不锈钢的的局部腐蚀机理

合集下载

不锈钢腐蚀机理发生原因和维护处理方法

不锈钢腐蚀机理发生原因和维护处理方法

不锈钢腐蚀机理发生原因和维护处理方法不锈钢是一种抗腐蚀性能极好的金属材料,但在特定条件下仍然可能发生腐蚀。

不锈钢腐蚀的机理主要有三种:点蚀腐蚀、晶间腐蚀和应力腐蚀。

以下将分别介绍每种腐蚀机理的发生原因和相应的维护处理方法。

1.点蚀腐蚀:点蚀腐蚀是不锈钢上出现的小孔洞或凹陷的形式,通常是由于材料表面的保护层被部分破坏或被去除所导致的。

(1)发生原因:点蚀腐蚀的发生原因主要有:a.氧化铁皮:不锈钢焊接时,焊缝周围容易形成氧化铁皮,这些铁皮上的离子会对不锈钢产生腐蚀。

b.离子污染:不锈钢表面被有机物、污垢或液滴等污染,这些污染物中的离子会引发腐蚀。

c.金属离子:铁、铜、镍等金属元素的离子会导致点蚀腐蚀。

(2)维护处理方法:a.避免过度热处理:过度热处理会破坏不锈钢的表面保护层,因此应避免过度热处理。

b.清洁不锈钢表面:定期清洗不锈钢表面的有机物、污垢和液滴等污染物,尽量保持表面清洁。

c.选用合适的不锈钢材料:根据具体环境条件选择合适的不锈钢材料,能够更好地抵抗点蚀腐蚀。

2.晶间腐蚀:晶间腐蚀是在不锈钢材料的晶界处发生的腐蚀,会导致不锈钢的结构性能下降。

(1)发生原因:晶间腐蚀的发生原因主要有:a.焊接热影响区域:焊接过程中,不锈钢的热影响区域容易出现晶间腐蚀。

b.高温环境:在高温环境中,不锈钢的晶界会因为积累了一定的铬碳化物而变得不稳定,容易发生晶间腐蚀。

(2)维护处理方法:a.控制焊接参数:合理控制焊接参数,避免焊接热影响区域出现晶间腐蚀。

b.降低温度:在高温环境下,尽量降低不锈钢的工作温度,以减少晶间腐蚀的可能性。

c.选择合适的不锈钢材料:对于在高温环境下工作的设备,应选择具有良好抗晶间腐蚀性的不锈钢材料。

3.应力腐蚀:应力腐蚀是由于不锈钢在受到应力力学作用时在特定环境中发生的腐蚀,会导致不锈钢的断裂。

(1)发生原因:应力腐蚀的发生原因主要有:a.应力作用:不锈钢在受到应力作用下会发生应力腐蚀。

b.腐蚀介质:特定的腐蚀介质会加剧不锈钢的应力腐蚀。

氯离子腐蚀不锈钢的原理

氯离子腐蚀不锈钢的原理

氯离子腐蚀不锈钢的原理氯离子腐蚀不锈钢的原理是指在含氯环境中,氯离子与不锈钢表面发生作用,导致不锈钢产生腐蚀现象。

不锈钢在大气环境中具有较好的耐腐蚀性能,主要是因为不锈钢表面形成了一层致密的氧化铬膜,称为钝化膜。

然而,在氯离子的存在下,钝化膜容易被破坏,导致不锈钢发生腐蚀。

1.氯离子的吸附和浸润:氯离子具有较强的亲水性,容易吸附在不锈钢表面并浸润到钝化膜下。

氯离子吸附在表面会导致表面电位升高,从而破坏了钝化膜的稳定性。

2.氯离子的电化学反应:在氯离子存在的条件下,钝化膜中的铬离子会与氯离子发生反应,生成可溶性的铬氯络合物,从而破坏了钝化膜的连续性。

这个过程被称为局部腐蚀,即氯离子会形成一个微小的腐蚀细胞,在细胞中,不锈钢表面处于阳极,而钝化膜破坏的部分则处于阴极,形成阳极和阴极之间的电流。

3.氯离子的传输:氯离子可以通过水分子或气态状态传输到不锈钢表面,特别是在高温高湿的环境中,氯离子的迁移速度会增加,导致氯离子浓度在钝化膜下积累,进一步加剧了腐蚀。

除了以上几个方面,氯离子腐蚀不锈钢还受到以下因素的影响:1.氯离子浓度:氯离子浓度越高,腐蚀速度越快。

当氯离子浓度低于一定的临界值时,腐蚀基本不发生。

但一旦超过临界值,腐蚀速率会显著增加。

2.温度和湿度:高温高湿的环境会加速氯离子的传输和吸附,进而加速不锈钢的腐蚀。

3.氧气含量:氧气对于钝化膜的稳定性至关重要,充足的氧气可以帮助钝化膜修复和再生。

因此,氯离子腐蚀不锈钢更为显著的情况通常发生在氧气缺乏的环境中,如密封系统。

总的来说,氯离子通过吸附、浸润、电化学反应等行为,破坏不锈钢表面的钝化膜,进而导致不锈钢发生腐蚀。

要防止氯离子腐蚀不锈钢,可以通过以下途径进行控制:1.减少氯离子的接触:避免在含氯环境中使用不锈钢材料,或者使用防腐涂料、防护层等措施将不锈钢与氯离子隔离。

2.增加氧气供应:通过增加通气量、增加氧气浓度等方式,提高不锈钢表面氧气的含量,增强钝化膜的稳定性。

不锈钢件产生锈蚀的常见原因

不锈钢件产生锈蚀的常见原因

不锈钢件产生锈蚀的常见原因1.1 化学腐蚀1.1.1 表面污染:附着在工件表面的油污、灰尘及酸、碱、盐等在一定条件转化为腐蚀介质,与不锈钢件中的某些成分发生化学反应,产生化学腐蚀而生锈。

