几种新型搅拌摩擦焊技术
搅拌摩擦焊镁铝异种材料研究现状
随着现代制造技术的不断进步,材料焊接技术也在不断发展。
搅拌摩擦焊作为一种新型的焊接方法,因其低能耗、无污染、高效率等优点而备受关注。
在工业界和学术界,对搅拌摩擦焊技术的研究也越来越深入。
一、搅拌摩擦焊简介1. 搅拌摩擦焊的原理和特点搅拌摩擦焊是一种无熔金属的固态焊接方法,通过机械搅拌和摩擦加热的方式将材料焊接在一起。
与传统的熔化焊接方法相比,搅拌摩擦焊具有温度低、热影响区小、焊接变形小等优点。
2. 搅拌摩擦焊的应用领域搅拌摩擦焊技术已广泛应用于航空航天、汽车制造、铁路交通等领域,尤其在焊接铝合金、镁合金等轻金属材料方面具有独特优势。
二、搅拌摩擦焊镁铝异种材料研究现状1. 镁铝异种材料的特点镁铝异种材料因其密度低、强度高、耐腐蚀等特点,被广泛应用于航空航天、汽车制造等领域。
然而,由于镁铝材料的化学性质和熔点差异较大,传统的焊接方法往往难以实现良好的焊接效果。
2. 搅拌摩擦焊镁铝异种材料的研究现状为解决镁铝异种材料的焊接难题,学术界和工业界进行了大量的研究。
目前,搅拌摩擦焊镁铝异种材料的研究已取得了一定进展,但仍存在一些挑战。
3. 研究现状的主要问题(1)焊接接头的组织和性能不稳定,需要进一步优化工艺参数和焊接头形貌。
(2)搅拌摩擦焊镁铝材料的金属间化合物生成机理和影响因素尚不清楚,需要深入研究。
(3)焊接接头的力学性能、耐腐蚀性能等方面还需要进一步评估和提升。
三、未来研究方向1. 优化焊接工艺参数针对搅拌摩擦焊镁铝异种材料存在的问题,未来研究可以进一步优化焊接工艺参数,包括搅拌转速、下压力、焊接速度等,以获得更稳定的焊接接头组织和性能。
2. 深入研究金属间化合物形成机理金属间化合物的生成对搅拌摩擦焊接头的性能具有重要影响,未来的研究可以针对金属间化合物的形成机理和影响因素进行深入探讨,为优化焊接工艺提供理论依据。
3. 综合评价焊接接头性能未来的研究还可以从焊接接头的力学性能、耐腐蚀性能等方面进行综合评价,探索提升镁铝异种材料搅拌摩擦焊接头综合性能的途径。
谈搅拌摩擦焊技术
成功案例介绍及经验总结
01
成功案例一
某航空制造企业成功应用搅拌摩擦焊技术,实现了铝合金材料的可靠连
接。通过合理的工艺参数设置和操作规范,获得了高质量的焊接接头,
提高了生产效率。
02
成功案例二
某轨道车辆制造企业采用搅拌摩擦焊技术,实现了不锈钢车体结构的快
速、高效连接。通过优化工艺参数,降低了焊接变形和应力,提高了焊
THANKS
谢谢您的观看
汽车制造领域
车身结构的连接
搅拌摩擦焊技术可用于汽车车身结构的连接,提高车身的强度和刚度。
新能源汽车电池托盘的焊接
搅拌摩擦焊技术还可用于新能源汽车电池托盘的焊接,提高电池托盘的稳定性和安全性。
轨道交通领域
轨道车辆的制造
搅拌摩擦焊技术可用于轨道交通领域中轨道车辆的制造,提高车辆的稳定性和安全性。
地铁车辆车体的焊接
搅拌摩擦焊技术还可用于地铁车辆车体的焊接,提高车体的强度和刚度。
新能源领域
太阳能板的焊接
搅拌摩擦焊技术可用于新能源领域中太 阳能板的焊接,提高太阳能板的稳定性 和效率。
VS
风力发电机叶片的焊接
搅拌摩擦焊技术还可用于风力发电机叶片 的焊接,提高叶片的稳定性和安全性。
03
搅拌摩擦焊技术工艺流程与设 备
,能够产生摩擦热和塑性变形,实现材料的连接。
控制系统
02 用于控制搅拌头的旋转速度、压力和焊接时间等参数
,确保焊接过程的稳定性和可控性。
焊接夹具
03
用于固定待焊接的材料,确保焊接过程的稳定性和精
度。
设备选型与维护
设备选型
根据生产需求和预算等因素,选择适合的搅拌摩擦焊设备,包括搅拌头的类型、尺寸和 控制系统等。
搅拌摩擦点焊
新型绿色环保焊接技术——搅拌摩擦点焊摘要面对节能减排和环境保护要求,一种新型的绿色环保焊接技术——搅拌摩擦点焊技术应运而生,作为在搅拌摩擦焊基础上发展起来的一种新型固相焊接技术,其接头质量高、变形小、焊接质量稳定,并且具有减轻结构重量、降低制造成本及节省能源等一系列优点。
本文介绍了搅拌摩擦点焊的固相连接机理,工艺流程,以及技术特点,并举例说明其在汽车工业和航空工业的发展应用状况。
关键词:搅拌摩擦点焊;电阻点焊;铆接;熔焊;车身;航空铝材目录目录摘要 (I)目录 ........................................................................................................................................ I I1 绪论 (1)2 搅拌摩擦点焊的固相连接机理 (2)2.1 搅拌摩擦焊技术简介 (2)2.2搅拌摩擦点焊技术介绍 (2)3 搅拌摩擦点焊的工艺流程 (4)4 搅拌摩擦点焊的技术特点 (4)4.1 与电阻点焊(RSW)对比的优点 (4)4.1.1 生产成本与能源消耗 (4)4.1.2 接头质量 (5)4.2 与铆接对比的优点 (6)4.2.1 生产成本与能源消耗 (6)4.2.2 接头质量 (6)5搅拌摩擦点焊在汽车工业和航空工业的应用状况 (7)5.1 搅拌摩擦点焊在汽车工业的应用状况 (7)5.2 搅拌摩擦点焊在航空工业的应用状况 (8)6 全文结论 (9)参考文献 (9)1 绪论1 绪论1.1引言随着全球资源与环境保护问题的日趋严峻,运载工具的轻量化设计成为汽车、航空航天等制造领域的发展方向。
一方面采用铝合金代替传统的钢材料,另一方面通过高效的新型工艺技术提高产品的可靠性并降低产品重量。
