最小生成树的算法
prim算法求最小生成树c代码
一、概述在图论中,最小生成树是指在一个连通图中生成一棵包含图中所有顶点且边权值之和最小的树。
prim算法是一种常用的求取最小生成树的算法之一,其基本思想是从一个起始顶点开始,逐步选择与当前树相邻的并且权值最小的边,直到包含了图中所有的顶点为止。
本文将介绍prim算法的原理以及给出相应的C代码实现。
二、prim算法原理1. 初始化选择任意一个顶点作为起始顶点,并将其标记为已访问。
设置一个集合V来存放已经访问的顶点,初始化为空集合。
2. 重复以下步骤直到V包含了所有顶点:(1)遍历集合V中的所有顶点,找到与之相邻且未被访问过的顶点中边权值最小的顶点,将其加入集合V中。
(2)将找到的顶点与其相邻的边加入最小生成树中。
3. 输出最小生成树当集合V包含了所有顶点之后,即可输出最小生成树。
三、prim算法C代码实现以下是prim算法的C代码实现:#include <stdio.h>#include <limits.h>#define V 5 // 顶点个数int minKey(int key[], bool mstSet[]) {int min = INT_MAX, min_index;for (int v = 0; v < V; v++) {if (!mstSet[v] key[v] < min) {min = key[v], min_index = v;}}return min_index;}void printMST(int parent[], int graph[V][V]) {printf("Edge \tWeight\n");for (int i = 1; i < V; i++) {printf("d - d \td \n", parent[i], i, graph[i][parent[i]]);}void primMST(int graph[V][V]) {int parent[V]; // 存放最小生成树的结点int key[V]; // 存放与最小生成树相邻的边的权值bool mstSet[V]; // 存放已访问的顶点for (int i = 0; i < V; i++) {key[i] = INT_MAX, mstSet[i] = false;}key[0] = 0;parent[0] = -1;for (int count = 0; count < V - 1; count++) {int u = minKey(key, mstSet);mstSet[u] = true;for (int v = 0; v < V; v++) {if (graph[u][v] !mstSet[v] graph[u][v] < key[v]) { parent[v] = u, key[v] = graph[u][v];}}}printMST(parent, graph); }int m本人n() {int graph[V][V] = {{0, 2, 0, 6, 0},{2, 0, 3, 8, 5},{0, 3, 0, 0, 7},{6, 8, 0, 0, 9},{0, 5, 7, 9, 0}};primMST(graph);return 0;}```四、代码说明1. minKey函数该函数用于在尚未加入最小生成树的结点中找到与最小生成树相邻的边中权值最小的结点。
最小生成树的Prim算法以及Kruskal算法的证明
最⼩⽣成树的Prim算法以及Kruskal算法的证明Prime算法的思路:从任何⼀个顶点开始,将这个顶点作为最⼩⽣成树的⼦树,通过逐步为该⼦树添加边直到所有的顶点都在树中为⽌。
其中添加边的策略是每次选择外界到该⼦树的最短的边添加到树中(前提是⽆回路)。
Prime算法的正确性证明:引理1:对于连通图中的顶点vi,与它相连的所有边中的最短边⼀定是属于最⼩⽣成树的。
引理2:证明:假设最⼩⽣成树已经建成;(vi, vj)是连接到顶点vi的最短边,在最⼩⽣成树中取出vi,断开连接到vi的边,则⽣成树被拆分成1、顶点vi2、顶点vj所在的连通分量(单独⼀个顶点也看作⼀个独⽴的连通分量)3、其余若⼲个连通分量(个数⼤于等于0)三个部分现在要重建⽣成树,就要重新连接之前被断开的各边虽然不知道之前被断开的都是哪⼏条边,但是可以通过这样⼀个简单的策略来重建连接:将vi分别以最⼩的成本逐个连接到这若⼲个互相分离的连通分量;具体来说,就是要分别遍历顶点vi到某个连通分量中的所有顶点的连接,然后选择其中最短的边来连接vi和该连通分量;⽽要将vi连接到vj所在的连通分量,显然通过边(vi, vj)连接的成本最低,所以边(vi, vj)必然属于最⼩⽣成树(如果连接到vi的最短边不⽌⼀条,只要任意挑选其中的⼀条(vi, vj)即可,以上的证明对于这种情况同样适⽤)。
这样我们就为原来只有⼀个顶点vi的⼦树添加了⼀个新的顶点vj及新边(vi, vj);接下来只要将这棵新⼦树作为⼀个连通⼦图,并且⽤这个连通⼦图替换顶点vi重复以上的分析,迭代地为⼦树逐个地添加新顶点和新边即可。
Kruskal算法:通过从⼩到⼤遍历边集,每次尝试为最⼩⽣成树加⼊当前最短的边,加⼊成功的条件是该边不会在当前已构建的图中造成回路,当加⼊的边的数⽬达到n-1,遍历结束。
Kruskal算法的正确性证明:Kruskal算法每次为当前的图添加⼀条不会造成回路的新边,其本质是逐步地连接当前彼此分散的各个连通分量(单个顶点也算作⼀个连通分量),⽽连接的策略是每次只⽤最⼩的成本连接任意两个连通分量。
数学建模-最小生成树-kruskal算法及各种代码
kruskal算法及代码---含伪代码、c代码、matlab、pascal等代码K r u s k a l算法每次选择n- 1条边,所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。
注意到所选取的边若产生环路则不可能形成一棵生成树。
K r u s k a l算法分e 步,其中e 是网络中边的数目。
按耗费递增的顺序来考虑这e 条边,每次考虑一条边。
当考虑某条边时,若将其加入到已选边的集合中会出现环路,则将其抛弃,否则,将它选入。
目录Kruskal算法Kruskal算法的代码实现Kruskal算法Kruskal算法的代码实现算法定义克鲁斯卡尔算法假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。
之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。
依次类推,直至森林中只有一棵树,也即子图中含有n-1条边为止。
举例描述克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个。
这里面充分体现了贪心算法的精髓。
大致的流程可以用一个图来表示。
这里的图的选择借用了Wikipedia上的那个。
非常清晰且直观。
