台(如图2-1中的平台B)。

2016年数学建模大赛试题B题

2016高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) B题小区开放对道路通行的影响 2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。 除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。 城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题: 1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。 2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。交通流分配模型 3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。 4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

全国大学生数学建模竞赛论文写作要求

全国大学生数学建模竞赛论文写作要求 题目:明确题目意思 一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果 二、关键字:3-5个 三.问题重述。略 四.模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 (1)根据题目中条件作出假设 (2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意 五.模型的建立 (1)基本模型: 1) 首先要有数学模型:数学公式、方案等 2) 基本模型,要求完整,正确,简明 (2)简化模型 1)要明确说明:简化思想,依据 2)简化后模型,尽可能完整给出 (3)模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题, 不追求数学上:高(级)、深(刻)、难(度大)。 u 能用初等方法解决的、就不用高级方法, u 能用简单方法解决的,就不用复杂方法, u 能用被更多人看懂、理解的方法, 就不用只能少数人看懂、理解的方法。 (4)鼓励创新,但要切实,不要离题搞标新立异 数模创新可出现在 ▲建模中,模型本身,简化的好方法、好策略等, ▲模型求解中 ▲结果表示、分析、检验,模型检验 ▲推广部分 (5)在问题分析推导过程中,需要注意的问题: u 分析:中肯、确切 u 术语:专业、内行;; u 原理、依据:正确、明确, u 表述:简明,关键步骤要列出 u 忌:外行话,专业术语不明确,表述混乱,冗长。 六.模型求解 (1)需要建立数学命题时: 命题叙述要符合数学命题的表述规范, 尽可能论证严密。 (2)需要说明计算方法或算法的原理、思想、依据、步骤。

若采用现有软件,说明采用此软件的理由,软件名称 (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5.结果分析、检验;模型检验及模型修正;结果表示 (1)最终数值结果的正确性或合理性是第一位的; (2)对数值结果或模拟结果进行必要的检验。 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进; (3)题目中要求回答的问题,数值结果,结论,须一一列出;(4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; (5)结果表示:要集中,一目了然,直观,便于比较分析 ▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好 (6)必要时对问题解答,作定性或规律性的讨论。 最后结论要明确。 七.模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 7.参考文献 八.附录 详细的结果,详细的数据表格,可在此列出。 但不要错,错的宁可不列。 主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: n 模型的正确性、合理性、创新性 n 结果的正确性、合理性 n 文字表述清晰,分析精辟,摘要精彩

2017年中国研究生数学建模竞赛题

2017年中国研究生数学建模竞赛D题 基于监控视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为 的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片

全国大学生数学建模竞赛论文格式规范

全国大学生数学建模竞赛论文格式规范 (全国大学生数学建模竞赛组委会,2019年修订稿) 为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。 一、纸质版论文格式规范 第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。 第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。 第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。 第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。 第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。 第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。 第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。 第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。 二、电子版论文格式规范 第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求提交以

全国大学生数学建模竞赛模版(完整版)

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2010高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 内容要点: 关键词:结合问题、方法、理论、概念等

一、问题重述 内容要点: 1、问题背景:结合时代、社会、民生等 2、需要解决的问题 问题一: 问题二: 问题三: 二、问题分析 内容要点:什么问题、需要建立什么样的模型、用什么方法来求解 三、模型假设与约定 内容要点: 1、根据题目中条件作出假设 2、根据题目中要求作出假设 写作要求: 细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。将一些问题理想化、简单化。 1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解 2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考 3、假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。对于后者应指出参考文献的相关内容 四、符号说明及名词定义 内容要点:包括建立方程符号、及编程中用到的符号等

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

最新数学建模使用MATLAB进行数据拟合

1.线性最小二乘法 x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=r\y % if AB=C then B=A\C x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 运行结果: 2.多项式拟合方法 x0=[1990 1991 1992 1993 1994 1995 1996]; y0=[70 122 144 152 174 196 202]; a=polyfit(x0,y0,1) y97=polyval(a,1997) x1=1990:0.1:1997; y1=a(1)*x1+a(2);

plot(x1,y1) hold on plot(x0,y0,'*') plot(1997,y97,'o') 3.最小二乘优化 3.1 lsqlin 函数 例四: x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=lsqlin(r,y) x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 3.2lsqcurvefit 函数