铝合金作为运载工具的主要制造材料,其主要连接方式是焊接和铆接。
在欧洲汽车车体生产中,常用的连接技术是YAG激光焊接方法,在日本车体制造中常用电阻点焊方法,运载火箭贮箱的制造过程中要大量应用电阻点焊和铆接技术,而航空飞行器的制造过程更需要广泛采用铆接技术。
高效_固相焊接新技术_搅拌摩擦焊
专 题 讨 论 — — 有 色 金 属 焊 接 工 艺 及 设 备
——678 #$%&’())(*+$,(, -./$0’1&2-( 3(4 4(/0$3% +(*&3./.%5—
5678 ,9:;<:=>", ,678 ?@A:% !"#1<@=A ()* 1B=CBD, EB@F@=> "$$$%&, 1<@=A; %#EB@F@=> 7DB:=A9C@GAH IA=9JAGC9DB@=> +BG<=:H:>K LBMBADG< N=M@C@C9CB, EB@F@=> "$$$%&, 1<@=A’ 7OMCDAGC : EAMBP := @=CD:P9G@=> CBG<=@G G<ADAGCBD@MC@G :J ()*, C<B @=P9MCD@AH@QBP ARRH@GAC@: :J ()* @= PBSBH:RBP G:9=CDK TAM
前言
英国焊接研究所!+<B *BHP@=> %$ 世纪 0$ 年代初, N=MC@C9CB , +*N’ 发 明 了 搅 拌 摩 擦 焊 接 技 术 !(D@GC@:= 简称 ()*’。 这是自激光焊发明以来颇 )C@D *BHP@=>, 具革命性的一项焊接技术。 该技术的产生大大改变 并 并简化了高强 !%\\\ 、 ]\\\’ 铝合金结构的 制 造 , 为镁合金、 铜合金、 钢及钛合金结构的焊接提供了 可选择的方案。 这项杰出的焊接技术发明正在为世 界制造技术的进步作出贡献。 在国外, 搅拌摩擦焊已经在诸多制造领域达 到规模化、 工业化的应用水平。 早在 "004 年, ^KRBD
铝合金搅拌摩擦焊工艺
铝合金搅拌摩擦焊工艺铝合金搅拌摩擦焊是一种先进的焊接技术,具有高效、节能、环保等优点。
本文将详细介绍铝合金搅拌摩擦焊工艺的各个环节,帮助读者更好地了解这一技术。
一、焊接准备在进行铝合金搅拌摩擦焊之前,需要进行充分的焊接准备。
这包括检查工件表面的油污、锈迹等杂质,确保工件表面干净整洁。
同时,需要准备好搅拌头、焊机、夹具等焊接工具,并对工具进行必要的检查和调整。
二、装配铝合金搅拌摩擦焊的装配过程需要严格按照工艺要求进行。
首先,要将工件放置在夹具中,确保工件的位置和角度正确。
然后,根据焊接工艺要求,选择合适的搅拌头,并将其插入到工件中。
在装配过程中,需要保证搅拌头的稳定性和准确性,避免出现偏移或倾斜现象。
三、搅拌头插入搅拌头的插入是铝合金搅拌摩擦焊的关键步骤之一。
在插入过程中,需要控制好搅拌头的插入深度和角度,确保其与工件表面紧密贴合。
同时,要避免搅拌头与工件表面产生过大的摩擦力,以免造成工件表面损伤或搅拌头损坏。
四、搅拌摩擦在进行搅拌摩擦时,需要控制好搅拌头的旋转速度和压力,使焊缝处的材料充分流动和混合。
同时,要控制好焊接温度,避免出现过热或冷却不均匀现象。
在搅拌摩擦过程中,还需要注意搅拌头的磨损情况,及时更换磨损严重的搅拌头。
五、焊接过程控制铝合金搅拌摩擦焊的过程控制是保证焊接质量的关键。
在焊接过程中,需要实时监测焊接温度、压力、旋转速度等参数,并根据实际情况进行调整。
同时,要严格控制焊接时间,确保焊缝处的材料充分熔化和混合。
在焊接过程中,还需要注意防止外部因素对焊接质量的影响,如振动、污染等。
六、焊后处理铝合金搅拌摩擦焊完成后,需要进行必要的焊后处理。
这包括对焊缝进行冷却、去除焊渣、对焊缝进行修整等。
在冷却过程中,要控制好冷却时间和方式,避免出现裂纹等现象。
同时,需要去除焊缝表面的焊渣和氧化物,修整焊缝的形状和尺寸,使其符合工艺要求。
七、质量检测质量检测是保证铝合金搅拌摩擦焊接质量的必要环节。
检测内容包括外观检测、无损检测、力学性能检测等。
搅拌摩擦焊技术
搅拌摩擦焊技术
1. 搅拌摩擦焊是熔接金属材料的无焊接方法,它对厚度较厚的工件,尤其是对零件中
厚度变化较大的坡口连接,效果更佳,也比剪切连接更可靠。
搅拌摩擦焊技术通过将原料金
属摩擦加热而使之融合。
搅拌摩擦焊结合了摩擦焊的融合金属诱导和搅拌的大量焊接固
溶效果的优点,神始看到应用更加广泛,已经成功应用于航空航天、汽车、船舶等领域。
2. 搅拌摩擦焊技术可分为三大部分:物料准备与预处理、搅拌摩擦焊系统与参数控
制和处理后台检验等。
其中物料准备与预处理包括材料选择、清理、切割、锻造等;搅拌
摩擦焊系统与参数控制部分要根据不同材料来确定一系列熔接参数,控制摩擦焊系统;处
理后台检验部分需要进行超声波探伤、熔合区显微组织分析以及力学性能检测。
3. 搅拌摩擦焊技术有很多优点,其中最重要的是可以节省焊材,并且可以达到同种
金属材料熔接更佳的效果。
此外,搅拌摩擦焊技术还可以减少工件对焊接产生的受损,也
可以大大节约工序耗费的时间。
4. 搅拌摩擦焊技术在焊接应用中也有一些问题需要重视,其中最大的问题就是冷锤
在熔接区附近残留的块状熔接金属,这些块状熔接金属的残留会影响熔接的强度和密封性,从而增加故障率。
另外,在搅拌摩擦焊中摩擦力的控制也非常重要,过大的摩擦力会使焊
接的温度偏高,容易造成焊接变形或脆性断开。
5. 搅拌摩擦焊技术是一种新型的熔接技术,在实际应用中要根据不同材料来制定适