1.1.2 表面划伤:各种划伤对钝化膜的破坏,使不锈钢保护能力降低,易与化学介质发生反应,产生化学腐蚀而生锈。

11.3 清洗:酸洗钝化后清洗不干净造成残液存留,直接腐蚀不锈钢件(化学腐蚀)。

1.2 电化学腐蚀1.2.1 碳钢污染:与碳钢件接触造成的划伤与腐蚀介质形成原电池而产生电化学腐蚀。

1.2.2 切割:割渣、飞溅等易生锈物质的附着与腐蚀介质形成原电池而产生电化学腐。

1.2.3 烤校:火焰加热区域的成份与金相组织发生变化而不均匀,与腐蚀介质形成原电池而产生电化学腐蚀。

1.2.4 焊接:焊接区域的物理缺陷(咬边、气孔、裂纹、未熔合、未焊透等)和化学缺陷(晶粒粗大、晶界贫铬、偏析等)与腐蚀介质形成原电池而产生电化学腐蚀。

1.2.5 材质:不锈钢材质的化学缺陷(成份不均匀、S、P杂质等)和表面物理缺陷(疏松、砂眼、裂纹等)有利于与腐蚀介质形成原电池而产生电化学腐蚀。

1.2.6 钝化:酸洗钝化效果不好造成不锈钢表面钝化膜不均匀或较薄,易于形成电化学腐蚀。

1.2.7 清洗:存留的酸洗钝化残液与不锈钢发生化学腐蚀的生成物与不锈钢件形成电化学腐蚀。

1.3 应力集中易于造成应力腐蚀。

总之,不锈钢由于其特殊的金相组织和表面钝化膜,使得它在一般情况下较难与介质发生化学反应而被腐蚀,但并不是在任何条件下都不能被腐蚀。

在腐蚀介质和诱因(如划伤、飞溅、割渣等)存在的条件下,不锈钢也能与腐蚀介质发生缓慢的化学和电化学反应被腐蚀,而且在一定条件下的腐蚀速度相当快而产生锈蚀现象,尤其是点蚀和缝隙腐蚀。

不锈钢件的腐蚀机理主要为电化学腐蚀。

因此,在不锈钢板产品在加工作业过程中应采取一切有效措施,尽量避免锈蚀条件和诱因的产生。

实际上,许多锈蚀条件和诱因(如划伤、飞溅、割渣等)对于产品的外观质量也有显著的不利的影响,也应该和必须加以克服。

不锈钢的腐蚀和耐腐蚀原理

不锈钢的腐蚀和耐腐蚀原理

不锈钢的腐蚀和耐腐蚀原理不锈钢是一种合金材料,主要由铁、铬、镍以及其他少量的合金元素组成。

它的腐蚀和耐腐蚀原理是由于其特殊的化学成分和结构。

不锈钢的主要耐腐蚀性来自于其中的铬元素。

铬能与氧气反应生成一层致密的氧化铬膜,覆盖在钢的表面上,使金属与外界空气隔离,不易被进一步氧化和腐蚀。

这种氧化铬膜能够自愈合,即使表面受到划伤或损伤,也能够重新生成。

这就是不锈钢耐腐蚀能力强的原因之一除了铬元素之外,不锈钢中还含有一定比例的镍、钼等合金元素。

镍除了提高不锈钢的耐腐蚀性外,还能够提高钢的塑性和韧性,使其更容易加工。

而钼则可以提高不锈钢的耐腐蚀性能,特别是在酸性和高温环境下。

此外,不锈钢中还含有一些其他元素,如锰、硅、钒等。

这些元素主要起到合金强化和调节组织的作用,能够提高不锈钢的机械性能和耐腐蚀能力。

不锈钢的腐蚀形式主要可以分为点蚀、晶间腐蚀和应力腐蚀等。

点蚀是指在具有一定电位差的情况下,局部区域的金属表面发生腐蚀现象。

晶间腐蚀是指在高温或受到一定环境因素影响时,不锈钢中的晶粒边界发生腐蚀。

应力腐蚀则是由于不锈钢受到外界应力作用,使得其在具有一定环境条件下发生腐蚀。

为了提高不锈钢的耐腐蚀性能,可以采取以下措施:1.增加钢中的合金元素含量,特别是铬、镍和钼等。

这样可以增加不锈钢的抗氧化和抗腐蚀能力。

2.采用特殊的热处理工艺,如固溶处理和淬火处理等。

这样可以改变不锈钢中的晶格结构,提高其耐腐蚀性能。

3.在不锈钢表面形成氧化膜。

可以采用化学处理、电解处理以及物理气相沉积等方法,在不锈钢表面形成一层致密的氧化膜,增加其防腐能力。

4.合理设计和使用不锈钢材料。

在实际应用中,需要根据不同环境和介质的要求,选择合适的不锈钢材料,以确保其耐腐蚀性能。

总之,不锈钢的耐腐蚀性来自于其中的合金元素,特别是铬元素,以及氧化铬膜的存在。

通过调节不锈钢的化学成分和热处理工艺,可以进一步提高其耐腐蚀能力。

合理使用和保养不锈钢材料,也能够延长其使用寿命。

不锈钢腐蚀原因及预防措施详解

不锈钢腐蚀原因及预防措施详解

不锈钢腐蚀原因及预防措施详解一、不锈钢引起点蚀的因素及防止措施不锈钢极好的耐腐蚀性能是由于在钢的表面形成看不见的氧化膜,使其成为是钝态的。

该钝化膜的形成是由于钢暴露在大气中时与氧反应,或者是由于与其他含氧的环境接触的结果。

如果钝化膜被破坏,不锈钢就将继续腐蚀下去。

在很多情况下,钝化膜仅仅在金属表面和局部地方被破坏,腐蚀的作用在于形成细小的孔或凹坑,在材料表面产生无规律分布的小坑状腐蚀。

出现点蚀很可能是存在与去极剂化合的氯化物离子,不锈钢等钝态金属的点蚀常起因于某些侵蚀性阴离子对钝化膜的局部破坏,保护有高耐腐蚀性能的钝态通常需要氧化环境,但正好这也是出现点蚀的条件。