首先第一步,我们有一张图,有若干点和边如下图所示:第一步我们要做的事情就是将所有的边的长度排序,用排序的结果作为我们选择边的依据。
这里再次体现了贪心算法的思想。
资源排序,对局部最优的资源进行选择。
排序完成后,我们率先选择了边AD。
这样我们的图就变成了第二步,在剩下的变中寻找。
最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)
最⼩⽣成树---普⾥姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)最⼩⽣成树的性质:MST性质(假设N=(V,{E})是⼀个连通⽹,U是顶点集V的⼀个⾮空⼦集,如果(u,v)是⼀条具有最⼩权值的边,其中u属于U,v属于V-U,则必定存在⼀颗包含边(u,v)的最⼩⽣成树)普⾥姆算法(Prim算法)思路:以点为⽬标构建最⼩⽣成树1.将初始点顶点u加⼊U中,初始化集合V-U中各顶点到初始顶点u的权值;2.根据最⼩⽣成树的定义:从n个顶点中,找出 n - 1条连线,使得各边权值最⼩。
循环n-1次如下操作:(1)从数组lowcost[k]中找到vk到集合U的最⼩权值边,并从数组arjvex[k] = j中找到该边在集合U中的顶点下标(2)打印此边,并将vk加⼊U中。
(3)通过查找邻接矩阵Vk⾏的各个权值,即vk点到V-U中各顶点的权值,与lowcost的对应值进⾏⽐较,若更⼩则更新lowcost,并将k存⼊arjvex数组中以下图为例#include<bits/stdc++.h>using namespace std;#define MAXVEX 100#define INF 65535typedef char VertexType;typedef int EdgeType;typedef struct {VertexType vexs[MAXVEX];EdgeType arc[MAXVEX][MAXVEX];int numVertexes, numEdges;}MGraph;void CreateMGraph(MGraph *G) {int m, n, w; //vm-vn的权重wscanf("%d %d", &G->numVertexes, &G->numEdges);for(int i = 0; i < G->numVertexes; i++) {getchar();scanf("%c", &G->vexs[i]);}for(int i = 0; i < G->numVertexes; i++) {for(int j = 0; j < G->numVertexes; j++) {if(i == j) G->arc[i][j] = 0;else G->arc[i][j] = INF;}}for(int k = 0; k < G->numEdges; k++) {scanf("%d %d %d", &m, &n, &w);G->arc[m][n] = w;G->arc[n][m] = G->arc[m][n];}}void MiniSpanTree_Prim(MGraph G) {int min, j, k;int arjvex[MAXVEX]; //最⼩边在 U集合中的那个顶点的下标int lowcost[MAXVEX]; // 最⼩边上的权值//初始化,从点 V0开始找最⼩⽣成树Tarjvex[0] = 0; //arjvex[i] = j表⽰ V-U中集合中的 Vi点的最⼩边在U集合中的点为 Vjlowcost[0] = 0; //lowcost[i] = 0表⽰将点Vi纳⼊集合 U ,lowcost[i] = w表⽰ V-U中 Vi点到 U的最⼩权值for(int i = 1; i < G.numVertexes; i++) {lowcost[i] = G.arc[0][i];arjvex[i] = 0;}//根据最⼩⽣成树的定义:从n个顶点中,找出 n - 1条连线,使得各边权值最⼩for(int i = 1; i < G.numVertexes; i++) {min = INF, j = 1, k = 0;//寻找 V-U到 U的最⼩权值minfor(j; j < G.numVertexes; j++) {// lowcost[j] != 0保证顶点在 V-U中,⽤k记录此时的最⼩权值边在 V-U中顶点的下标if(lowcost[j] != 0 && lowcost[j] < min) {min = lowcost[j];k = j;}}}printf("V[%d]-V[%d] weight = %d\n", arjvex[k], k, min);lowcost[k] = 0; //表⽰将Vk纳⼊ U//查找邻接矩阵Vk⾏的各个权值,与lowcost的对应值进⾏⽐较,若更⼩则更新lowcost,并将k存⼊arjvex数组中for(int i = 1; i < G.numVertexes; i++) {if(lowcost[i] != 0 && G.arc[k][i] < lowcost[i]) {lowcost[i] = G.arc[k][i];arjvex[i] = k;}}}int main() {MGraph *G = (MGraph *)malloc(sizeof(MGraph));CreateMGraph(G);MiniSpanTree_Prim(*G);}/*input:4 5abcd0 1 20 2 20 3 71 2 42 3 8output:V[0]-V[1] weight = 2V[0]-V[2] weight = 2V[0]-V[3] weight = 7最⼩总权值: 11*/时间复杂度O(n^2)克鲁斯卡尔算法(Kruskal算法)思路:以边为⽬标进⾏构建最⼩⽣成树在边集中依次寻找最⼩权值边,若构建是不形成环路(利⽤parent数组记录各点的连通分量),则将其添加到最⼩⽣成树中。
最小生成树的模型数学公式
最小生成树的模型数学公式
最小生成树的模型数学公式是:
给定无向连通图G(V,E),其中V为图的顶点集合,E为图的边集合。
每条边e∈E都带有一个非负权重w(e)。
找到一个包含图中所有顶点的子图T(V,E'),使得E' ⊆ E,并且E'构成一颗树(即连通且无环),使得所有的边的权重之和最小。
拓展:
最小生成树的应用十分广泛,可以用于解决多种问题。
以下是最小生成树的一些常见拓展场景:
1.带有约束条件的最小生成树:
在某些情况下,除了最小化权重之和外,还需要满足一些特定的约束条件。
例如,可以要求最小生成树的边数限制在特定的范围内,或者要求选择特定类型的边。
这时可以在最小生成树的模型中引入额外的约束条件,从而得到满足要求的最小生成树。
2.多目标最小生成树:
有时候,最小生成树问题不仅需要最小化权重之和,还需要考虑其他目标。
例如,可以同时考虑最小化权重之和和最大化生成树中的最长边权重。
这样的问题可以转化为多目标优化问题,并通过权衡不同目标之间的关系来求解。