当的焊接工艺参数,控制摩擦力等要素,从而获得高质量的焊接。
汽车制造新技术——搅拌摩擦焊
搅拌摩擦焊技术
搅拌摩擦焊是一 种连 续的 、纯
. 擦和塑性 变形作功的增加又会使接 头温度升高 ,实际搅拌摩擦焊是一
图 2 铸造铝合金和 6 mm铝合
机械的新型固相连接技术 , 如图l 所
金板材的搅拌摩擦焊 T WI
—
盖 26 o  ̄第5 0 期
M C 琨代零部件
维普资讯
应 用表 明 ,搅拌摩擦焊非常适合批量化产 品的制造 ,经过程序和参数优化 ,
图3 T 焊接的厚度为1 O WI O mm 的搅拌摩擦焊接头
基于机床和 自 动化实现的搅拌摩擦焊接头 质量具 有非常高的一致性 。 另外 , 搅拌摩擦焊汽车零件的接头性能非常优越 , 针对铝合金材料 , 一 般条件下搅拌摩擦焊接头机械性能指标都大于普通熔焊技术指标和达到与接 近母材性能指标 , 并且有些指标 ,如冲击韧性 ,还要高于母材指标 。 些特 这 点对于提高汽车的安全性非常重要 。 根据英 国焊接研究所资料分析 , 搅拌 摩擦焊对于汽车零部件的制造具有
不 同形式 的轴 肩和搅拌针 。
个温度动态 自 适应 平衡过程 ,被焊 接材料 始终 保持 热塑 化 固相 状态 , 由于整个焊接过程 中被焊接金属材 料 没有经过 “ 熔化一凝 固” 过程 , 所 以得到 的是优 异的 固相接 头连接 , 所以搅拌摩擦 焊接是一个 固态连接
过程 。
搅 拌摩擦 焊接技 术 (r t n Fi i co Sr li , t d g 简称 F W) 由位于 iWe n S 是 英国剑桥 的英 国焊接研 究所 ( h Te
Wed gIs tt,T )于 19 年 li tue wI n ni 91
部向后部转移过渡,过渡后的热塑
化金属在搅拌轴肩的作用下 ,受 到 了挤压和锻造 ,最终得到 了由精细 的锻 造组织构成的焊缝 接头。如果
轻量化-搅拌摩擦焊技术
四、搅拌摩擦焊在汽车上的应用
在汽车上的应用:汽车空调、轮毂、车门、电动汽车电池托盘、电机壳体等
14/15
本田2013款雅阁
电动汽车电池托盘
沃尔沃XC90 轮毂
BMW 5 门窗直立边柱 Mazda RX-8 后门
四、搅拌摩擦焊在汽车上的应用
15/15
供应商:北京赛福斯特 该公司2002年成立, 与TWI(英国焊接研究 所)合作开展全方面的 搅拌摩擦焊研究
二、搅拌摩擦焊的基本原理
FSW焊接工具
6/15
搅拌摩擦点焊(Friction Stir Spot Welding,FSSW)
搅拌摩擦点焊(Friction Stir Spot Welding,FSSW)技术是一种新兴的固相焊接技 术,它是由搅拌摩擦焊技术发展起来的。 它的连接机理是点焊工具周围高温摩擦热和材料塑性流动相互作用的结果。 冶金连接产生在点焊工具周围形成的一种圆环状搅拌区域与材料发生重结晶的区域中, 这一区域在点焊工具旋转、挤压、粉碎等机械力作用下,形成致密组织结构,赋予搅拌摩 擦点焊接头优异的力学性能。 一般分为以下几类: 基本型搅拌摩擦点焊技术(Basic FSSW) 填充式搅拌摩擦点焊技术(Refill FSSW) 摆动式搅拌摩擦点焊技术(Swing FSSW)
1/1
搅拌摩擦焊技术(FSW)
2019.07.06
2/15
3/15
一、搅拌摩擦焊技术背景
铝及铝合金的焊接中,存在许多问题: 膨胀系数大而在焊接时产生较大的变形。为了防止变形,在施工现场,必须采用胎卡具固定,和 由培训过的熟练工人操作。 铝及铝合金容易氧化,表面存在一层致密、坚固难熔的氧化膜,所以焊前要求对其表面进行去膜 处理,因此焊接时,要用氩等惰性气体进行保护。 铝及铝合金焊接时易产生气孔、热裂纹等缺陷。 对于热处理型铝合金来说,必须避免在焊接时热影响区产生软化,强度降低的问题。
一文了解先进焊接技术之搅拌摩擦焊
一文了解先进焊接技术之搅拌摩擦焊01原理搅拌摩擦焊方法与常规摩擦焊一样。
搅拌摩擦焊也是利用摩擦热与塑性变形热作为焊接热源。
不同之处在于搅拌摩擦焊焊接过程是由一个圆柱体或其他形状(如带螺纹圆柱体)的搅拌针(welding pin)伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化。
同时对材料进行搅拌摩擦来完成焊接的。
在焊接过程中工件要刚性固定在背垫上,焊头边高速旋转,边沿工件的接缝与工件相对移动。
焊头的突出段伸进材料内部进行摩擦和搅拌,焊头的肩部与工件表面摩擦生热,并用于防止塑性状态材料的溢出,同时可以起到清除表面氧化膜的作用。
FSW工作原理示意图搅拌摩擦焊的常用术语及定义旋转。
搅拌头旋转启动后,以一定速度插入待焊零件;插入。
停留一段时间,搅拌头附近区域的接头材料得到足够的摩擦热输入,从而出现软化变形,并有部分材料被挤到接头外部;焊接。
此时可以进行焊接,焊接时热塑化的接头材料不断被搅拌头向后转移,这部分材料在一定锻压力的作用下可以与周围材料形成牢固的扩散连接;离开。
焊接完成后,搅拌头以一定速度离开零件表面,焊接过程结束。
在焊接过程中,搅拌针在旋转的同时伸入工件的接缝中,旋转搅拌头(主要是轴肩)与工件之间的摩擦热,使焊头前面的材料发生强烈塑性变形,然后随着焊头的移动,高度塑性变形的材料逐渐沉积在搅拌头的背后,从而形成搅拌摩擦焊焊缝。
搅拌摩擦焊的工艺过程示意图搅拌摩擦焊对设备的要求并不高,最基本的要求是焊头的旋转运动和工件的相对运动,即使一台铣床也可简单地达到小型平板对接焊的要求。
但焊接设备及夹具的刚性是极端重要的。