产生点蚀的介质是在C1-、Br-、I-、ClO4-溶液中存在Fe3+、Cu2+、Hg2+等重金属离子或者含有H2O2、O2等的Na+、Ca2+碱和碱土金属离子的氯化物溶液。

点蚀速率随温度升高而增加。

例如在浓度为4%-10%氯化钠的溶液中,在90℃时达到点蚀造成的重量损失最大;对于更稀的溶液,最大值出现在较高的温度。

防止点蚀的方法:(1)避免卤素离子集中。

(2)保证氧或氧化性溶液的均匀性,搅拌溶液和避免有液体不流动的小块区域。

(3)或者提高氧的浓度,或者去除氧。

(4)增加pH值。

与中性或酸性氯化物相比,明显碱性的氯化物溶液造成的点蚀较少,或者完全没有(氢氧离子起防腐蚀剂的作用)。

(5)在尽可能低的温度下工作。

(6)在腐蚀性介质中加入钝化剂。

低浓度的硝酸盐或铬酸盐在很多介质中是有效的(抑制离子优先吸咐在金属表面上,因此防止了氯化物离子吸咐而造成腐蚀)。

(7)采用阴极防腐。

有证据表明,用与低碳钢、铝或锌电隅合阴极保护的不锈钢在海水中不会造成点蚀。

含钼2%-4%的奥氏体型不锈钢具有良好的耐点蚀性能。

使用含钼奥氏体型不锈钢可显著减少点蚀或一般腐蚀,腐蚀介质例如氢化钠溶液、海水、亚硫酸、硫酸、磷酸和甲酸。

二、不锈钢的晶间腐蚀及预防措施含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌号),如果热处理不当则在某些环境中易产生晶间腐蚀。

不锈钢的腐蚀

不锈钢的腐蚀

2.硬度高轻易产生SCC。
3.拉应力才干产生SCC。
4.
有主裂纹,有分支裂纹,主裂
纹垂直于拉应力方向。
5.断裂形式:沿晶、穿晶、混合

6.温度高,SCC发生几率高。
(60℃下列几乎不发生SCC)
7.
腐蚀环境有选择性:304 Cl离
子溶液, “氯脆” 能造成SCC),碳钢 “碱
强氧化性介质、介质旳选择性) 2.金属表面旳电极电位。 3.介质溶液旳浓度、温度等。
电偶腐蚀
定义:异种金属在同一介质中接触,因为 腐蚀电位不相等有电偶电流流动,使电位 较低旳金属溶解速度增长,造成接触处旳 局部腐蚀,而电位较高旳金属,溶解速度 反而减小,这就是电偶腐蚀。
原理:腐蚀电位较低旳金属因为和腐蚀电 位较高旳金属接触而产生阳极极化,其成 果是溶解速度增长,而电位较高旳金属, 因为和电位较低旳金属接触而产生阴极极 化,成果是溶解速度下降,即受到了阴极 保护。
个金属表面(涉及缝隙内、外)仍处于等电位状 态,即仍处于钝态。 2.经一段时间,缝内、外氧浓差增长,缝内金属旳 电位变负,使缝内阳极溶解速度增长,成果引起 Fe离子、Cr离子旳浓度增长,Cl离子往缝内迁移。 3.氯化物水解,缝内pH值下降,电池旳腐蚀电流 亦 不断增长。 4.缝内金属致钝电位因为pH值下降而上升时,腐蚀 进入发展阶段。大阴极-小阳极形成,产生严重腐 蚀。
高镍铸铁 13%Cr不锈钢 铸铁 钢或铁 2024铝(4.5Cu,1.5Mg,0.6Mu)
镉 工业纯铝(1100)
锌 镁和镁合金
电偶腐蚀
影响原因
1.材料表面条件不同(划伤、摩擦痕、焊接)。
2.一般情况下,伴随阴极对阳极面积旳比值(即 SK/Sa)旳增长,作为阳极体旳金属腐蚀速度也增 长。