3.带有边权重动态变化的最小生成树:
在某些场景中,图的边权重可能会根据一些规则进行动态变化。
例如,网络中的通信链路可能会根据网络拓扑和负载情况进行变化。
这时可以通过动态更新最小生成树来快速适应环境变化,从而保持最小生成树的有效性。
总之,最小生成树的模型可以通过引入不同的约束条件和目标函数进行拓展,以适应不同的应用场景。
求无向图的最小生成树算法——Prim与Kruskal
1.算法思想
对于图G=(V,E),用Prim算法求最小生成树T=(S,TE)的流程如下
① 初始化:设S、TE为空集,任选节点K加入S。
② 选取一条权值最小的边(X,Y),其中X∈S,且not (Y∈S) 即,选取一条权值最小的、连接着S中一点与S外一点的边。
以上操作重复|V|-1次结束。由于每次加入S的点i都在当时取到了符合流程②的边min{lowcost},而lowcost[i]=w(i,closest[i]),所以此时的最小生成树的各边就是(i,closest[i]),i∈V且not (i=x)【需要注意的是出发点x的closest[x]还是x,所以应忽略,实际取到x-1条边】。把i从1取到|V|,便得到最小生成树T的每条边。
为了比较快速地选边,我们用两个数组lowcost、closest动态地维护每一个点到S的最短距离。在某一状态下,lowcost[i]表示所有与i相连且另一端点在S中的边中的权值最小值,closest[i]表示在S中且与i相连的点中与i之间距离最小的点。显然,lowcost[i]=w(i,closest[i])。需要注意的是两个数组记录的都是边而不是路径。若i没有边直接连向S,则lowcost[i]=∞。另外,若i已在S中,则lowcost[i]=0。
lowcost[j] = w[k][j];
closest[j] = k;
} //由新加入S中的k点使某些点到S的距离缩短,所以更新各点的lowcost和close= 1; i <= n; i++)
if(i != closest[i]){
设出发点为x。初始时对于任意k∈V,closest[k]=x,lowcost[k]=w(k,x)【w(i,j)表示i、j间的距离。初始化时,若两点间没有边则w(i,j)赋为一个足够大的整数(如maxint),并且所有点到自身的距离赋为0,即w(i,i)=0】
克鲁斯卡尔算法求最小生成树的最短路径
克鲁斯卡尔算法求最小生成树的最短路径克鲁斯卡尔算法的核心思想是从图的边集中选取边来构建最小生成树,首先将图中的所有边按照权重进行排序。
然后依次取最小权重的边,如果这条边的加入不会形成环路,则将它加入最小生成树的边集中。
重复这个过程,直到最小生成树中的边数等于顶点数减一,或者所有的边都已经考虑过。
假设有一个包含n个顶点的带权无向图G=(V,E),其中,V表示顶点的集合,E表示边的集合。
假设我们要求解G的最小生成树。
1.初始化边集E'为空集,集合S={v},v是图中任意一个顶点。
2.对所有的边进行排序,按照边的权重从小到大排列。
3.从排序后的边集中依次选取边e,如果边e的两个顶点都不在集合S中,则将边e加入集合S,并加入边集E'中。
4.重复步骤3,直到E'中的边数等于n-1在克鲁斯卡尔算法中,需要使用并查集来判断选定的边e是否会形成环路。
并查集是一种数据结构,用于维护元素的等价关系。
它有两个主要操作,即查找和合并。
使用并查集的步骤如下:1.初始化并查集,使得每个元素都是一个单独的集合。
2.对每一条边e=(u,v),如果u和v在同一个集合中,则说明加入这条边会形成环路;否则,将这两个集合合并。
3.重复步骤2,直到所有的边都考虑过。
接下来,我们通过一个具体的例子来说明克鲁斯卡尔算法的具体过程。
假设有以下的带权无向图G=(V,E),其中,V={A,B,C,D,E,F,G},E为边的集合,每条边的权重如下:AE:5AB:7AG:8BF:7BC:9CD:5CG:9DE:15DF:6EG:11EF:8FG:9按照权重对边进行排序:CD:5AE:5DF:6AB:7BF:7EF:8AG:8CG:9BC:9FG:9DE:15EG:11从最小的边开始选取,首先选取CD:5,加入到最小生成树的边集中。
最小生成树的边集:{"CD:5"}接下来选取AE:5,加入到最小生成树的边集中。
最小生成树(普里姆算法)
最⼩⽣成树(普⾥姆算法):所谓⽣成树,就是n个点之间连成n-1条边的图形。
⽽最⼩⽣成树,就是权值(两点间直线的值)之和的最⼩值。
⾸先,要⽤⼆维数组记录点和权值。
如上图所⽰⽆向图:int map[7][7];map[1][2]=map[2][1]=4;map[1][3]=map[3][1]=2;......然后再求最⼩⽣成树。
具体⽅法是:1.先选取⼀个点作起始点,然后选择它邻近的权值最⼩的点(如果有多个与其相连的相同最⼩权值的点,随便选取⼀个)。
如1作为起点。
visited[1]=1;pos=1;//⽤low[]数组不断刷新最⼩权值,low[i](0<i<=点数)的值为:i点到邻近点(未被标记)的最⼩距离。
low[1]=0; //起始点i到邻近点的最⼩距离为0low[2]=map[pos][2]=4;low[3]=map[pos][3]=2;low[4]==map[pos][4]=3;low[5]=map[pos][5]=MaxInt; //⽆法直达low[6]=map[pos][6]=MaxInt;2.再在伸延的点找与它邻近的两者权值最⼩的点。
//low[]以3作当前位置进⾏更新visited[3]=1;pos=3;low[1]=0; //已标记,不更新low[2]=map[1][2]=4; //⽐5⼩,不更新low[3]=2; //已标记,不更新low[4]=map[1][4]=3; //⽐1⼤,更新后为:low[4]=map[3][4]=1;low[5]=map[1][5]=MaxInt;//⽆法直达,不更新low[6]=map[1][6]=MaxInt;//⽐2⼤,更新后为:low[6]=map[3][6]=2;3.如此类推...当所有点都连同后,结果最⽣成树如上图所⽰。
所有权值相加就是最⼩⽣成树,其值为2+1+2+4+3=12。
⾄于具体代码如何实现,现在结合POJ1258例题解释。
最小生成树
对于图G=(V,E)的每一条e∈E, 赋予相应的权数 f(e),得到一个网络图,记为N=(V,E,F),
设T=(为T的权,N中权数最小的 生成树称为N的最小生成树。 许多实际问题,如在若干个城市之间建造铁路网、 输电网或通信网等,都可归纳为寻求连通赋权图 的最小生成树问题。 下面介绍两种求最小生成树的方法:
例1 求下图所示的最小生成树。
v2 e1 v1 e2 e6 v4 e 7 v3
v5
解:按各边的权的不减次序为:
e1 e 2 e3 e7 e6 e 4 e5 e8
所以,首先取 e1 , e2 ,尔后再取 e7 和 e6 , 则构成最小生成树 .