搅拌头一般采用工具钢制成,焊头的长度一般比要求焊接的深度稍短。
应该指出,搅拌摩擦焊缝结束时在终端留下个匙孔。
通常这个匙孔可以切除掉,也可以用其它焊接方法封焊住。
针对匙孔问题,已有伸缩式搅拌头研发成功,焊后不会留下焊接匙孔。
02工艺因素影响FSW焊接过程稳定性和焊接质量的因素,主要有搅拌头的形状、搅拌头的位置、搅拌头的转速、焊接速度、接头精度以及材料拘束等。
搅拌摩擦焊工艺及其应用
搅拌摩擦焊工艺及其应用1 搅拌摩擦焊的定义与原理搅拌摩擦焊是一种非常新颖的金属连接技术,其原理是将金属材料在高速旋转的条件下不断挤压与摩擦热而使金属材料发生塑性变形进而在次冷却时形成均匀的焊缝。
搅拌摩擦焊是一种采用振荡摩擦进行的钎焊技术。
摩擦过程中,金属材料被强制变形,形成皱纹和复杂的微细组织结构,这就是焊接区域。
这一过程不需要额外的附加材料,因此也被称为固态钎焊。
搅拌摩擦焊的原理是通过搅拌和摩擦的相互作用,为金属轴套表面提供局部加热来处理金属本身。
在摩擦过程中,摩擦产生的热量会使金属材料温度升高,而旋转工具逐渐伸进焊缝,在相对运动的作用下,产生了强烈的塑性变形以及显著的变形应变。
在形成初期焊缝时,相对运动引起的压力会把材料从环形清隙中抽出,形成时生成混味均匀的焊接界面。
这些过程中摩擦加热导致局部熔化,接长和冷却会使金属变形,并形成一个均匀的、与母材相似的焊缝。
2 搅拌摩擦焊的工艺流程及其特点2.1 搅拌摩擦焊的工艺流程(1)工件准备:首先需要准备待焊接的工件。
工件通常是板材、管材、棒材等形状,可以是相同材质,也可以是不同材质。
(2)夹紧工件:将工件夹紧在专用的工件夹具中,以保证工件在搅拌摩擦焊过程中不会移动或震动。
(3)起始摩擦:在工件接头处的摩擦面上施加旋转摩擦力,使工件表面熔融并形成可焊接的状态。
(4)搅拌摩擦:在不断施加旋转摩擦力的情况下,摩擦头沿着工件的接合面移动,搅拌工件的金属组织,从而形成焊接。
(5)升温保压:在搅拌摩擦焊完成后,保持摩擦头的位置不动,使焊缝部位升温到一定程度,再施加一定的保压力,使焊缝固化。
(6)退火处理:对焊接完成后的工件进行退火处理,可以进一步提高焊接质量和性能。
2.2 搅拌摩擦焊的特点(1)搅拌摩擦焊是一种无焊接接头凸出、无端部凸出的焊接方法,焊缝起伏很小,对焊接部件外观和尺寸精度要求较高的场合比较适用。
(2)搅拌摩擦焊过程中没有明显的电弧和喷溅现象,不需要额外的保护气体,易于操作。
先进的搅拌摩擦焊技术
先进的搅拌摩擦焊技术本文简要介绍了搅拌摩擦焊接技术的工艺原理以及它的技术优势和发展前景。
搅拌摩擦焊是摩擦焊方法的新发展,是英国焊接研究所提出的专利技术。
它可以对多种熔化焊接性差的有色金属进行可靠的连接,而且焊接工艺简单。
1.绪论搅拌摩擦焊是由英国焊接研究所(The Welding Institute,简称TWI)于1991年提出的一种固态连接方法,并于1993年和1995年在世界范围内的发达和发展中国家申请了知识产权保护。
此技术原理简单,且控制参数少、,易于自动化,可将焊接过程中的人为因素降到最低。
搅拌摩擦焊技术与传统的熔焊相比,拥有很多优点,因而使得它具有广泛的工业应用前景和发展潜力。
有关搅拌摩擦焊接头的组织、力学性能(包括断裂、疲劳、腐蚀性能)、无损检测以及工艺参数对焊缝质量的影响等的研究是推广应用搅拌摩擦焊的基础,有关这些方面的研究是这个领域的研究热点。
搅拌摩擦焊技术是世界焊接技术发展史上自发明到工业应用时间跨度最短和发展最快的一项神奇的固相连接新技术。
截止2002年9月15日,世界范围内得到英国焊接研究所(TWI)搅拌摩擦焊专利技术许可的用户己经有78家,与搅拌摩擦焊技术相关的专利技术有551项,用户已覆盖24个国家和地区。
著名的B o e i n g、NASA、 BAE、 HONDA、 GE、HITACHI、MARTIN等公司购买了此项技术,并已大量的在航天、航空、车辆、造船等行业得到成功地应用。
2.搅拌摩擦焊原理及工艺搅拌摩擦焊的焊接原理如图l所示[13-30]。
置于垫板上的对接工件通过夹具夹紧,以防止对接接头在焊接过程中松开。
一个带有特型搅拌指头的搅拌头旋转并缓慢的将搅拌指头插入两块对接板材之间的焊缝处。
一般来讲,搅拌指头的长度接近焊缝的深度。
当旋转的搅拌指头接触工件表面时,与工件表面的快速摩擦产生的摩擦热使接触点材料的温度升高,强度降低。
搅拌指头在外力作用下不断顶锻和挤压接缝两边的材料,直至轴肩紧密接触工件表面为止。
一文读懂搅拌摩擦焊
1搅拌摩擦焊概览搅拌摩擦焊(Friction Stir Welding,FSW)作为一种固相连接技术,在1991年由英国焊接研究所(The Welding Institute, TWI)发明。
与传统熔化焊相比,FSW无需添加焊丝、不需要保护气体,焊接过程无污染、无烟尘、无辐射,焊接接头残余应力低,因此具有焊接效率高、焊接变形小、能耗低、设备简单、焊接过程安全等一系列优点。
经过20多年的发展,FSW已经在航空航天、轨道交通、舰船等领域得到了广泛应用。
搅拌摩擦焊的原理如图1所示。
高速旋转的搅拌头扎入被焊工件内,旋转的搅拌针与被焊材料发生摩擦并使其发生塑化,轴肩与工件表面摩擦生热并用于防止塑性状态的材料溢出。
在焊接过程中,工件要刚性固定在背部垫板上,搅拌头边高速旋转边沿工件的接缝与工件相对移动,在搅拌头锻压力的作用下形成焊缝,最终实现被焊工件的冶金结合。