(1)定义函数 function f=fun1(x,tdata); f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中x(1)=a,x(2)=b,x(3)=k (2) td=100:100:1000; cd=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]; x0=[0.2 0.05 0.05]; x=lsqcurvefit(@fun1,x0,td,cd) % x(1)=a,x(2)=b,x(3)=k t=100:10:1000; c=x(1)+x(2)*exp(-0.02*x(3)*t); plot(t,c) hold on plot(td,cd,'*')

数学建模论文格式

(论文题目,3 摘要(4号黑体居中、加粗,两个字之间空3个英文空格) 离散化为光线,直接用光线密度来描述光强度。 对于问题1,我们采用追迹法求解模型,其主要思想是:追踪点光源发向空间中的每一条光线的行迹,确定其在测试屏上的落点,从而确定B、C处的光强度比值。然后以此计算出所有满足设计要求的灯丝长度,最后衡量线光源功率,求得最优解。模型求解得:最佳灯丝长为4 = L mm。当灯丝长度确定后,代入模型中,问题2得解,亮区见图5。 作为追迹法的改进,提出简化算法。我们证明了如下定理: 到达B、C点连线的光线,来自于且仅来自于由B、C和焦点这三点确定的水平面。因此,只需追踪光源沿水平方向发出光线的行迹,即可确定B、C处的光强度。 对于问题2,为了更真实地反应实际情况,我们建立柱面光源模型,同时提出了“追源法”求解模型。其主要思想是:利用光路是可逆的原理,先后在B、C点放置点光源,用试探法求解发自B、C的光线照射在灯丝表面的范围,以此确定能够照射到B、C的灯丝表面的发光区域,再求解该区域照在B、C点的光强度比值,进而求解灯丝长度。模型求解得:最佳灯丝长为98 .3 = L mm。 对于问题3,参考实际需求,利用光照图的方法,重新分配测试点,以测出实际需要检测处的指标。求解得,只需在中轴线下方0.2m和0.3m处各添加一测试点即可。 针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方 注:摘要内容不超过一页。主要包括用什么方法,解决了什么问题,主要结果是什么,有什么特色。在完成基本问题的基础上,还做了哪些有意义的工作等。 摘要中不要出现公式和表格。篇幅A4纸大半页,不超过1页。

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模做题步骤及注意事项【数模经验谈】

拿到建模题目以后,按照一下流程去分工合作 红色表示步骤蓝色表示注意事项 一、第一天上午 1. 各自对立思考1个小时,主要分析题目的问题背景,已知条件,建模目的等问题。至少每人必须提出10到15个问题,并回答自己的问题。 2. 重点用语言的形式表述清楚问题的结构,即用语言描述自己的初步模型。(要自己提出的模型,可能就会产生一些假设。) 3. 再和队友讨论。讨论1个小时。形成自己团队的初步模型,同样是以语言形式描述的。 4. 接下来查找一些文献,讨论修改团队的模型,形成一个最终较完整的模型。并根据讨论最后形成对问题的统一认识,形成问题重述部分的内容。 注:1)如果问题有好几问,可以重点讨论第一个问题,但是也要考虑其他问题与第一问的关系!(一般建模中的几问都是有一定联系得);也可以同时考虑,同时建模。 2)注意参考文献的处理,参考别人的方法一定要在文中注明!这也是要求一直留意查找文献的目的。【随时记录】 二、第一天下午 将自己团队的模型数学化,用数学符号和数学语言公式的形式,表述自己的模型。此时会继续需要查文献,产生一些假设条件,并产生自己论文中的符号说明。

三、第二天上午 一个人开始写文章,语言重在逻辑清晰,叙述简洁明了!图、表准确。文章格式正确、内容完整。(问题重述,问题分析,模型假设,符号说明,模型形式,以及参考文献都已经在第一天的讨论中有了一定的共识。) 其余两个人(在不清楚时3人讨论),开始考虑第一个问题的模型的求解,即研究模型的解法。查找文献或者自己提出对模型的求解方法。此时可能需要继续对第一天建立的模型进行修改,简化等处理。(讨论后,及时告诉写文章的队友)。 四、第二天下午 写文章的继续。 编程的开始编程计算模型。此时,可能需要根据所采取的算法对模型的表述重新修改。 另一人帮忙编程,并开始考虑第二个、第三个问题的模型及求解方法。并一起讨论,形成共识,写进文章中。(此时,同样可能需要查文献,符号表示,产生假设)【注意是两个人求解,一个MATLAB,一个MATHEMATICA】 五、第三天上午 应该给出所有问题的计算结果了(最迟下午6点前)。 产生论文初稿。 六、第三天下午 进行模型的分析。主要是分析编程计算出的解的现实意义等,通过图、