二、破圈法 破圈法就是在图中任取一个圈,从圈中去 掉权最大的边,将这个圈破掉。重复这个 过程,直到图中没有圈为止,保留下的边 组成的图即为最小生成树。 例2 同例1。 解:在圈v2v2v3中,去掉权最大的边e2或e3; 在圈v2v3v4中,去掉权最大的边e4; 在圈v3v4v5中,去掉权最大的边e5; 在圈中v2v3v5,去掉权最大的边e8;
在剩下的图中,已没有圈,于是得到最小生成树, 如下图:
v2 e1 v1 e2 e6 v4 v3 e7
v5
例3 求下图的最小生成树。
C1 1 B1 3 5 A 4 B2 6 5 8 7 6 C4 C3 3 3 4 D3 8 3 C2 8 D2 4 E A
4 3 B2 C4 4 D3 C3 3
B 2 A 3 5 J 2 2 H 5 G 1 F 2 1 S 3 1 4 C 3 4 1 4 E
5
D 2
A 2
B
1
C D 1 2 E
1 S 2 H
最小生成树
17
D
应用举例——最小生成树
Prim算法 34 A 46 19 F B 12 26 25 E 38 cost'={(A, B)34, (C, D)17, (F, E)26}
17
U={A, F, C, D}
V-U={B, E}
cost={(A, B)34, (F, E)26}
25
C
17
D
应用举例——最小生成树
{B, C, D, E, F} (A F)19
{B, C, D, E} {B, D, E} {B, E} {B} {}
(F C)25
(C D)17
(F E)26
adjvex lowcost
adjvex lowcost
4 12
{A, F, C, D, E}
{A,F,C,D,E,B}
(E B)12
21
应用举例——最小生成树
Prim算法——伪代码
1. 将顶点0加入集合U中; 2. 初始化辅助数组shortEdge,分别为lowcost和adjvex赋值; 3. 重复执行下列操作n-1次 3.1 在shortEdge中选取最短边,取其对应的下标k; 3.2 输出边(k, shortEdge[k].adjvex)和对应的权值; 3.3 将顶点k加入集合U中; 3.4 调整数组shortEdge;
U
V-U
输出
adjvex lowcost adjvex lowcost adjvex lowcost adjvex lowcost
0 34 0 34 0 34 0 34
0 46 5 25
0 ∞ 5 25 2 17
0 ∞ 5 26 5 26 5 26
0 19
数据结构之最小生成树Prim算法
数据结构之最⼩⽣成树Prim算法普⾥姆算法介绍 普⾥姆(Prim)算法,是⽤来求加权连通图的最⼩⽣成树算法 基本思想:对于图G⽽⾔,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U⽤于存放G的最⼩⽣成树中的顶点,T存放G的最⼩⽣成树中的边。
从所有uЄU,vЄ(V-U) (V-U表⽰出去U的所有顶点)的边中选取权值最⼩的边(u, v),将顶点v加⼊集合U中,将边(u, v)加⼊集合T中,如此不断重复,直到U=V为⽌,最⼩⽣成树构造完毕,这时集合T中包含了最⼩⽣成树中的所有边。
代码实现1. 思想逻辑 (1)以⽆向图的某个顶点(A)出发,计算所有点到该点的权重值,若⽆连接取最⼤权重值#define INF (~(0x1<<31)) (2)找到与该顶点最⼩权重值的顶点(B),再以B为顶点计算所有点到改点的权重值,依次更新之前的权重值,注意权重值为0或⼩于当前权重值的不更新,因为1是⼀当找到最⼩权重值的顶点时,将权重值设为了0,2是会出现⽆连接的情况。
(3)将上述过程⼀次循环,并得到最⼩⽣成树。
2. Prim算法// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < m_nVexNum; i++){weights[i] = GetWeight(nStart, i);}for (i = 0; i < m_nVexNum; i ++){if (nStart == i){continue;}int min = INF;int nMinWeightIndex = 0;for (int k = 0; k < m_nVexNum; k ++){if (weights[k]!= 0 && weights[k] < min){min = weights[k];nMinWeightIndex = k;}}// 找到下⼀个最⼩权重值索引cPrims[nIndex++] = m_mVexs[nMinWeightIndex].data;// 以找到的顶点更新其他点到该点的权重值weights[nMinWeightIndex]=0;int nNewWeight = 0;for (int ii = 0; ii < m_nVexNum; ii++){nNewWeight = GetWeight(nMinWeightIndex, ii);// 该位置需要特别注意if (0 != weights[ii] && weights[ii] > nNewWeight){weights[ii] = nNewWeight;}}for (i = 1; i < nIndex; i ++){int min = INF;int nVexsIndex = GetVIndex(cPrims[i]);for (int kk = 0; kk < i; kk ++){int nNextVexsIndex = GetVIndex(cPrims[kk]);int nWeight = GetWeight(nVexsIndex, nNextVexsIndex);if (nWeight < min){min = nWeight;}}nSum += min;}// 打印最⼩⽣成树cout << "PRIM(" << m_mVexs[nStart].data <<")=" << nSum << ": ";for (i = 0; i < nIndex; i++)cout << cPrims[i] << "";cout << endl;}3. 