不锈钢的晶间腐蚀机理和防止方法

不锈钢的晶间腐蚀机理和防止方法

不锈钢的晶间腐蚀机理和防止方法不锈钢,这个名字听起来就让人觉得特别高大上,对吧?它的抗腐蚀能力那可是响当当的,很多人都觉得用不锈钢的东西,根本不用担心。

不过,咱们今天聊的可不是那些华丽的外表,而是它身上隐藏的小秘密,尤其是晶间腐蚀。

哎,别以为这事儿离咱们远,咱生活中用的不锈钢水槽、餐具,甚至是家里的电器,都是有可能受到影响的。

晶间腐蚀听起来复杂,其实就是不锈钢在特定环境下,一些小地方突然变得脆弱,结果就被腐蚀掉了。

说白了,就像一个朋友的性格,看似无懈可击,但总有一些地方让人担忧。

想象一下,你买了一套漂亮的不锈钢厨具,天天在厨房里秀恩爱,结果有一天突然发现上面冒出小黑点,这时候心里是不是咯噔一下?其实这就是晶间腐蚀的“作怪”。

这腐蚀一般是在高温、高湿或者含有氯离子的环境下发生的,尤其是在焊接的地方。

你看,那些焊接的地方,可能会因为加热而改变了材料的性质,变得“软弱可欺”。

而这个时候,水分和其他化学物质就趁虚而入,悄悄地开始“挖墙角”。

但咱也别太担心,这种事儿虽然听上去吓人,实际上是有办法预防的。

咱得注意选材。

市面上不锈钢的种类可多了,比如304、316,不同型号的耐腐蚀性差别大。

想要让你的不锈钢产品不被腐蚀,挑对材料很关键。

316不锈钢在海洋环境中表现得尤为出色,因为它含有更多的镍和钼,防腐蚀的能力简直是一流。

就像是穿上了防弹衣,真是稳稳的。

保养也得跟上。

想想你的小车,平时得定期洗车打蜡,不然就容易生锈。

不锈钢也是一样,定期清洁很重要,保持干燥,让它远离水分和盐分。

这就是给它穿上一层“防护服”,保护得当,它就能在厨房、浴室里长长久久。

不然,放在水槽里天天泡着,时间一长,可能就得见红了,哈哈。

焊接时的工艺也不能马虎。

这个环节很重要,焊接的不当会导致焊缝处的脆弱,简直就是给腐蚀开了个门。

选择靠谱的焊接材料和方法,保持焊接部位的干燥和洁净,能有效降低后续腐蚀的风险。

咱都知道,细节决定成败嘛,得小心翼翼,别让坏习惯埋下隐患。

不锈钢设备点腐蚀原因分析与防护措施

不锈钢设备点腐蚀原因分析与防护措施

从而相对于晶内的铬更为活泼。 如果存在水溶液条件 , 就形成了以课露的铬为 阳极 , 以不锈钢为阴极的原电池。 大的阴极面积产生了阳极控制, 因而腐蚀作 用很严重, 导致晶问破裂或点蚀。 这称之为 “ 焊接接头晶间腐蚀”这种钢称之 , 为“ 活化处理 的钢。 采用低碳的奥氏体不锈钢可以减轻这个问题 。 钝化膜是保护不锈钢的主要屏 障, 但另一方面具有钝化特性的金属或 合金 , 钝化能力越强则对点蚀的敏感性越高, 不锈钢较碳钢易发生点腐蚀就
2 不锈钢 的点 腐蚀 机理 、
在 金 属表 面 局部 地 方 出现 向深 处 发展 的腐 蚀小 孔 , 余表 面 不腐 蚀 或 其
腐蚀很轻微, 这种形态成为小 孔腐蚀, 简称点蚀 , 又称孑蚀 。 L 金属腐蚀按机 理 分为 化学 腐蚀 和 电化 学腐 蚀 。 腐蚀 属 于 电化学 腐蚀 中的局 部腐 蚀 。 种 点 一 点蚀是由局部充气电池产生 , 类似于金属的缝隙腐蚀。 另一种更常见的点蚀 发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上 。 21 . 、不锈钢 的耐腐蚀 原理 不锈钢的重要因素在于其保护性氧化膜是 自愈性的 ( 例如它不象选择 性氧化而形成的那些保护性薄膜)致使这些材料能够进行加工而不失去抗 , 氧化性。 合金必须含有足够量的铬以形成基本上由C , rO 组成的表皮 , 以便 当薄膜弄破时有足够数目的铬( r ) c 阳离子重新形成薄膜 。 如果铬的比例低 于完全保护所需要的比例 , 铬就溶解在铁表面形成的氧化物 中而无法形成有 效保护膜。 起完全保护作用所需的铬的 比例取决于使用条件 。 在水溶液中, 需要1 的铬产生 自钝化作用形成包含大量c 2 rO 的很薄的保护膜。 在气态氧 化条件下,低于 10 " ,1 00 C时 2的铬有很好的抗氧化性,在高于 10  ̄时, 00 1的铬也有很好的抗氧化 陛。 7 当金属含铬量不够或某些原因造成不锈钢 晶界 出现贫铬 区的时候 , 就不能形成有效的保护性膜。 22 . 、氯离子对不锈钢钝化膜的破坏 处于钝态的金属仍有一定的反应能力, 即钝化膜 的溶解和修复 ( 再钝 化) 处于动 平衡状态。 当介质 中 含有活性阴离子 ( 的如氯离子 ) , 常见 时 平 衡便受到破坏 , 溶解占优势。 其原因是氯离子能优先地有选择地 吸附在钝化 膜上 。 把氧原子排挤掉 , 然后和钝化膜中的 阳离子结合成可溶性氯化物, 结 果在新嚣 出的基底金属的特定点上生成小蚀坑 ( 孔径多在2 ~ 0 m)这 O 3¨ , 些小蚀坑称为孔蚀核, 亦可理解为蚀孔生成的活性中心。 氯离子的存在对不 锈 钢 的钝态 起 到直 接 的破 环作 用 。

不锈钢的点腐蚀机理

不锈钢的点腐蚀机理

不锈钢的点腐蚀机理在金属表面局部地方出现向深处发展的腐蚀小孔,其余表面不腐蚀或腐蚀很轻微,这种形态成为小孔腐蚀,简称点蚀。

金属腐蚀按机理分为化学腐蚀和电化学腐蚀。

点腐蚀属于电化学腐蚀中的局部腐蚀。

一种点蚀是由局部充气电池产生,类似于金属的缝隙腐蚀。

另一种更常见的点蚀发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上。

4.1 电化学腐蚀的基本原理通过原电池原理可以更好地说明电化学腐蚀机理。

当2种活泼性不同的金属(如铜和锌)浸入电解质溶液,2种金属间将产生电位差,用导线连接将会有电流通过,在此过程中活泼金属(锌)将被消耗掉,也就是被电化学腐蚀。

不同于化学腐蚀(如金属在空气中的氧化,锌在酸溶液中的析氢),电化学腐蚀一定有电流产生,并且电流量的大小直接与腐蚀物的生成量相关,即电流密度越大腐蚀速度越快。

各种金属在电解质溶液中的活泼程度可用其标准电极电位表示,即金属与含有单位活度(活度与浓度正相关,在浓度小于10-3mol/L时认为两者值相同)的金属离子,在温度298K (25℃),气体分压1.01MPa下的平衡电极电位。

