CO2热泵技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CO2热泵技术

摘要:CO2作为热泵工质在跨临界状态下循环,在气体冷却器中产生温度滑移,适合水的加热。在分析了CO2跨临界循环特点的基础上指出,CO2可与传统的制冷剂及其替代物相竞争,具有较高的制热效率。给出CO2热泵干燥系统的两种形式,并作简要分析。指出CO2作为热泵工质面临的问题。

关键词:二氧化碳;跨临界循环;热泵热水器;热泵干燥

1 CO2工质概述

1.1 CO2工质发展史

在1850年,Twing提出在蒸气压缩系统中采用CO2作为制冷剂并获英国专利。1869年Lowe 第一次成功使用CO2应用于商业制冷机,证实了CO2作为制冷剂的可能性。1882年Linde设计开发了采用C02为工质的制冷机。1884年Raydt设计的CO2压缩制冰系统获得了英国专利。1884年Harrison也设计了一台采用CO2的制冷装置并获得了英国专利。1886年Windhausen设计的CO2压缩机获得了英国专利,并于1890年开始投人生产。随后C02制冷剂的使用有了快速的发展。20世纪40年代在英国的船上广泛采用了CO2压缩机。

1931年,以R12为代表的CFCs制冷剂一经开发,便以其无毒、不可燃、不爆炸、无刺激性、适中的压力和较高的制冷效率,很快取代了CO2在制冷方面的位置,CO2逐渐不再被作为制冷剂使用,最后一艘使用CO2制冷机的船只在1950年停止工作。

进人到20世纪末期,由于CFCs对于臭氧层和大气变暖的重要影响,为保护环境,实现CFCs替代成为全世界共同关注的问题。世界范围内的CFCs替代进程在不断加快。中国制冷空调行业的替代转换工作起始于上世纪90年代初。前国际制冷学会主席G.Lorentzen在1989~1994年大力提倡使用自然工质,特别是对于CO2的研究与推广应用上起了很好的推动作用。目前跨临界CO2热泵及其部件的开发研究已经成为制冷领域的热点之一【1】。

1.2 CO2工质的性质

常温下,CO2是一种无色、无嗅的气体。其相对分子量为44.01,临界压力为7.37MPa,临界温度为31.1℃ ,临界容积为0.00214m3/kg,比热容为0.833kJ/(kg.K),三相点温度为-56.57℃ ,三相点压力为416kPa,在101.325kPa下,其升华温度为-78.15℃ ,蒸发热573.27kJ/kg。CO2是碳的最高氧化状态,具有非常稳定的化学性质,既不可燃,也不助燃。

作为制冷剂,人们希望其安全性、循环效率、价格等方面均佳,但实际上并不存在一种十全十美的制冷剂。与其它制冷剂相比,CO2也有其优势与不足。表1和表2列出的几种制冷剂性质的比较。

表1 几种制冷剂主要性能比较【2】

表2 几种制冷剂的毒性【2】

由上表可以看出,CO2作为自然工质,与常用制冷剂相比具有独特的优势:

(1)环境性能优良。CO2是自然界天然存在的物质,它的臭氧层破坏潜能(ODP)为零,其温室效应潜能极小(GWP=1)。而现在作为推荐替代工质的HFCs及其混合物,其ODP虽为零,但GWP却比C02高1000~2000倍。

(2)自身费用低,无需回收或再生,操作与运行的费用也较低。

(3)化学稳定性好,完全适用于普通的润滑油和通常的制造材料。

(4)有利于减小装置体积,高的工作压力使得压缩机吸气比容较小,使得容积制冷量增大,使得压缩尺寸减小。流动和传热性能提高,减少了管道和热交换器的尺寸,从而使系统非常紧凑。

(5)安全无毒,不可燃,即使在高温下也不分解产生有害气体。

2 CO2跨临界循环及特点

由于CO2临界温度较低(31.1℃),其热泵循环流程采用的是跨临界循环(系统循环原理图及t-s图见图1)。CO2跨临界循环时,压缩机的吸气压力(图1中1点)低于临界压力,蒸发温度

也低于临界温度,循环的吸热过程在亚临界条件下进行,换热过程主要依靠潜热来完成。但是压缩机的排气压力(图1中2点)高于临界压力,换热过程依靠显热来完成,此时高压换热器不再称为冷凝器,而称为气体冷却器。

由图2可以看出,CO2跨临界循环具有以下几个特点:(1)放热过程是一个伴随有较大温度滑移的变温过程,这正好与水加热时的温升相匹配,是一种特殊的洛伦兹循环,可以减少高压侧不可逆传热引起的能量损失,有利于提高循环系统的COP;(2)与常规制冷剂相比,CO2跨临界循环的压缩比较小,约为2.5~3.0,可以提高压缩机的运行效率,进而提高系统的性能系数;(3)系统的运行压力高,这对系统的材料强度、密封和管道连接等方面的要求更苛刻;(4)传统的亚临界系统,制冷剂在冷凝器出口的焓值仅是温度的函数,而CO2跨临界循环系统中,超临界压力状态下温度和压力彼此独立,所以高压侧压力对制冷剂焓值有影响,高压侧压力也会对制冷量、压缩机功耗和COP值产生影响,由图2可知在最佳排气压力下,循环系统的性能系数COP可达到最大【3】。

(a) 系统循环原理图(b)t-s图

图1 CO2跨临界循环

图2 制冷量、压缩机功耗、COP值与压缩机排气压力的关系

3 CO2热泵系统及其应用

3.1 热泵热水器

CO2跨临界循环应用的另一个主要领域是热泵热水器,近年来CO2热泵热水器技术发展

迅速。与常规的氟里昂热泵热水器相比, CO2热泵热水器能制取90℃的高温热水,而常规的氟里昂热泵热水器的热水温度一般只能达到55~65℃;同时CO2热泵的制热性能系数也比常规的氟里昂热泵循环高,可达到4.0以上。但是CO2制冷剂在热泵热水器系统中的压力要比常规的氟里昂系统R410A高很多,因此CO2热泵系统需要专门设计。表3给出了CO2热泵实际系统

与氟里昂R410A系统中的主要参数对比情况。从表3可以看出,与R410A制冷剂相比,CO2热泵系统的高压压力达到12MPa,系统在这样的高压下运行,必须考虑系统承受高压的性能、高压保护、压缩机的选择、润滑油的选择等一系列问题。

表3 CO2制冷剂在热泵实际系统中的压力等参数【2】

图3是挪威NTNU-SINTEF实验室关于二氧化碳热泵热水器试验系统图【4】。图中省去了各种控制阀和传感器。实际系统中,热源为工业废气、空气等,这里采用电加热乙二醇溶液来模拟热源,气体冷却器采用逆流流动。蒸发器是板壳式换热器,能承受较高的压力。节流阀开度根据高压侧的排气压力动态调节,使系统在最优高压侧压力下运行。

图3 二氧化碳热泵热水器试验系统示意图

试验结果表明二氧化碳适合作为热泵热水器制冷工质。以空气作为热源,当供应热水温度为60℃时,二氧化碳热泵热水器的能量消耗比电或燃气热水器降低了75%。图4显示了制热系数随蒸发温度的变化情况【5】,水温从10℃升至60℃。蒸发温度升高,制热系数基本成线性规律上升。

相关文档
最新文档