全部实现#include "stdio.h"#include <iostream>using namespace std;#define MAX 100#define INF (~(0x1<<31)) // 最⼤值(即0X7FFFFFFF)class EData{public:EData(char start, char end, int weight) : nStart(start), nEnd(end), nWeight(weight){} char nStart;char nEnd;int nWeight;};// 边struct ENode{int nVindex; // 该边所指的顶点的位置int nWeight; // 边的权重ENode *pNext; // 指向下⼀个边的指针};struct VNode{char data; // 顶点信息ENode *pFirstEdge; // 指向第⼀条依附该顶点的边};// ⽆向邻接表class listUDG{public:listUDG(){};listUDG(char *vexs, int vlen, EData **pEData, int elen){m_nVexNum = vlen;m_nEdgNum = elen;// 初始化"邻接表"的顶点for (int i = 0; i < vlen; i ++){m_mVexs[i].data = vexs[i];m_mVexs[i].pFirstEdge = NULL;}char c1,c2;int p1,p2;ENode *node1, *node2;// 初始化"邻接表"的边for (int j = 0; j < elen; j ++){// 读取边的起始顶点和结束顶点p1 = GetVIndex(c1);p2 = GetVIndex(c2);node1 = new ENode();node1->nVindex = p2;node1->nWeight = pEData[j]->nWeight;if (m_mVexs[p1].pFirstEdge == NULL){m_mVexs[p1].pFirstEdge = node1;}else{LinkLast(m_mVexs[p1].pFirstEdge, node1);}node2 = new ENode();node2->nVindex = p1;node2->nWeight = pEData[j]->nWeight;if (m_mVexs[p2].pFirstEdge == NULL){m_mVexs[p2].pFirstEdge = node2;}else{LinkLast(m_mVexs[p2].pFirstEdge, node2);}}}~listUDG(){ENode *pENode = NULL;ENode *pTemp = NULL;for (int i = 0; i < m_nVexNum; i ++){pENode = m_mVexs[i].pFirstEdge;if (pENode != NULL){pTemp = pENode;pENode = pENode->pNext;delete pTemp;}delete pENode;}}void PrintUDG(){ENode *pTempNode = NULL;cout << "邻接⽆向表:" << endl;for (int i = 0; i < m_nVexNum; i ++){cout << "顶点:" << GetVIndex(m_mVexs[i].data)<< "-" << m_mVexs[i].data<< "->"; pTempNode = m_mVexs[i].pFirstEdge;while (pTempNode){cout <<pTempNode->nVindex << "->";pTempNode = pTempNode->pNext;}cout << endl;}}// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
c语言prim算法
c语言prim算法
Prim算法,又称普里姆算法,是一种用于解决最小生成树问题的经典算法。
它以图论为基础,能够在一个具有权重的连通无向图中找到一棵包含所有顶点的树,且树的权重之和最小。
算法的思路相对简单。
假设有一个无向图G,其中顶点集合为V,边集合为E。
算法从一个起始节点开始,逐步扩展生成树的规模,最终得到最小生成树。
1. 初始化:
- 创建一个空的集合T,用于存放最小生成树的边。
- 随机选择一个起始节点s,并将其加入T。
2. 重复以下步骤,直到所有顶点都加入T:
- 在图G中找到一条边e,满足e的一个端点在T中,另一个端点不在T中,并且e的权重最小。
- 将边e加入T,将其另一个端点加入T。
3. 输出最小生成树。
Prim算法的核心在于选择权重最小的边,将其加入生成树。
通过不断扩展生成树的规模,直到包含所有顶点,就能得到最小生成树。
这个算法的时间复杂度为O(V^2),其中V是顶点的数量。
在稠密图中,Prim算法的效率可能较低。
为了提高效率,可以使用最小堆等
数据结构来优化选择最小边的过程,将时间复杂度降到O(ElogV)。
Prim算法在实际应用中有着广泛的用途,如网络设计、电力传输等领域。
它能够帮助我们找到一个具有最小总成本的连接方案,从而提高资源利用效率。
Prim算法是一种解决最小生成树问题的有效算法。
通过选择权重最小的边,逐步扩展生成树的规模,最终得到一个最小总成本的树。
它的应用范围广泛,并且在实际问题中具有重要意义。
希望通过以上的介绍,能够对Prim算法有一个更深入的理解。
最小生成树的方法
最小生成树的方法
最小生成树(Minimum Spanning Tree)是指在一个带权无向连通图中,找到一个包含所有顶点且总权值最小的树。
常用的方法有以下几种:
1. Prim算法(普里姆算法):从一个起始顶点开始,逐步扩展生成树,每次选择一个与当前生成树距离最小的顶点加入,直到所有顶点都被包含在生成树中。
2. Kruskal算法(克鲁斯卡尔算法):首先将图的所有边按照权值从小到大排序,然后依次选择权值最小的边加入生成树中,但要保证加入边后不会形成环,直到生成树中包含所有顶点,或者图中的所有边都被考虑过。
3. Boruvka算法(博鲁卡尔算法):将图的所有顶点分成多个不相交的集合,每个集合中的顶点组成一棵生成树,然后每次选择具有最小权值且连接两个不同集合的边加入生成树中,直到只剩下一个集合。
4. Jarnik算法(加尔尼克算法):也称为更改版的Prim算法,首先选择一个起始顶点加入生成树中,然后通过比较当前生成树中的顶点到其他顶点的距离,选择一个距离最小的顶点加入生成树,重复该过程直到所有顶点都被包含在生成树中。
这些方法都可以得到最小生成树,但在某些情况下,它们的效率和性能可能会不同。
选择合适的方法取决于具体的应用场景和图的特征。
【报告】最小生成树算法实验报告
【关键字】报告最小生成树算法➢问题描述设G=(V,E)是一个无向连通带权图,E中每条边(v,w)的权为c(v,w)。
如果G的一个子图G`是一棵包含G的所有顶点的书,则称G`为G的生成树。
生成树上各边权的总和称为该生成树的耗费,在G的所有生成树中,耗费最小的生成树就称为G的最小生成树。
给定一个无向连通带权图,构造一个最小生成树。
➢设计思想利用Prim算法求最小生成树,Prim算法是利用贪心策略设计的算法。
设G=(V,E)是一个连通带权图,V={1,2,…,n}。
构造G的一棵最小生成树的Prim算法的基本思想是:首先置U={1},然后,只要U是V的真子集,就做如下的贪心选择:选取满足条件i∈U,j∈V-U,且使c(i,j)达到最小的边(i,j),并将顶点j添加到U中。
这个过程一致进行到U=V时为止。
在这个过程中选取到的所有边恰好构成G的一棵最小生成树。