图1 搅拌摩擦焊接原理搅拌摩擦焊广泛适用于各类材料,目前已成功实现了铝、镁等低熔点金属及合金、铜合金、钛合金、钢铁材料、金属基复合材料以及异种金属(铝/铜、铝/镁、铝/钢等)的焊接。
在传统技术的基础上,搅拌摩擦焊有了五大创新发展:双轴肩搅拌摩擦焊、静轴肩搅拌摩擦焊、搅拌摩擦点焊、复合能场搅拌摩擦焊、搅拌摩擦增材制造。
双轴肩搅拌摩擦焊(Bobbin Tool Friction Stir Welding,BT-FSW)与传统FSW相比,其搅拌头为上、下轴肩结构,两个轴肩通过搅拌针连接,下轴肩取代了传统FSW的背部刚性支撑垫板,对工件进行自支撑,实现中空部件的焊接。
其焊接原理如图2所示。
上、下双轴肩的结构在焊接过程中降低了接头厚度方向的温度梯度,减小了接头组织不均匀性,可实现根部全焊透的焊接。
图2 双轴肩搅拌摩擦焊接原理1.上轴肩2.前进侧3.熔合线4.后退侧5.工件6.搅拌针7.下轴肩静轴肩搅拌摩擦焊(Stational Shoulder Friction Stir Welding,SS-FSW)采用轴肩与搅拌针分体式设计,在焊接过程中内部搅拌针处于旋转状态,而外部轴肩不转动,仅沿焊接方向行进。
搅拌摩擦焊技术(五)-搅拌摩擦焊的应用
搅拌摩擦焊技术(五)-搅拌摩擦焊的应用搅拌摩擦焊经历十几年的研究发展,已经进入工业化应用阶段。
搅拌摩擦焊在美国的宇航工业、欧洲的船舶制造工业、日本的高速列车制造等制造领域得到了非常成功的应用。
船舶制造和海洋工业是搅拌摩擦焊首先获得应用的领域,主要应用于船舶零部件的焊接上,如甲板、侧板、防水壁板和地板;还有船体外壳和主体结构件等。
已成功焊接了6m ×16m的大型铝合金船甲板。
此甲板采用厚度甲板6mm、宽为200-400mm的6082-T6铝合金进行纵逢拼焊焊成。
在航空制造方面,搅拌摩擦焊在飞机制造领域的开发和应用还处于试验阶段。
主要利用FSW实现飞机蒙皮和衍梁、筋条、加强件之间的连接,以及框架之间的连接。
图2-32 是欧洲计划用搅拌摩擦焊焊接的空中列车A319机、A321机和大型空中列车A380的机身结构图。
图2-32 搅拌摩擦焊焊接的空中列车机身结构(图中箭头所指)在航天领域,搅拌摩擦焊已经成功应用在火箭和航天飞机助推燃料筒体的纵向对接焊缝和环向搭接接头的焊接,如图2-33 所示。
用ESAB公司生产的称为SuperStir的搅拌摩擦焊机焊接了直径2.4m、板厚22.2mm、型号为2014-T6铝合金δ火箭燃料筒的纵缝,与MIG 焊相比,搅拌摩擦焊缺陷率很低,MIG焊焊缝长832cm出现一个缺陷,而搅拌摩擦焊焊缝长7620cm出现一个缺陷,相当MIG焊的1/10。
最近在δⅣ火箭中搅拌摩擦焊焊接的1200m长焊缝中无任何缺陷出现。
图2-33 搅拌摩擦焊焊接的运载火箭低温燃料筒在铁道车辆中,搅拌摩擦焊已经用来制造高速列车、货车车厢、地铁车厢和有轨电车等;搅拌摩擦焊为汽车轻合金结构的制造也提供了巨大的可能。
图2-34为高速列车用结构25m长的搅拌摩擦焊焊缝。
图2-34 日本新干线高速列车结构在建筑工业方面,采用搅拌摩擦焊焊接了蜂窝状结构的大型地面。
面板厚为2.5mm、翅板厚为5mm、中心高为100mm,焊接规范为搅拌头转速1500rpm,焊接速度250 mm/min。
谈搅拌摩擦焊技术研究与应用
CATALOGUE 目录•搅拌摩擦焊技术简介•搅拌摩擦焊技术研究现状•搅拌摩擦焊技术在不同领域的应用•搅拌摩擦焊技术的前景展望与发展趋势•结论搅拌摩擦焊是一种新型的焊接方法,其核心是利用搅拌头与工件之间的摩擦热和塑性变形热,使工件局部加热至塑性状态,并在搅拌头的强烈搅拌作用下实现材料的连接。
与传统的熔焊方法不同,搅拌摩擦焊过程中不涉及熔化,因此可以避免熔焊过程中出现的元素烧损、接头组织性能恶化等问题。
高效节能接头质量高适用范围广操作简单ABCD航空航天领域汽车制造领域其他领域轨道交通领域搅拌摩擦焊技术的应用范围搅拌摩擦焊技术的研究进展搅拌摩擦焊技术自发明以来,经过多年的研究和发展,已经在多个领域得到广泛应用。
在科研方面,研究者们不断探索新的搅拌摩擦焊技术,提高其焊接质量和效率。
在应用方面,搅拌摩擦焊技术已经应用于航空、航天、汽车、船舶等领域,取得了良好的效果。
010203搅拌摩擦焊技术的优势与局限搅拌摩擦焊技术的研究热点与挑战总结词搅拌摩擦焊技术在航空航天领域的应用具有广泛性和重要性。
要点一要点二详细描述搅拌摩擦焊技术在该领域主要用于制造飞机和火箭等关键部件,如铝合金和钛合金的焊接。
相比传统焊接方法,搅拌摩擦焊技术具有更高的焊接质量和更快的焊接速度,提高了生产效率,降低了制造成本。
此外,搅拌摩擦焊技术还具有较好的接头强度和耐腐蚀性,使得飞机和火箭等关键部件的寿命更长、安全性更高。
航空航天领域总结词搅拌摩擦焊技术在汽车制造领域的应用日益增多,成为汽车制造的重要焊接方法之一。
详细描述搅拌摩擦焊技术在该领域主要用于制造汽车车身、底盘和发动机等关键部件,如低碳钢、铝合金和不锈钢的焊接。
相比传统焊接方法,搅拌摩擦焊技术具有更高的焊接质量和更快的焊接速度,提高了生产效率,降低了制造成本。
此外,搅拌摩擦焊技术还具有较好的接头强度和耐腐蚀性,使得汽车的关键部件更加可靠、耐用。
总结词搅拌摩擦焊技术在船舶制造领域的应用具有广泛性和重要性。
搅拌摩擦焊介绍
7
喷气客机的搅拌摩擦焊
LEE MAN (SCETC)
镁合金的搅拌摩擦焊
搅拌摩擦焊 (三)搅拌摩擦焊的特点
8
优点:
焊缝是在塑性状态下受挤压完成的,属于固相焊接,因而其接头 不会产生与冶金凝固有关的一些如裂纹、夹杂、气孔以及合金元 素的烧损等熔焊缺陷和脆化现象,焊缝性能接近母材,力学性能 优异。适于焊接铝、铜、铅、钛、锌、镁等非铁金属及其合金以 及钢铁材料、复合材料等,也可用于异种材料的连接。 不受轴类零件的限制,可进行平板的对接和搭接,可焊接 直焊缝、角焊缝及环焊缝,可进行大型框架结构及大型筒 体制造、大型平板对接等,扩大了应用范围。 搅拌摩擦焊利用自动化的机械设备进行焊接,避免了对 操作工人技术熟练程度的依赖,质量稳定,重复性高。 焊接时无需填充材料、保护气体,焊前无需对焊件表面预处 理,焊接过程中无需施加保护措施,厚大焊件边缘不用加工 坡口,简化了焊接工序。· 焊接铝合金材料不用去氧化膜,只 需去除油污即可。
LEE MAN (SCETC)
搅拌摩擦焊 2.接头力学性能
焊态下,FSW焊缝焊核的强度要大于热影响区的强度。
5
对于退火状态的铝合金,拉伸实验时首先发生破坏的部位通常在远离 焊缝和热影响区的母材上。对于形变强化和热处理强化的铝合金,FSW 接头的不同区域发生了软化,但可以通过控制热循环,尤其是通过降低 焊缝热机影响区的退火效应和过时效的影响来改善接头的性能,也可以 通过焊后热处理的方式提高热处理强化铝合金FSW接头的性能。
• 它可以焊接所有牌号的铝合金以及用熔焊方法难以焊接的材料,并 突破了普通摩擦焊对轴类零件的限制,可进行板材的对接、搭接、角 接及全位置焊接。由于搅拌摩擦焊是固态焊接,所以没有熔化焊时的 气孔、裂纹及合金元素烧损等缺陷。搅拌摩擦焊的接头性能普遍
汽车制造新技术——搅拌摩擦焊
图1 搅拌摩擦焊工作原理图2 铸造铝合金和6mm铝合FSW接头6mm 6082铝合金板材铸造铝合金对于焊接材料而言,搅拌摩擦焊可以焊接所有牌号的铝合金,包括可以熔焊的5000、6000系列铝合金和熔焊难以焊接的2000、7000和铝锂合金材料;同时搅拌摩擦焊还可以实现不同种材料的连接。
正常情况下,搅拌摩擦焊不需要焊丝和保护气,焊接过程消耗较少。
焊接接头强度可以达到母材金属的80%以上。
搅拌摩擦焊目前可以实现所有的熔焊焊接结构,通过搅拌摩擦焊设备,可以实现1D、2D和3D结构的焊接。
并且由于焊透控制可以通过搅拌头来保证,所以迄今搅拌摩擦焊最大焊接深度还没有得到定义,图3为英国焊接研究所焊接的100mm厚度的搅拌摩擦焊接头。
图3 TWI焊接的厚度为100mm的搅拌摩擦焊接头汽车铝合金材料汽车通常选用能够大批量制造的商业化金属材料制造,使用比较普遍的一种是薄板低碳钢,另一种是铝合金。
铝合金材料很早就在国外越野汽车如LAND ROVER、运动赛车和高档轿车奥迪中使用, 并且由于汽车发展轻量化趋势的要求,铝合金在汽车中的使用越来越多,有资料显示,铝合金代替传统的钢铁制造汽车可使整车重量减轻30%~40%,制造发动机可减轻30%,制造缸体和缸盖可减轻30%~40%,制造车轮可减轻50%。
图4为美国福特公司2005年利用搅拌摩擦焊汽车焊接Automobile Welding挪威Hydro Aluminum公司首先利用搅拌摩擦焊实现了铝合金汽车轮毂的搅拌摩擦焊制造,如图6所示,即利用铝合金板材搅拌摩擦焊成为筒体结构,再利用液压滚压成形技术压制成设计形状,然后再利用搅拌摩擦焊将锻压或铸造轮副连接在轮鼓上,这种制造工艺既减轻了轮箍重量也简化了生产成本和提高生产效率。
目前,该技术已经在日本、澳大利亚和中国等地投入批量化铝合金轮毂生产。
汽车悬挂臂目前已经实现搅拌摩擦焊制造,如图7a所示,日本Showa Aluminum和Tokai Rubber公司在2004年就利用搅拌摩擦焊把挤压型材制造的悬挂头与直径20~30mm的铝合金管材焊在一起,实现汽车悬挂系统铝合金悬臂搅拌摩擦焊批量化制造。
焊接工艺中的摩擦搅拌焊技术在航空制造中的应用
焊接工艺中的摩擦搅拌焊技术在航空制造中的应用摩擦搅拌焊技术(friction stir welding,FSW)是一种先进的无损焊接方法,它通过摩擦和搅拌作用将金属材料粘接在一起。
由于其独特的优势,摩擦搅拌焊技术在航空制造领域得到了广泛的应用。
1. 简介摩擦搅拌焊技术最早由英国剑桥大学的Thomas W. Eash博士于1991年发明。
它采用一种圆柱形工具,将两个相接的金属板材在高速旋转和沿着焊缝方向移动的作用下,搅拌并混合两个金属板材的母材,实现焊接。
相较于传统的焊接方法,摩擦搅拌焊不需要熔化金属,因此能够避免气孔和裂纹的产生,焊接接头具有更好的力学性能和可靠性。
2. 应用领域摩擦搅拌焊技术在航空制造中的应用非常广泛。
首先,它被广泛应用于航空器的主要结构件焊接,如飞机外壳、机翼、舵面等。
摩擦搅拌焊能够在保持母材的晶粒结构和机械性能的同时实现高强度焊接,可以减轻飞机结构的重量并提高飞行性能。
3. 优势摩擦搅拌焊技术的优势主要表现在以下几个方面:(1)无熔化:相比传统熔化焊接方法,摩擦搅拌焊不需要加热金属至熔点,避免了熔化过程中的气孔和裂纹等缺陷的产生。
(2)母材保留性能:摩擦搅拌焊接过程中,母材的晶粒结构得以保留,焊缝区域具有与母材相似的性能,提高了焊接接头的可靠性。
(3)高效性:摩擦搅拌焊接速度快,能够实现大尺寸工件的连续焊接,提高了生产效率。
(4)适应性强:不同种类和厚度的金属材料都可以通过摩擦搅拌焊接技术进行连接,具有较强的适应性。
4. 挑战与改进尽管摩擦搅拌焊技术在航空制造中得到了广泛应用,但仍存在一些挑战。
首先,焊接工具的设计和制造需要精密的工艺和高级的合金材料,以满足高温和高速旋转的工作环境。