标准电极电位越低,金属或合金越活泼,在与高电位金属组成电偶对时更易被腐蚀。

由此可见,决定金属标准电极电位的因素除了金属的本质外还有:溶液金属离子活度(浓度)、温度、气体分压。

另外一个重要影响因素是金属表面覆盖着的薄膜。

除了金、铂等极少数贵金属外,绝大多数金属在空气中或水中可以形成具有一定保护作用的氧化膜,否则大部分金属在自然界就无法存在。

金属表面膜的性质对其腐蚀发生及腐蚀速度都有着重要影响。

4.2 不锈钢的耐腐蚀原理不锈钢的重要因素在于其保护性氧化膜是自愈性的(例如它不象选择性氧化而形成的那些保护性薄膜),致使这些材料能够进行加工而不失去抗氧化性。

合金必须含有足够量的铬以形成基本上由Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。

如果铬的比例低于完全保护所需要的比例,铬就溶解在铁表面形成的氧化物中而无法形成有效保护膜。

不锈钢的腐蚀与耐腐蚀的基本原理

不锈钢的腐蚀与耐腐蚀的基本原理

不锈钢的腐蚀与耐腐蚀的基本原理金属受环境介质的化学及电化学作用而被破坏的现象即腐蚀。

化学腐蚀的环境介质是非电解质(汽油、苯、润滑油等),电化学腐蚀的环境介质是电解质(各种水溶液)。

电化学腐蚀是涉及电子转移的化学过程,该过程能否进行取决于金属能否离子化,而离子化的趋势可用金属的标准电极电位(ε0)来表示。

由于碳化物、夹杂物,以及组织、化学成分和内部应力的不均匀等的作用,将促使各部分在电解液中产生相互间的电极电位差。

电极电位差愈大,微阳极和微阴极间的电流强度愈大,钢的腐蚀速度也愈大,微阳极部分产生严重的腐蚀。

在电化学腐蚀中能够控制腐蚀反应速度的现象称为极化,极化可使阳极与阴极参与反应的速度得到减弱和减缓。

电解液中离子的缓慢移动、原子缓慢结合成气体分子或电解液中离子的缓慢溶解,都可能是极化的表现形式。

反应面积、搅拌或电解液流动、氧气、温度等因素,都将影响极化的速度。

用极化技术与临界电位可衡量金属与合金在氯化物溶液中点腐蚀与缝隙腐蚀的敏感性。

当不锈钢与异种金属接触时,需考虑电化学腐蚀。

但若不锈钢是正极,则不会产生电流腐蚀。

钝化状态金属的耐腐蚀性取决于铬含量、环境中的氯化物和氧含量以及温度。

某些元素(如氯)可以击穿钝化膜,造成钝化膜不连续处的金属被腐蚀,故使用钝化状态金属的用户应特别注意点腐蚀、应力腐蚀开裂、敏化以及贫氧腐蚀等。

为了提高不锈钢的耐腐蚀性能,其应处于钝化状态(必要条件),钝化后腐蚀电流密度要低(腐蚀速度),钝化状态的电位范围要宽(相对稳定性)。

对于含镍材料来说,腐蚀有两种主要形式:一种是均匀腐蚀,另一种是局部腐蚀。

在海洋大气中的铁锈就是一种一般或均匀腐蚀的典型例子。

此处金属在其整个表面上均匀地被腐蚀。

在这种情况下,钢表面形成疏松层,这层腐蚀产物很容易去除。

另一方面,像合金400这种耐腐蚀性较好的金属,它们在海洋大气中表现出良好的均匀抗腐蚀性。

这是由于合金400可形成一种非常薄而坚韧的保护膜。

13Cr不锈钢的防腐机理(译文)

13Cr不锈钢的防腐机理(译文)
.引言
在本论文中,针对含有少量H2S的CO2的周围环境,描述了特级13Cr不锈钢的防腐机理、对硫化应力裂纹(SSC)和局部腐蚀的预防性能。
对于95千磅/平方英寸等级和110千磅/平方英寸等级的特级13Cr不锈钢,其化学成分组成范围和机械性能如表1,图2和图3所示。图4和图5表明了95千磅/平方英寸等级的特级13Cr不锈钢的应用范围。110千磅/平方英寸等级的特级13Cr不锈钢基本上应用于仅有CO2的周围环境。
50℃
H1-1
没有失效
没有裂纹
50℃
H1-3
没有失效
没有裂纹
50℃
ST2-1
没有失效
麻点腐蚀,少量裂纹
40℃
H1-2
失效
-
40℃
ST2-2
失效
-
图片1测试试样的外观
(H2S分压为0.1巴(CO2为平衡PH值的压力),NaCl浓度为20%,PH值为4.0,施加应力为实际屈服强度的90%,60℃,屈服强度为120.4千磅/平方英寸).
图14特级13Cr不锈钢上的防腐表面薄膜的模型
2局部腐蚀的防腐机理
增加铬氧化物这一起钝化作用的覆盖薄膜的稳定性
1)在腐蚀产物中丰富铬的含量(如图15,16和17所示).
2)通过增加添加剂钼的质量百分比,防止局部腐蚀.
图15在铁-铬合金中,温度和铬含量对CO2腐蚀速率的影响(CO2压力为3.0MPa,NaCl浓度为5%,试验时间为96小时,介质流速为2.5m/s).
序号
CO2 分压(MPa)
H2S分压(MPa)
氯离子含量(百万分率)
1
5.8
163
14000
2
2.7
150
14000

