第二章流体力学第一讲知识点汇总
流体力学重点概念总结(可直接打印版)资料讲解
![流体力学重点概念总结(可直接打印版)资料讲解](https://img.taocdn.com/s3/m/dd34a7a84b35eefdc9d33377.png)
流体力学重点概念总结(可直接打印版)第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
注意:只要平面面积与形心深度不变:1.面积上的总压力就与平面倾角θ无关;2.压心的位置与受压面倾角θ无直接关系,是通过yc表现的;3.压心总是在形心之下,在受压面位置为水平放置时,压心与形心重合。
作用在曲面壁上的总压力—水平分力作用于曲面上的静水总压力P的水平分力Px等于作用于该曲面的在铅直投影面上的的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。
流体力学第二章流体运动学基础-知识归纳整理
![流体力学第二章流体运动学基础-知识归纳整理](https://img.taocdn.com/s3/m/fac83a04ef06eff9aef8941ea76e58fafab04510.png)
求知若饥,虚心若愚。 第 2 页/共 134 页
千里之行,始于足下。 第 3 页/共 134 页
求知若饥,虚心若愚。/共 134 页
求知若饥,虚心若愚。 第 6 页/共 134 页
千里之行,始于足下。 第 7 页/共 134 页
求知若饥,虚心若愚。 第 116 页/共 134 页
千里之行,始于足下。 第 117 页/共 134 页
求知若饥,虚心若愚。 第 118 页/共 134 页
千里之行,始于足下。 第 119 页/共 134 页
求知若饥,虚心若愚。 第 120 页/共 134 页
千里之行,始于足下。 第 121 页/共 134 页
求知若饥,虚心若愚。 第 56 页/共 134 页
千里之行,始于足下。 第 57 页/共 134 页
求知若饥,虚心若愚。 第 58 页/共 134 页
千里之行,始于足下。 第 59 页/共 134 页
求知若饥,虚心若愚。 第 60 页/共 134 页
千里之行,始于足下。 第 61 页/共 134 页
求知若饥,虚心若愚。 第 62 页/共 134 页
千里之行,始于足下。 第 63 页/共 134 页
求知若饥,虚心若愚。 第 64 页/共 134 页
千里之行,始于足下。 第 65 页/共 134 页
求知若饥,虚心若愚。 第 66 页/共 134 页
千里之行,始于足下。 第 67 页/共 134 页
求知若饥,虚心若愚。 第 128 页/共 134 页
千里之行,始于足下。 第 129 页/共 134 页
求知若饥,虚心若愚。 第 130 页/共 134 页
千里之行,始于足下。 第 131 页/共 134 页
[工学]第二章 流体力学基础知识
![[工学]第二章 流体力学基础知识](https://img.taocdn.com/s3/m/cc1dd9c80975f46527d3e1a8.png)
3)比压能,比位能,比动能
p1
u p2 u 2 2
2 1
2 2
3.实际液体流束的伯努利方程
p1
2 u12 p2 u2 ' z1 g z2 g hw g 2 2
(1-20)
4.实际液体总流的伯努利方程
u12 A1 ( z1 g )u源自dA1 A1 2 u1dA1 p1
+大气压力
• 真空度=大气压-绝对压力 2.压力的单位: 我国法定压力单位为帕斯卡,简称帕 1MPa = 106 Pa 1at(工程大气压)=1kgf/cm2=9.8×104 Pa 1mH2O(米水柱)=9.8×103 Pa 1mmHg(毫米汞柱)=1.33×102 Pa 1bar(巴) = 105 Pa≈1.02kgf/cm2
第二章 流体力学基础知识
• • • • 连续性假设 不抗拉 易流性 均质性
第一节 液压传动工作介质
一、液压传动工作介质的性质 1.密度 单位体积液体的质量称为液体的密度。 ρ=m/v 2.可压缩性 单位压力变化下的体积相对变化量 1 K
3.粘性 1)粘性的定义:液体在外力作用下流动(或 有流动趋势)时,分子间的内聚力要阻止分 子相对运动而产生的一种内摩擦力,这种 现象叫做液体的粘性。 2)粘度:
2 u2 gdq ( z2 g )u2 dA2 u2 dA2 hw A2 A2 2 q
p2
(1-21)
因为当截面的流动为缓流时:p/ρ+zg=常数
1 u2 3 udA u dA A 2 22 A3 1 v v A vdA 2 A 2
动能修正系数
2.静压力基本方程式的物理意义 (1)公式推导 距液面深度为h处的A点 的压力p为: p = p0 +ρgh = p0+ρg(z0 - z) 将上式整理可得 p0 p z z0 常数 g g 或
流体力学讲义 第二章 流体静力学
![流体力学讲义 第二章 流体静力学](https://img.taocdn.com/s3/m/4138138cd4d8d15abe234e42.png)
第二章流体静力学作用在流体上的力有面积力与质量力。
静止流体中,面积力只有压应力——压强。
流体静力学主要研究流体在静止状态下的力学规律:它以压强为中心,主要阐述流体静压强的特性,静压强的分布规律,欧拉平衡微分方程,等压面概念,作用在平面上或曲面上静水总压力的计算方法,以及应用流体静力学原理来解决潜体与浮体的稳定性问题等。
第一节作用于流体上的力一、分类1.按物理性质的不同分类:重力、摩擦力、惯性力、弹性力、表面张力等。
2.按作用方式分:质量力和面积力。
二、质量力1.质量力(mass force):是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
对于均质流体(各点密度相同的流体),质量力与流体体积成正比,其质量力又称为体积力。
单位牛顿(N)。
2.单位质量力:单位质量流体所受到的质量力。
(2-1) 单位质量力的单位:m/s2 ,与加速度单位一致。
最常见的质量力有:重力、惯性力。
问题1:比较重力场(质量力只有重力)中,水和水银所受的单位质量力f水和f水银的大小?A. f水<f水银;B. f水=f水银;C. f水>f水银;D、不一定。
问题2:试问自由落体和加速度a向x方向运动状态下的液体所受的单位质量力大小(fX. fY. fZ)分别为多少?自由落体:X=Y=0,Z=0。
加速运动:X=-a,Y=0,Z=-g。
三、面积力1.面积力(surface force):又称表面力,是毗邻流体或其它物体作用在隔离体表面上的直接施加的接触力。