其次,焊缝的检测和评估方法需要进一步研究和完善,以确保焊接接头的质量和可靠性。
此外,控制焊接过程中温度、力和速度等参数的优化也是摩擦搅拌焊技术的一个重要研究方向。
5. 结论综上所述,摩擦搅拌焊技术在航空制造中的应用前景广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种新型搅拌摩擦焊技术搅拌摩擦焊技术自1991年问世以来就倍受业界瞩目,特别是1996年搅拌摩擦焊被成功应用于宇航结构件的焊接以后,在制造业掀起了技术研究、发展和推广应用的热潮[1-3]。
双轴肩自适应搅拌摩擦焊技术搅拌摩擦焊作为一种先进的固相连接技术,已经在造船、航空航天、轨道交通等领域获得了广泛的应用。
但是在一些特殊的加工过程中需要搅拌摩擦焊设备提供较大的焊接力,同时要求在焊接过程中对待焊零件进行严格装夹(包括背部的刚性支撑),这给某些特殊结构形式下实施FSW造成了困难,如大直径火箭贮箱环缝结构的焊接等。
而双轴肩自适应搅拌摩擦焊(Self-ReactingPin Tool,SRPT)技术成功地解决了上述问题。
1 原理双轴肩自适应搅拌摩擦焊是通过上下轴肩夹持作用加紧工件,下轴肩代替了常规搅拌摩擦焊的垫板装置。
搅拌针与驱动装置及下轴肩相连,这样既可调节加载载荷又可调整下轴肩的位置。
且上轴肩与单独的驱动轴相连,这种上下轴肩单独控制的方式使得自适应系统得以实现,并且使上下轴肩的顶锻力反向相等,整个工件在垂直板件方向所受合力为零。
由于SRPT采用了两个轴肩的模式,提高了焊缝背部的热输入,可以预防和降低焊缝背部缺陷。
与常规 FSW 相比,SRPT有两个独立控制的轴肩;常规FSW焊件背面需要配套的刚性支撑垫板,而SRPT焊件背面则不需要;常规FSW被焊工件需要严格的装夹,焊件需要被垂直及侧向压紧,而 SRPT大大简化了装夹机构;常规FSW焊缝背部常常是整个焊件的薄弱环节,SRPT由于下轴肩的产热减小了从焊缝表面到背部的温度梯度,降低了焊缝的热损耗,提高了热效率,因此可以很好地消除焊缝背部未焊透等缺陷。
2 试验验证与工程应用Edwards 等[4]成功地应用双轴肩自适应搅拌摩擦焊技术对薄板铝合金进行了焊接,试验表明:在薄板焊接领域此技术可以实现1.8mm及更薄的铝合金型材的焊接;焊接速度可以达到1m/min以上;对2mm厚A l6061铝合金的试验表明,焊缝强度系数可达88%,而且强度系数还可以进一步提高。
TWI的研究表明[5]:双轴肩技术可以在较低的轴向顶锻力下焊接25mm厚的铝板;此项技术可以提供完全焊透的焊缝,不会出现未焊透和其他根部缺陷。
复合热源搅拌摩擦焊技术复合焊接是指为了满足材料加工的要求,将2种或2种以上单一焊接方法集于一体,取长补短,从而形成新的、更为先进的焊接方法。
由于搅拌摩擦焊过程中,焊接热能主要是搅拌头与工件间的摩擦产热及塑性变形产热,其特殊的产热方式决定了在焊接高熔点、大厚度合金时焊接速度往往较低。
为克服上述不足,焊接工作者们不断研究开发出多种 FSW复合技术,如以感应热、电阻热、电弧、激光、等离子弧等做为辅助热源的复合搅拌摩擦焊接技术[6-7]。
但这些方法在实际应用中总存在这样或那样的缺点,如以感应热为辅助热源的复合搅拌摩擦焊接技术,无法利用感应线圈在特定位置上精确加热,只适用于导磁性材料。
并且感应电流可能会横越焊接路径形成不良的放电火花等。
而以电阻热为辅助热源的复合搅拌摩擦焊接技术只适用于导电材料,需要对搅拌头进行特殊处理以避免其导电等。
目前国际上在此领域的研发工作主要是以激光为辅助热源的复合搅拌摩擦焊技术(Laser Assisted FrictionStir Welding,LAFSW) 和以等离子弧为辅助热源的复合搅拌摩擦焊技术 (Plasma Arc Assisted FrictionStir Welding,PAFSW)[6-8]。
1 以激光为辅助热源的复合搅拌摩擦焊技术以激光为辅助热源的复合搅拌摩擦焊技术在焊接过程中采用高能激光束预热搅拌头前方待焊接试件。
试件在激光的作用下受热变软,在随激光跟进的搅拌头旋转、摩擦、锻压作用下最终形成牢固的接头。
G .Kohn等人发现通过对激光能量及作用区域的控制,可以准确控制焊接热输入的大小和工件预热区域的范围,避免了搅拌头和夹持装置受到激光热能的影响。
由于LAFSW采用激光预热搅拌摩擦焊跟进焊接的新型模式,使搅拌头前方工件在搅拌头到达要焊部位前事先软化,减少了搅拌工具进给和旋转的阻力,减小了工件的受力,同时可以提高焊接速度。
所以这种模式不但可以减小搅拌头的损耗,也可以简化工件夹持机构或降低工件夹持所需的装卡力,提高焊接效率。
G. Kohn等人[8]对4mm厚的AZ91 镁合金板进行了LAFSW焊接试验。
搅拌头轴肩尺寸20mm,圆柱搅拌针直径9mm,针长4mm。
激光束在旋转工具前方被完全聚焦成直径1cm的光点。
采用点焊将热电隅接至试验试片表面以校正焊件温度。
激光功率设定为200W,利用此能量将实验试片加热至320℃左右。
而焊件只用4个螺栓固定在试验台上。
搅拌头转速为1700r/min,焊接速度50mm/min。
从试验件焊后宏观照片看,采用LAFSW技术可以焊接出表面成型良好,且无缺陷的焊缝。
LAFSW存在的问题是激光在某些反射率高的材料表面会产生反射,激光能的利用率低,造成能源浪费。
如果在这些材料表面涂覆防反射材料,会造成工艺上的复杂。
为了减少激光能的反射率,采用在焊缝处开坡口的方法,此方法在一定程度上减少了激光的反射,但是用来填充焊缝的金属减少了,易形成塌陷。