不锈钢生锈腐蚀断裂的原因

不锈钢生锈腐蚀断裂的原因

不锈钢生锈腐蚀断裂的原因
不锈钢生锈、腐蚀和断裂的原因可能有以下几个方面:
1. 化学腐蚀:不锈钢主要是由铁、铬、镍等合金元素组成,其中铬的含量较高。

铬会与氧气结合形成一层致密的氧化铬膜,起到防止钢材进一步腐蚀的作用。

然而,当遭受一些强酸、强碱等化学物质的侵蚀时,氧化铬膜可能会被破坏,导致不锈钢发生腐蚀。

2. 空气中存在的污染物:不锈钢在潮湿的环境中,易受到空气中的氧气、水分和含有硫、氯等污染物的侵蚀。

尤其是在工业污染较为严重的地区,不锈钢的腐蚀速度可能更快。

3. 电化学腐蚀:如果不锈钢表面存在微小的缺陷,例如划痕、裂纹等,这些缺陷可能导致不锈钢在电化学条件下发生腐蚀。

例如,在存在电解质溶液中,不锈钢可能会发生电化学腐蚀。

4. 力学因素:不锈钢的断裂可能与力学因素有关,如应力过大、外力冲击等。

当不锈钢受到超过其承载能力的应力时,可能会发生断裂。

为了避免不锈钢的生锈、腐蚀和断裂问题,我们可以采取以下措施:
1. 注意环境:尽量避免将不锈钢暴露在潮湿、有酸碱性或含有污染物的环境中。

2. 定期清洁:定期清洁不锈钢表面,确保其表面干净,并使用适当的清洁剂。

3. 防护涂层:在一些特殊环境下,可以考虑给不锈钢表面添加一层防护涂层,增加其抗腐蚀性能。

4. 注意使用条件:在使用不锈钢制品时,要注意避免过大的应力和外力冲击,以防止不锈钢发生断裂。

总之,不锈钢的生锈、腐蚀和断裂问题是一个综合因素的结果,需要注意环境因素、化学因素、力学因素等,以保证不锈钢的使用寿命和安全性。

不锈钢的腐蚀现象及影响因素()

不锈钢的腐蚀现象及影响因素()

5 不锈钢的晶间腐蚀 所谓晶间腐蚀是金属材料在特定的腐蚀介质中 ,并在高 温环境下由于晶界合金元素的贫化,沿着材料的晶粒间界 受到腐蚀,使晶粒之间丧失结合力的一种局部腐蚀破坏现 象。以奥氏体不锈钢为例,在焊接时,焊缝两侧 2~3 毫 米处可被加热到 400~910℃,这就是所谓的晶间腐蚀敏 化区,有铬和钼相析出而出现贫化。不锈钢抗晶间腐蚀能 力因其金相组织和化学成分的不同而有所不同,如:奥氏 体不锈钢和双相不锈钢晶间腐蚀的敏化温度范围是 400~ 850℃;而铁素体不锈钢则在 850℃以上。腐蚀从表面沿 晶界深入金属内部,外表看不出腐蚀迹象,但金相观察晶 界呈现网状腐蚀。
参考文献 (1)宋涛哲 《腐蚀电化学研究方法》 化学工业出版社 1988 年 12 月 76~79 页 (2)傅积和 《化纤化工设备防腐蚀》 纺织工业出版社 1985 年 3 月 11~17 页 (3)周静妤 《防腐技术》 化学工业出版社 1988 年 12 月 17~47 页 (4)冈毅民 《中国不锈钢腐蚀手册》 1992 年 6 月 冶金工业出版社 189~229 页 (5)邵祖光 《炼油厂设备加热炉设计手册》第四分篇 中石化规划院 141~142页 (6)左景伊 《腐蚀数据手册》 1985 年 8 月 化学工业出版社 19~ 29 页 (7)史美堂 《金属材料及热处理》 上海科学技术出版社 1985 年 10 月 31~33页
1,前言 通常所说的不锈钢是不锈钢、耐酸钢及耐热钢的 总称。具体来说,不锈钢是指在空气中能抵抗腐 蚀的钢;耐酸钢是指在某些化学介质中能抵抗腐蚀 的钢,而耐热钢则是指在高温下抗氧化、抗蠕变 并耐一定介质腐蚀的钢。从工程来看,不锈钢不 是在任何情况下都具有较好的耐蚀性,在一定条 件下可能出现点蚀、缝隙腐蚀、应力腐蚀、晶间 腐蚀等现象。如:不锈钢在腐蚀性介质和拉应力 共存的条件下,可能产生应力腐蚀;在腐蚀性介 质和高温环境共存的条件下,还可能产生晶间腐 蚀。后两种腐蚀其隐蔽性和危害性远大于其它腐 蚀,往往会造成重大的工程事故。不锈钢抗腐蚀 能力因其金相组织和化学成分(主要是合金元素) 的不同而有所不同。下面分别介绍上述各种腐蚀 产生的原因及影响因素。