➢时间复杂度Prim算法的Pascal语言描述如下:Procedure PRIM(c:array[1..n,1..n] of real);Varlowcost:array[1..n] of real;closest:array[1..n] of integer;i,j,k,min,integer;begin(1)for i:=2 to n do(2)begin{初始化,此时U只含有顶点1}(3)lowcost[i]:=c[1,i];(4)Closest[i]:=1;(5)end;(6)for i:=2 to n do(7)begin {寻找顶点分别在V-U与U中边权最小的边}(8)min:=lowcost[i];(9)j:=i;(10)For k:=2 to n do(11)If lowcost[k]<min then(12)Begin(13)Min:=lowcost[k];(14)j:=k;(15)End;(16)print(j,closest[j]);{输出找到的边}(17)Lowcost[j]:=∞;{将j添加到U}(18)For k:=2 to n do {调整lowcost和closest}(19)if(c[j,k]<lowcost[k])and(lowcost[k]< ∞)then(20)Begin(21)Lowcost[k]:=c[j,k];(22)Closest[k]:=j;(23)End(24)End(25)End;{PRIM}上述过程中第(6)~(24)行的for循环要执行n-1次,每次执行时,第(10)~(15)行和第(18)~(23)行的for循环都要O(n)时间,所以Prim算法所需的计算时间为O(n)。
普里姆算法最小生成树例题
普里姆算法最小生成树例题含解答普里姆算法(Prim's Algorithm)是一种用于求解无向图的最小生成树(Minimum Spanning Tree,MST)的算法。
最小生成树是一个包含图中所有顶点的树,且树的边权值之和最小。
下面是一个示例图,我们将使用Prim's算法找到其最小生成树:```图:2 3A --------- B| \ |1| \5 |4| \ |C --------- D6```对应的邻接矩阵:```A B C DA [0, 2, 1, 0]B [2, 0, 5, 3]C [1, 5, 0, 6]D [0, 3, 6, 0]```假设我们从顶点A开始,下面是Prim's算法的执行步骤:1. 初始化:-选择任意起始顶点,这里选择A。
-将A标记为已访问。
-初始化一个最小堆(优先队列),用于存储候选边。
2. 找到最小权值的边:-将A相邻的边(AB、AC)加入最小堆。
3. 选择最小边:-从最小堆中选择权值最小的边,这里是AB(权值为2)。
-将B标记为已访问。
-将与B相邻的边(BD、BC)加入最小堆。
4. 重复步骤3:-从最小堆中选择权值最小的边,这里是BC(权值为3)。
-将C标记为已访问。
-将与C相邻的边(CA、CD)加入最小堆。
5. 继续重复:-从最小堆中选择权值最小的边,这里是CA(权值为1)。
-将A标记为已访问。
-将与A相邻的边(AB、AC)加入最小堆。
6. 重复步骤3和5:-从最小堆中选择权值最小的边,这里是AC(权值为1)。
-将C标记为已访问。
-将与C相邻的边(CA、CD)加入最小堆。
7. 继续重复:-从最小堆中选择权值最小的边,这里是CA(权值为1)。
-将A标记为已访问。
最终,我们得到的最小生成树为:```3A --------- B| \1| \| \C --------- D6```边的权值之和为1+2+3=6,这是该最小生成树的总权值。
请注意,Prim's算法的最终生成树可能不是唯一的,但总权值应始终是最小的。
数学建模最小生成树例题
数学建模最小生成树例题例题1:某城市计划建设一条高速公路,需要在若干个村庄之间选择一条最优路径。
已知各个村庄之间的距离,请使用最小生成树算法为高速公路选择最优路径。
参考答案:最小生成树算法可以用于解决此类问题。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的权重从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
2. Prim算法:首先选择权重最小的边加入生成树,然后从剩余的边中选择一条与已选择的边相连且权重最小的边加入生成树,直到所有边都加入生成树。
例题2:一个通信网络由若干个节点和边组成,节点代表城市,边代表通信线路。
已知各个城市之间的距离和通信需求,请使用最小生成树算法为该通信网络设计一个最优的通信线路网。
参考答案:最小生成树算法可以用于解决此类问题。
通过最小生成树算法,我们可以找到一个包含所有节点且边的总权重最小的树形结构,以满足各个城市之间的通信需求。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的权重从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
2. Prim算法:首先选择权重最小的边加入生成树,然后从剩余的边中选择一条与已选择的边相连且权重最小的边加入生成树,直到所有边都加入生成树。
例题3:一个城市的电力网由多个节点和边组成,节点代表发电厂或变电站,边代表输电线路。
已知各个节点之间的电抗和传输功率,请使用最小生成树算法为该城市电力网设计一个最优的输电线路。
参考答案:最小生成树算法可以用于解决此类问题。
通过最小生成树算法,我们可以找到一个包含所有节点且边的总电抗最小的树形结构,以满足各个节点之间的电力传输需求。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的电抗从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
克鲁斯卡尔算法最小生成树过程
克鲁斯卡尔算法最小生成树过程嘿,朋友!咱们今天来聊聊克鲁斯卡尔算法最小生成树过程,这玩意儿听起来有点复杂,是不是?但别怕,跟着我,保证让你弄个明白!咱先来说说啥是生成树。
你就想象你有一堆城市,城市之间有路相连。
要把这些城市都连起来,还得让线路最短,这连起来的线路就是生成树。
那最小生成树呢,就是在所有可能的连线方式里,线路总长最短的那种。
克鲁斯卡尔算法就是找到这个最小生成树的好办法。
它就像个聪明的小侦探,一步步找出最合适的连线。
它是怎么工作的呢?一开始,它把所有的边都按照长度从小到大排好队。
这就好比把一堆长短不一的小木棍按照长度排整齐。
然后呢,从最短的边开始,一条一条地看。
如果加上这条边不会形成环,那就把它留下来,就好像你找到了一根合适的木棍能稳稳地搭在你的“城市线路”里。
要是加上这条边就形成环了,那可不行,得扔掉,这就好比一根木棍放进去会让你的线路乱套,那可不能要。
你说这是不是有点像搭积木?得挑合适的,不合适的就扔一边。
比如说,有五个城市A、B、C、D、E ,它们之间的距离是这样的:A 到 B 是 3 ,A 到 C 是 5 ,B 到 C 是 4 ,B 到 D 是 2 ,C 到 E 是 6 。