数学建模论文模版与字体标准

张三:李四:王五:

标题 摘要 关键词: 一、问题重述 二、模型分析 2.1 问题一的分析 2.2 问题二的分析 2.2 问题三的分析 三、模型假设 四、符号说明

五、模型建立与求解 5.1问题一的模型建立与求解: 5.2 问题二的模型建立与求解: 5.3 问题三的模型建立与求解: 六、模型的综合评价 6.1模型的优点: 6.2模型的缺点: 6.3模型的推广: 。 七、参考文献 [1]司守奎孙玺菁,数学建模算法与应用,北京:国防工业出版社,2015 八、附录 全国大学生数学建模竞赛论文格式规范 ●本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 (全国评奖时,每个组别一、二等奖的总名额按每道题参赛队数的比例分配; 但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每题论文数的比例分配。) ●论文用白色A4纸打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。

●论文第一页为承诺书,具体内容和格式见本规范第二页。 ●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体 内容和格式见本规范第三页。 ●论文题目、摘要和关键词写在论文第三页上(无需译成英文),并从此页开 始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。注意:摘要应该是一份简明扼要的详细摘要,请认真书写(但篇幅不能超过一页)。 ●论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题 用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。打印文字内容时,应尽量避免彩色打印(必要的彩色图形、图表除外)。 ●从第四页开始是论文正文(不要目录)。论文不能有页眉或任何可能显示答 题人身份和所在学校等的信息。 ●论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。 ●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的 参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。 ●在论文纸质版附录中,应给出参赛者实际使用的软件名称、命令和编写的全 部计算机源程序(若有的话)。同时,所有源程序文件必须放入论文电子版中备查。论文及源程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。(如果发现程序不能运行,或者运行结果与论文中报告的不一致,该论文可能会被认定为弄虚作假而被取消评奖资格。) ●本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一 要求,可由赛区自行决定。 ●在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要 求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等)。 ●不符合本格式规范的论文将被视为违反竞赛规则,无条件取消评奖资格。 ●本规范的解释权属于全国大学生数学建模竞赛组委会。 [注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。 全国大学生数学建模竞赛组委会2013年8月26日修订

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分 段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

美赛-数学建模-写作模版(各部分)

摘要 第一段:写论文解决什么问题 1.问题的重述 a. 介绍重点词开头: 例1:“Hand move” irrigation, a cheap but labor-intensive system used on small farms, consists of a movable pipe with sprinkler on top that can be attached to a stationary main. 例2:……is a real-life common phenomenon with many complexities. 例3:An (effective plan) is crucial to……… b. 直接指出问题: 例1:We find the optimal number of tollbooths in a highway toll-plaza for a given number of highway lanes: the number of tollbooths that minimizes average delay experienced by cars. 例2:A brand-new university needs to balance the cost of information technology security measures with the potential cost of attacks on its systems. 例3:We determine the number of sprinklers to use by analyzing the energy and motion of water in the pipe and examining the engineering parameters of sprinklers available in the market. 例4: After mathematically analyzing the ……problem, our modeling group would like to present our conclusions, strategies, (and recommendations )to the ……. 例5:Our goal is... that (minimizes the time )………. 2.解决这个问题的伟大意义 反面说明。如果没有…… Without implementing defensive measure, the university is exposed to an expected loss of $8.9 million per year. 3.总的解决概述 a.通过什么方法解决什么问题 例:We address the problem of optimizing amusement park enjoyment through distributing Quick Passes (QP), reservation slips that ideally allow an individual to spend less time waiting in line. b.实际问题转化为数学模型 例1 We formulate the problem as a network flow in which vertices are the locations of escorts and wheelchair passengers. 例2 : A na?ve strategy would be to employ the minimum number of escorts to guarantee that all passengers reach their gates on time. c.将问题分阶段考虑 例3:We divide the jump into three phases: flying through the air, punching through the stack, and landing on the ground. 第二、三段:具体分析 1.在什么模型中/ 建立了什么模型 a. 主流模型 例1:We formulate a differential model to account for the rates of change of these uses, and how this change would affect the overall consumption of water within the studied region.

相关文档
最新文档