不锈钢腐蚀机理发生原因和维护处理方法

不锈钢腐蚀机理发生原因和维护处理方法

不锈钢腐蚀机理发生原因和维护处理方法不锈钢是一种具有优良耐腐蚀性能的金属材料,但在一些特定环境下,仍然会发生腐蚀现象。

下面将分别介绍不锈钢腐蚀的机理、发生原因以及维护处理方法。

一、不锈钢腐蚀机理不锈钢的耐腐蚀性能主要是由其表面形成的一层致密、均匀的氧化膜起到保护作用的。

这一氧化膜主要由Cr2O3组成,其在氧气存在的情况下具有良好的稳定性,并能修复自身。

当不锈钢表面发生划伤、磨损或被腐蚀介质中的一些化学物质侵蚀时,会导致氧化膜受损,无法充分发挥保护作用,从而引发不锈钢腐蚀。

二、不锈钢腐蚀发生原因1.化学腐蚀:不锈钢在强酸、强碱等强氧化性介质中容易发生腐蚀。

酸性介质中的氢离子能够破坏不锈钢表面的氧化膜;碱性介质中的羟离子与不锈钢中的铁发生络合反应,破坏氧化膜。

2.电化学腐蚀:当不锈钢处于具有电解性质的介质中时,可能发生电化学腐蚀。

例如,金属结构中的阳极和阴极发生氧化还原反应,形成腐蚀电池,导致不锈钢腐蚀破坏。

3.晶间腐蚀:不锈钢在高温条件下,在含有一定含氧量的环境中,容易发生晶间腐蚀。

这是因为高温下不锈钢的晶界区域受热影响,晶界区域的Cr含量降低,使其形成致密氧化膜的能力下降。

4.应力腐蚀:当不锈钢在受到应力的同时,接触到特殊环境中的一些介质,如氯离子、硫化物等,容易发生应力腐蚀。

应力作用下,不锈钢表面的氧化膜破坏,进而导致腐蚀。

1.注意环境选择:尽量避免不锈钢长时间暴露在酸性、碱性和含氯环境中。

2.防止划伤和磨损:避免不锈钢表面被尖锐物体划伤,以免造成氧化膜破损,可以选择表面硬度较高的不锈钢材料。

3.定期清洁:定期清洗不锈钢材料表面的杂质和污垢,采用温和的清洁剂清洗,避免使用含酸或含氯的清洁剂。

4.合理使用和维护:在不锈钢材料的使用过程中,要注意控制电位和温度等条件,以减少腐蚀的发生。

定期对不锈钢材料进行检查和保养,发现问题及时维修。

总结起来,不锈钢腐蚀主要是由于不锈钢表面氧化膜被损坏而引起的。

发生腐蚀的原因主要有化学腐蚀、电化学腐蚀、晶间腐蚀和应力腐蚀等。

不锈钢管道点腐蚀的理论分析

不锈钢管道点腐蚀的理论分析

不锈钢管道点腐蚀的理论分析1.局部腐蚀电池效应:不锈钢管道表面存在微小的缺陷或不均匀性,当管道与化学物质接触时,会形成局部腐蚀电池效应。

电池中的阳极区域将发生氧化反应,而阴极区域则受到保护。

这种不均匀的电化学反应导致局部腐蚀。

2.腐蚀介质的浓度差异:不锈钢管道表面的腐蚀坑通常是由于介质中一些成分浓度差异引起的。

当不锈钢管道表面存在微小缺陷时,介质中浓度差异较大的区域将更容易形成腐蚀。

3.不锈钢管道材料的不适应性:不锈钢管道的材料与介质之间可能存在不相容性,例如一些化学物质对特定型号的不锈钢具有较强的腐蚀作用。

此外,不锈钢管道的微组织和化学成分也会影响其耐腐蚀性能。

基于上述理论分析,可以采取以下措施来预防和控制不锈钢管道的点腐蚀:1.合理设计和选材:在不锈钢管道的设计和选材阶段,需考虑管道所要运输的介质的性质、浓度、温度等因素。

选择合适的不锈钢材料,确保其耐腐蚀性能能够满足介质的要求。

2.保护膜的形成:在不锈钢管道表面形成一层致密的保护膜,可以减缓腐蚀的发生。

保护膜可以通过表面处理、化学物质涂覆等方法得以形成。

3.降低局部腐蚀电池效应:采用阳极保护、电位控制等方法,可以减少不锈钢管道表面局部电化学反应的不均匀性,从而降低点腐蚀的风险。

4.定期检查和维护:及时对不锈钢管道进行检查和维护,修复管道表面的缺陷和损伤,防止其进一步发展成为点腐蚀。

综上所述,理论分析不锈钢管道点腐蚀的机理,对于预防和控制该现象具有重要意义。

通过合理设计和选材、保护膜的形成、降低局部腐蚀电池效应以及定期检查和维护等措施,可以有效地预防和控制不锈钢管道的点腐蚀问题。

不锈钢304耐腐蚀机理

不锈钢304耐腐蚀机理

不锈钢304耐腐蚀机理
不锈钢304是一种常见的耐腐蚀钢材,具有良好的耐蚀性能。

其耐腐蚀机理主要包括以下几个方面:
1. 良好的耐氧化性:不锈钢304含有18%的铬元素,形成了致密的铬氧化物膜(氧化铬),可以阻挡空气、水和许多弱腐蚀介质的侵蚀,起到耐氧化的作用。