按照克鲁斯卡尔算法,先把边按照长度排好,最短的是 B 到 D ,长度为 2 。
加上这条边,没问题,不会形成环。
然后是 A 到 B ,长度为 3 ,加上,也没问题。
再看 A 到 C ,长度为 5 ,加上,还是没问题。
就这样一步步地,最后就能找到那个能把所有城市连起来,而且线路最短的办法,也就是最小生成树啦!你想想,如果在现实生活中,要铺设管道啊,架电线啊,用这个算法是不是能省好多材料,省好多钱?所以说,克鲁斯卡尔算法虽然听起来有点神秘,但其实就是个聪明的小技巧,能帮我们解决好多实际问题呢!学会了它,咱们在处理这类问题的时候,就能像个高手一样,轻松搞定!。
最小生成树算法实验报告_2
作业1最小生成树的生成算法1.1算法应用背景在实际生活中, 图的最小花费生成树问题有着广泛的应用。
例如, 用图的顶点代表城市, 顶点与顶点之间的边代表城市之间的道路或通信线路, 用边的权代表道路的长度或通信线路的费用, 则最小花费生成树问题, 就表示为城市之间最短的道路或费用最小的通信线路问题。
其中普里姆算法是使用贪婪法策略设计的典型算法。
1.2算法原理在一给定的无向图G = (V, E) 中, (u, v) 代表连接顶点u 与顶点v 的边(即), 而w(u, v) 代表此边的权重, 若存在T 为E 的子集(即)且为无循环图, 使得的w(T) 最小, 则此T 为G 的最小生成树。
许多应用问题都是一个求无向连通图的最小生成树问题。
例如:要在n个城市之间铺设光缆, 主要目标是要使这n 个城市的任意两个之间都可以通信, 但铺设光缆的费用很高, 且各个城市之间铺设光缆的费用不同;另一个目标是要使铺设光缆的总费用最低。
这就需要找到带权的最小生成树。
1.3算法描述1)最小生成树之普里姆算法描述:令G=(V,E,W), 为简单期间, 令顶点集为V={0,1,2…, n-1}。
假定与顶点i, j相关联的边为ei, j, ei, j的权用c[i][j]表示, T是最小花费生成树的边集。
这个算法维护两个顶点集合S 和N, 开始时: 令T=Ф,S={0},N=V-S。
然后, 进行贪婪选择, 选取i∈S, j∈N, 并且c[i][j]最小的i和j;并使S=S∪S{j},N=N-{j},T=T∪{ei, j}.重复上述步骤, 直到N为空, 或找到n-1条边为止。
此时, T中的边集, 就是所要求取的G中的最小花费生成树。
由此, 可描述普里姆算法的步骤如下:(1)T=Ф, S={0},N=V-S。
(2)如果N为空, 算法结束;否则, 转步骤(3)。
(3)寻找使i∈S, j∈N, 并且c[i][j]最小的i和j。
(4)S=S∪S{j},N=N-{j},T=T∪{ei, j};转步骤(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小生成树的算法王洁引言:求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。
下面将介绍几种最小生成树的算法。
一,用“破圈法”求全部最小生成树的算法1 理论根据1.1 约化原则给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ⊆ E ,使生成树所有边权最小,此生成树称为最小生成树.(1) 基本回路将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。
基本回路是由 T 中的树枝和一条连枝构成的回路.(2) 基本割集设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。
基本割集是集合中的元素只有一条是树枝,其他的为连枝.(3) 等长变换设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ∉ H,当且仅当'e ∈()cf e ,也就是说e ∈()S e ,则'T =T ⊕{e, 'e }也是一棵生成树。
当()e ω='()e ω时,这棵生成树叫做等长变换。
等长变换就是从基本回路中选取与树枝等权边,并与此树枝对换后形成的生成树. 根据以上定理得出2个结论:①若在某个回路C 中有一条唯一的最长边,则任何一棵最小生成树都不含这条边;②若在某个边 e 的割集中有一条唯一最短边,则每棵生成树中都必须含这条边.由上面结论可以得到唯一性:若图 G 中的生成树T = (V ,H )是唯一的一棵最小生成树,当且仅当任意一连枝e ∈ H, 'e ∈ E 都是其基本回路中唯一最长边,任意一条树边 e 都是其基本割集()S e 中的唯一最短边.由此在最小生成树不唯一的情况下,就可以得到一个约化的原则:假设已得到一棵最小生成树0T 。
对于0T 中每一条树边e ∈ H ,若 e 是基本割集()S e 中唯一的最短边,则每棵最小生成树中一定包含此边,则把此边取为固定边,并将此边的基本割集去掉。
对于每条连枝e ∈ H, 'e ∈ E ,若它是基本回路()cf e 中唯一最长边,则每棵生成树中都不会包含此条连枝,则将其消去.约化原则是在最小生成树不唯一的情况下,从已经得到的一棵最小生成树0T 中选出其树枝是基本割集中唯一的最短边,则每一棵最小生成树中必含有此边,就取为固定边.在基本回路中若有一条唯一最长边,则每棵最小生成树都不含此条边,将其去掉.通过这样约化后再求最小生成树,计算量会大大下降.1.2 全部最小生成树设0T 是已求得的一棵最小生成树,在最小生成树不唯一的情况下,存在其他最小生成树 T ,称T-0T 得到的边集的长度为距离(这里的长度是指集合中元素的个数)。
为了简单起见,设最小生成树0T 的边集为{ 1e , 2e , 3e ……1n e -},对于0T 的任何边集k H ={ 1e , 2e , 3e ……1k e -}(11k n ≤≤-),则每棵最小生成树 T 与0T 的距离是一定的,或为1,或为2 ,或为 n -1.这样我们就可以按所有的最小生成树与0T 的距离来分类。
记1,2,i i T ……ik ={ 1e , 2e , 3e ……1k e -}为所有的0T —k H 即不含k H 的最小生成树的集合(可能为空).对于其它的最小生成树T ∈1,2,i i T ……ik 而言,k H =0T —T 为换出边,k H =T —0T 为入边,0T T ⋂中的边叫不动边.若 T 有 k 个换出边就说它与0T 的距离为 k .当 k=0 时为参考树本身。
当 k = 1 时,对任意的11i n ≤≤-,有10110{{,}|(),()(),}i i i i i T T e p p S T p e p e ωω=⊕∈=≠。
最小生成树1i T 是用基本割集1i S 的边 p 换出0T 的边1i e 且边p 的权和边1i e 的权相等。
当 k = 2时,1,10{{,}|()(),()(),}i ij i ij ij ij ij ij ij T T e p p S T S T p e p e ωω=⊕∈⋂=≠。