LAFSW的研究还有待深入,后续工作主要集中在针对不同材料找出激光与摩擦焊接参数的组合参数;对LAFSW的焊接变形进行测量和控制等。
2 以等离子弧为辅助热源的复合搅拌摩擦焊技术以等离子弧为辅助热源的复合搅拌摩擦焊原理与LAFSW原理类似,只是预热能量的来源不同。
焊接时,搅拌头在电机驱动下高速旋转并沿待焊工件的对接面压入待焊工件,当搅拌头的轴肩与待焊工件紧密接触后,搅拌头沿对接面向前移动实现焊接,焊接区域在搅拌头产生的摩擦热与等离子弧产生的辅助热量共同作用下发生塑化,最终在搅拌头后部形成焊缝。
此项技术由于采用了高能辅助热源等离子弧与搅拌摩擦焊复合的方式,大大拓宽了搅拌摩擦焊的适用范围,减少了搅拌头的顶锻力和焊接时向前运动的阻力,大大降低搅拌头的磨损,提高了搅拌头的寿命;同时提高了焊接效率,并且为以后航空航天领域对其它高熔点和高硬度材料的焊接打下基础。
刘会杰等人[6,9]在国内率先开展了以等离子弧为辅助热源的搅拌摩擦研究。
试验材料为航天工业中常用来做为燃料贮箱材料的2219-T6铝合金。
试验所用的焊接设备为FSW-3LM-003型搅拌摩擦焊机和Plasma fine 15等离子弧焊机。
采用机械方法将等离子枪与搅拌摩擦焊机相连,等离子枪与搅拌头的距离为25mm。
对常规FSW研究表明[6],当转速为800r/min时,形成无焊接缺陷接头的最高焊接速度260mm/min。
最高抗拉强度可以达到341MPa,是母材强度的82%,接头全部断在热影响区内,断裂形式为混合断裂。
通过对接头沉淀相及焊接热循环的研究发现,热影响区内的θ′相粗化是造成其软化的主要原因,并且焊速过低会导致θ′相粗化的时间变长,导致力学性能的降低。
因此,为了提高焊接接头力学性能,应该采用焊接时间较短的焊接规范。
对以等离子弧为辅助热源的搅拌摩擦焊的研究表明[6,9],当转速为800r/min时,形成无焊接缺陷接头的最高焊接速度为600mm/min,接头最高抗拉强度达到360MPa,是母材强度的86%,接头全部断在焊核区内,断口为混合型断口。
通过对焊接热循环的研究表明,热影响区的高温保持时间很短,θ′相粗化程度减小。
而焊核区内形成粗大的θ相所造成的接头软化,并没有由于晶粒的细化所弥补,形成了接头中最薄弱的区域。
可见此项技术能够实现常用航空航天材料2219-T6铝合金的可靠连接,在保证了接头力学性能的前提下,将焊接速度提高了1倍,这充分说明这一新技术的可行性,且工艺简单,易于实现。
随着此项技术的不断完善发展,必将为我国航空航天事业做出更大的贡献。
动态控制低应力无变形搅拌摩擦焊技术搅拌摩擦焊热输入低,较熔焊相比构件焊后残余应力低、变形相对较小。
但薄壁铝合金结构搅拌摩擦焊的焊接应力与变形问题还是表现得很突出,与工程实际的要求有一定差距。
有学者认为FSW焊接残余应力与其他焊接方法得到的接头残余应力大小类似,纵向残余应力的最大值接近材料的屈服应力[10-12]。
北京航空制造工程研究所中国搅拌摩擦焊中心,基于关桥院士发明的动态控制低应力无变形(Dynamically Controlled LowStress No Distortion, DC-LSND)焊接法,设计开发了新型的阵列式射流冲击热沉装置,将DC-LSND技术应用于搅拌摩擦焊过程,达到了控制FSW焊接残余应力和失稳变形的目的[13]。
1 原理DC-LSND FSW技术成功地将低应力无变形焊接法应用于搅拌摩擦焊中,在焊接热源的适当部位,设置一个能对焊缝局部产生急冷作用的热沉,与焊接热源构成热源—热沉系统,在焊接过程中形成一个畸变的温度场。
虽然此项技术在开始施焊时同常规 FSW一样会在焊缝区产生缩短的不协调应变,但热沉的存在使高温焊缝的热量向热沉方向传导,减少了热量积累,使高温区范围变窄。
同时,由于焊缝受冷急剧收缩,减少了焊缝及其附近区域金属在焊接过程中产生的压缩塑性应变。
因此,残余拉应力区域和残余拉应力大小都得到控制,相应的焊缝两侧的残余压应力也降到较低的水平,从而可以使薄壁构件不发生翘曲失稳变形。
DC-LSND FSW设备主要由压缩空气系统、冷却水系统、控制系统和阵列式射流冲击热沉组成。
热沉对搅拌头形成半包围状态,同时焊接前方采用压缩空气将多余的冷却水吹向后方,防止水及杂质进入未焊合的焊缝,影响接头性能[10-13]。
2 技术特点DC-LSND FSW 设备的核心部分——热沉系统是依据阵列式射流冲击原理设计而成的。
该热沉系统可以根据FSW焊接过程中各个区域温度的分布,设置不同的微射流孔直径和分布密度,从而形成不同的冷却效果。
热沉喷嘴还可以根据需要制作成不同的形状,结合不同的微射流冲击孔的分布形式,主动控制FSW焊接区域的温度场和热弹塑性应力应变场,从而达到FSW低应力无变形的焊接效果。
由于采用压缩空气将多余的冷却水吹向搅拌头的后方,因此避免了冷却水侵入焊缝。
所以此技术可以在控制焊接变形的同时,可得到成型美观、性能优良的焊缝。
3 试验验证李光等人[13]对5083、6082、2A12 等工程常用铝合金进行了DC-LSND FSW 与常规 FSW 焊接对比试验,DC-LSND焊接技术可以有效减小FSW焊接变形,1000mm×100mm×3.5mm 5083铝合金常规FSW焊接后局部翘曲变形十分明显,而DC-LSND FSW焊后则基本无变形,如图1。
DC-LSNDFSW接头残余应力分布规律与常规搅拌摩擦焊接头残余应力分布类似,但应力峰值比常规焊降低50%以上,残余拉应力分布范围变窄。