2. 铬的自愈性:当不锈钢304受到划伤或损伤时,铬可以与氧气结合生成氧化铬,进一步修复和增强钢材的耐蚀性能。

3. 钢中的钼元素:不锈钢304中含有少量的钼元素,钼能够增强钢材对一些特殊环境(如酸性环境和氯离子环境)的耐腐蚀性能。

4. 钢材的晶界腐蚀抑制作用:不锈钢304具有较低的碳含量,可以减少钢材的晶界处的偏析,减少晶界腐蚀的可能性。

总体来说,不锈钢304具有铬氧化物膜的形成、自愈性、钼元素和碳含量的调节等多种机制,使其具有良好的耐腐蚀性能,适用于多种腐蚀环境中的使用。

不锈钢腐蚀机理

不锈钢腐蚀机理

不锈钢腐蚀机理
不锈钢的腐蚀机理,从宏观上来说是电化学腐蚀,从微观上来说是组织结构的变化,包括晶间腐蚀、点腐蚀、应力腐蚀和氢致开裂等。

不锈钢中的主要杂质成分是硅和锰,它们与氧反应后,使不锈钢的点蚀发生倾向增大,使晶间腐蚀加剧。

奥氏体不锈钢在高温下容易生成马氏体组织,也易产生晶间腐蚀。

(不锈钢)奥氏体不锈钢的晶间腐蚀、应力腐蚀和氢致开裂等都与奥氏体不锈钢的组织结构和组成有密切关系。

奥氏体不锈钢的晶间腐蚀主要发生在马氏体或铁素体基体上,奥氏体基体是由铁、铬和镍组成的。

铁铬合金中含有微量镍后,对高温下发生的晶间腐蚀起了抑制作用。

而含钼后,则会抑制奥氏体不锈钢的晶间腐蚀。

晶间腐蚀的影响因素很多,但主要与材料、温度、应力和组织等有关。

奥氏体不锈钢中的应力腐蚀一般是在应力较大和较高的温度下发生的,且主要发生在奥氏体和铁素体基体上。

由于奥氏体不锈钢中含有铬、镍等合金元素,这些元素在高温下会与氧形成钝化膜,起到抗晶间腐蚀的作用。

—— 1 —1 —。

不锈钢点腐蚀机理

不锈钢点腐蚀机理

不锈钢点腐蚀机理不锈钢是一种具有抗腐蚀性能的金属材料,它在环境中的抗腐蚀性能主要来自于其表面形成的一层钝化膜。

然而,不锈钢在特定的环境条件下仍然会发生腐蚀现象,其腐蚀机理主要有以下几种。

首先,不锈钢的点腐蚀机理是一种局部腐蚀现象。

在特定的环境中,不锈钢表面的钝化膜被破坏或者没有形成,使得不锈钢表面处于活动状态,容易被腐蚀介质侵蚀。

这种局部腐蚀现象主要发生在不锈钢表面的缺陷、疏松区和钝化膜的破坏处。

例如,不锈钢表面的划痕、磨损、焊接缺陷等都是点腐蚀的敏感部位。

其次,点腐蚀的发生与环境条件有密切关系。

不锈钢的点腐蚀主要发生在腐蚀介质中存在一定的氯离子或氧化性物质,例如氯离子、过氧化物、酸性物质等。

这些物质可以在不锈钢表面形成腐蚀电池,引发点腐蚀。

此外,温度、湿度、气氛等因素也会对点腐蚀的发生起到一定的影响。

再次,点腐蚀发生的机理主要是电化学反应。

点腐蚀是一种局部的电化学反应过程,与阳极和阴极区域之间形成的微电池有关。

在局部缺陷区域,表面钝化膜被破坏,形成阳极区域;而在无缺陷的区域,形成阴极区域。

在腐蚀介质的作用下,阳极产生金属离子,而阴极处的氧气或水还原成氢离子,产生强烈的电化学反应,造成局部的腐蚀现象。

最后,点腐蚀的发展是一个渐进的过程。

一开始,点腐蚀可能只是表面的微小起伏或者颜色的改变,随着时间的推移,腐蚀现象会不断加剧,形成更深的坑状腐蚀。

点腐蚀会给不锈钢的使用带来一定的危害,不仅会减少材料的强度和耐久性,还可能引发材料的断裂和失效。

综上所述,不锈钢的点腐蚀是一种局部腐蚀现象,主要发生在不锈钢表面的缺陷和疏松区。

其发生与环境条件、电化学反应等多种因素有关。

了解不锈钢点腐蚀的机理,对于预防和控制不锈钢点腐蚀具有重要的意义。

不锈钢的腐蚀与耐腐蚀的基本原理

不锈钢的腐蚀与耐腐蚀的基本原理

不锈钢的腐蚀与耐腐蚀的基本原理不锈钢是一种具有良好耐腐蚀性能且外观美观的合金材料,它通过添加耐蚀元素来提高钢材的抗腐蚀能力。

下面将详细介绍不锈钢的腐蚀特性以及其耐腐蚀的基本原理。

1.不锈钢的腐蚀特性不锈钢可以避免由于氧化而引起的生锈现象,这主要是因为其中含有不易被氧化的铬元素,通过与氧气形成的铬氧化物膜来保护钢材。

这种膜可以防止进一步的氧化反应,从而起到抗腐蚀的作用。

此外,不锈钢还具有一定的耐化学腐蚀性能,可以在酸、碱、盐环境中保持较好的稳定性。

2.不锈钢的耐腐蚀机理2.1.铬氧化物膜不锈钢中含有至少10.5%的铬元素,当与氧气接触时,钢表面的铬会与氧气反应生成一层致密的、不透水的铬氧化物膜。

这种氧化膜具有良好的附着性和致密性,能够阻止氧、水和其他腐蚀介质的渗透,有效保护钢材不被腐蚀。

2.2.自修复能力不锈钢材料在受到轻微划伤或局部氧化的情况下,铬元素会与氧气反应生成氧化铬,这种氧化铬可以自愈合刮伤表面的膜,形成新的保护层,从而有效抵御腐蚀性介质的进一步侵蚀。

2.3.钝化作用不锈钢在一定条件下可以形成一层均匀、孔隙度较低的钝化膜,这种膜可以降低钢材的电化学反应速率,从而有效抵御酸、碱等腐蚀性物质的侵蚀。

3.不锈钢的抗腐蚀影响因素3.1.合金成分不锈钢的抗腐蚀性能与其合金成分有密切关系,其中含有较高比例的铬元素和一定含量的镍、钼等元素可以明显提高不锈钢的抗腐蚀能力。

3.2.环境因素不锈钢的耐腐蚀性能会受到环境因素的影响,例如温度、氧气浓度、湿度等。

一般来说,低温和低氧环境有利于不锈钢的耐腐蚀性能,而高温、高氧环境会减弱不锈钢的抗腐蚀能力。

3.3.表面处理不锈钢的表面处理可以进一步提高其耐腐蚀性能。

常见的表面处理包括机械抛光、电化学抛光、电镀、喷涂等,这些方法可以去除不锈钢表面的杂质,增加表面光洁度,减少局部腐蚀的可能性。

综上所述,不锈钢的腐蚀与耐腐蚀的基本原理是通过合金中的铬元素与氧气形成的氧化铬膜来保护钢材不受腐蚀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不锈钢的局部腐蚀机理
不锈钢由于材料的不均匀性、应力的影响、环境方面的条件(主要为氯化物离子的存在),部分钝态保护膜被破坏而产生局部腐蚀。

以下为有关具有代表性的3种局部腐蚀,表示其腐蚀的机理。

点腐蚀 点腐蚀是在某个特定部位,腐蚀集中,呈坑状侵蚀的腐蚀现象。

点腐蚀发生的条件是:①存在 局部破坏的保护膜的卤离子、② 存在易溶于水的非金属夹杂物等缺陷部。

点腐蚀如右面所示,成为自身进行的催化剂。

间隙腐蚀 间隙腐蚀是在法兰部以及叠合焊接部位等结构上的间隙及贝类粘附、沉淀物等间隙部发生腐蚀。

该部分在间隙内的溶解氧不足,随着时间的推移而不能维持钝态而产生腐蚀,在与点腐蚀同样机理下产生腐蚀。

该腐蚀与点腐蚀相比,即使在温和的环境条件下亦产生。

对间隙的余隙影响大。

应力腐蚀裂纹 应力腐蚀裂纹系指因应力与腐蚀的相互作用,在材料上产生裂纹的现象。

钝态保护膜因应力被破坏,在其前端因应力集中而腐蚀加速,产生裂纹状腐蚀。

点腐蚀增大的机理
间隙腐蚀的机理
应力腐蚀裂纹的机理。

相关文档
最新文档