在换入一条边后得到的生成树中再换入一条边,即换入两条边后得到的一棵最小生成树1,i ij T 。
以此递推下去,可建立如下关系:1,2ik 1,2ik 11,2k-10k k {{,}|()(),()(),}i i i i ik ij i i i i T T e p p S T S T p e p e ωω-=⊕∈⋂=≠………………此递推关系表示在换入k —1条边后得到的生成树中再换入一条边后得到的一棵最小生成树.用此递推关系,就可以求出全部的最小生成树。
2 算法选取一棵最小生成树0T ,求出0T 的全部基本回路.对每一个基本回路去掉唯一最大边,约化所给的图.然后对应于0T 的每条树边,求出基本割集.若此树边也是基本割集中唯一最短边,则取其为固定边,并将此基本割集作上记号,求其他的最小生成树时,就不用考虑此割集了.其余的基本割集,应用递推关系,对应于递推式求出所有的换入边.对于距离为1的,每一个换入边对应着一棵最小生成树;对于距离为2 的每两个换入边也对应着一棵最小生成树;换入 k 条边,就对应着距离为 k 的最小生成树.以此类推就可以求出全部的 最小生成树.求无向图 G 的全部最小生成树的算法如下.(1) 求最小生成树0T .比较成熟的算法,在此就不做介绍.(2) 求约化图算法 (去掉基本回路中的唯一最长边)Step1 令123{,,,p }b p p p p =……为连枝集合,j=1;Step2 在0T 中加入连枝p j ,形成一个基本回路,记为j cf ;Step 3 若p j 是基本回路j cf 中唯一最长边,则从图 G 中去掉p j ;Step4 j =j +1,若 j 不大于 b ,则返回Step2;Step5 输出经约化后的图 G 。
(3 )求固定边算法 (保留基本割集中唯一的最短边)Step 1 令 E ={ 1e , 2e , 3e ……1n e -}为最小生成树0T 的树枝集合,S =121{,,}n S S S -……,i S 为树枝i e 的基本割集,i=1;Step 2 从约化后的图 G 中求出树枝i e 的基本割集i S ;Step3 若i e 是基本割集 S 中的唯一最短边,则将i e 取为固定边,并对i S 作记号; Step4 i 增加1, 若 i 不等于n, 则返回Step2.(4) 求换入边算法( 若基本割集中有记号,则为固定边,若没有记号,则从中求换入边) Step1 设 H 为换入边的集合,F 为换出边的集合,初始 H 、F 为空,i=1;Step 2 若i e 的基本割集i S =12{,,}d P P ……P 中有记号,则i e 为固定边,执行Step 8; Step3 若i e 的基本割集i S 中无记号,则i e 放入 F 中;Step4 令 k= 1;Step 5 若i e k P ≠,且权()(p )i k e ωω=,p k 放入H 中;Step6 k =k+ 1;Step7 若 k < d (d 为i S 的长度,即i S 中元素的个数) 则返回Step5;Step 8 i = i +1,若 i 小于或等于 n 1, 则返回Step 2.(5) 求全部最小生成树算法 按距离从1到g 求全部最小生成树)设 H =12m {,,}P P P ……为换入边的集合,F =12{e ,,}g e ……e 为换出边的集合.Step 1 若 H 为空,则最小生成树是唯一,输出0T ,算法结束.( )Step2 k =1, 11T =0T , 输出0T , (k 为距离) ;Step3 j =k ;Step4 若e kj j p ≠, 且权(e )kj j p ωω)=(,则在kj T 中用j p 代替kj e ,输出kj T (在已经换入 k 条边后的最小生成树中再换入j p ,生成新的最小生成树);Step 5 j = j +1,若 j 小于或等于m ,重复上面的Step 4;Step 6 k = k + 1,若 k 小于或等于 g ,则返回Step 3;Step7 结束.3 应用举例例 如图1 (a) 所示,无向图 G 是有权无向连通图,求全部最小生成树.设由图 1 (a) 得到一棵如图1( b) 所示的最小生成树称0T .基本回路是由树枝和一条连枝组成的回路,由“破圈法”的思想,若此连枝是基本回路中的唯一最长边,则将此边去掉后得到约化图.无向图G 的基本回路中的唯一最长边为:在基本回路①-②-⑦中有唯一最长边是<1,7>,其权为7,将其去掉;在基本回路③-④-⑦中有唯一最长边是<3,7>,其权为3,将其去掉;在基本回路⑤-⑥-⑦中有唯一最长边是<5,7>,其权为4,将其去掉;在基本回路①-②-⑦-⑥中有唯一最长边是<1,6>,其权为 8,将其去掉.去掉基本回路中的唯一最长的边后,形成如图1 (c) 所示的约化图.对无向图 G 进行约化后,最小生成树0T 中各边的基本割集为:<1,2>:<1,2> ,<1,2>为唯一最短边,取为固定边,将此割集作上记号;<2,7>:{<2,7>,<2,3> };<6,7>:{<6,7>,<5,4>};<6,5>:{<6,5>,<5,4>},<6,5>为唯一最短边,取为固定边,将此割集作上记号;<4,3>:{<4,3>,<2,3>} ,<4,3>为唯一最短边,取为固定边,将此割集作上记号;<7,4>:{<7,4>,<2,3>,<5,4>} ,<7,4>为唯一最短边,取为固定边,将此割集作上记号.在0T 中,取为固定边的有 {<1,2>,<6,5>,<7,4>,<4,3> }.这样其他的最小生成树只能在 {<2,7>,<2,3>} 和{ <6,7>,<5,4> }这两个基本割集中选取了.根据算法,得到换入边为 {<2,3>,<5,4>} ,换出边为 {<2,7>,<6,7>} .当 k = 1 时,换入一条边得到的最小生成树.W(<2,7> )=w (<2,3>),用边<2,3>换<2,7>得到最小生成树a ,如图1( d ) 所示;w (<6,7>) =w (<5,4>),用<5,4>换<6,7>得到最小生成树b ,如图1 (e )所示; k =2 时,用<2,3>换<2,7>后,再用<5,4>换<6,7>得到的最小生成树c ,如图1 (f ) 所示.4 结论本文在对连通图的特征进行分析的基础上,得出在某个基本回路 C 中有一条唯一的最长边,则任何一棵最小生成树都不含这条边,将此边从无向图G 中去掉,对图进行约化;若在某个边e的割集中有一条唯一最短边,则每棵生成树中都必须含这条边,则取为固定边.利用“破圈法”的思想去掉基本回路中的唯一最长边,保留基本割集中唯一最短边,对连通图进行约化,在约化图的基础上求全部最小生成树,计算量会大量地下降,算法的效率将大大地提高.二,寻找最小生成树的补图算法1例谈补图算法思想补图算法首先寻找最小生成树的补图,然后再求出该补图的补图即得最小生成树.(根据最小生成树的定义易知)在寻找最小生成树的补图的过程中,遵循以下 2 条原则:原则一, 度为 1 的结点的关联边肯定不在补图中,删去不管;原则二,环上的最大权边一定在补图中,保留在补图中;循环利用上述原则,即可得到最小生成树的补图。