它的大小与作用面面积成正比。
表面力按作用方向可分为:压力:垂直于作用面。
切力:平行于作用面。
2.应力:单位面积上的表面力,单位:或图2-1压强(2-2)切应力(2-3) 考考你1.静止的流体受到哪几种力的作用?重力与压应力,无法承受剪切力。
2.理想流体受到哪几种力的作用?重力与压应力,因为无粘性,故无剪切力。
第二节流体静压强特性一、静止流体中任一点应力的特性1.静止流体表面应力只能是压应力或压强,且静水压强方向与作用面的内法线方向重合。
流体力学-第一讲 场论与张量分析初步
![流体力学-第一讲 场论与张量分析初步](https://img.taocdn.com/s3/m/3281dbf25901020206409c16.png)
ax ay az
10.01.2021
18
所以有: (向量线方程)
dx dy dz
ax ay az
向量管:在场内取任一非向量的封闭曲线C,通过C上每一点 作矢(向)量线,则这些矢量曲线的区域为向量管。
流线方程 迹线方程
dx dy dz ux uy uz dx dy dz dt ux uy uz
迹线的描述 是从欧拉法
15
二、场的几何表示
变化快
变化慢
1、scalar field:
(1)用等值线(面)表示
令:
t0 f(r,t0)f0
t1 f(r,t1 )f1
等值线(等位面)图
(2)它的疏密反映了标量函数的变化情况
10.01.2021
16
二、场的几何表示
2、 vector field: 大小:标量. 可以用上述等位线(等位面)的概念来几何表示。
10.01.2021
12
数量三重积: c ab
ax ay az
a bc abc abc bx by bz
cx cy cz
a b c c a b b c a
abcacb
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
10.01.2021
③在任一方向的变形等于该方向的方向导数。
④梯度的方向是标量变化最快的方向。
10.01.2021
25
梯度的基本运算法则有:
C C
C( 为 常 数 )
1 2 1 2
1 2 1 2 2 1
f f
10.01.2021
26
四、向量的散度(divergence)
a ba xi a yj a zkb xi b yj b zk
流体力学知识点总结
![流体力学知识点总结](https://img.taocdn.com/s3/m/836861be856a561252d36fa2.png)
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
流体力学知识重点(全)
![流体力学知识重点(全)](https://img.taocdn.com/s3/m/bcb4b5d8e2bd960591c6774b.png)
流体力学知识点总结流体力学研究流体在外力作用下的宏观运动规律!流体质点:1.流体质点无线尺度,只做平移运动2.流体质点不做随即热运动,只有在外力的作用下作宏观运动;3.将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。
流体元可看做大量流体质点构成的微小单元。
连续介质假设:假设流体是有连续分布的流体质点组成的介质。
连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。
分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。
液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。
、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。
牛顿流体:动力粘度为常数的流体称为牛顿流体。
牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:温度对粘度的影响:温度对流体的粘度影响很大。
液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。
压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。
毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象;描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。
它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。
流体力学讲义第一讲优秀课件
![流体力学讲义第一讲优秀课件](https://img.taocdn.com/s3/m/4d81aab09b6648d7c0c74623.png)
i jk v
x y z vx vy vz
旋度运算基本公式
(ca)ca (a b ) a b
(a ) a a
()0
( a b ) b ( a ) a ( b ) (a)0
小总结
梯度,散度和旋度代表一种向量场或标量场,他们的大小 、方向和表达形式都不因直角坐标的变换而变化。
流体力学讲义第一 讲
2、克罗内克尔符号
1,i j
ij
0,i j
3、交变符号
ijk
1,ijk1,2,3, 1,ijk3,2,1,
2,3,1, 2,1,3,
3,1,2 1,3,2
0
四、张量定义
任二下标相同时
定义1:张量作为向量定义的推广
当由一个坐标系转换到另一个坐标系时,向量 P 按下
式变换
pi Pjij
1、 i jk 叫梯度(标量场的最大变
x y z
gradijk化率和变化率的方向)
x y z
2、微分形式和积分形式是否等价:
证明:取 的二等值面和两二等值面之间的小圆柱, 如图
沿柱面积分 n d s ,该积分由三部分组成,即 s
n ds nQQ w nPP w
s
w
nQPl源自n散度是一个标量,它表示单位体积内物理量通过其表面的
通量。若diva>0,称该点有源;若diva<0,称该点有汇。
|diva|称为源或汇的强度。若diva=0(处处),称该物理场
为无源场,否则为有源场。
散度的基本运算公式:
n
a
⑴ (ca)ca ( c常数)
M
S
(2) (ab ) a b
V
(3) (a ) a a ( 为标量)
流体力学-第一讲,场论与张量分析初步
![流体力学-第一讲,场论与张量分析初步](https://img.taocdn.com/s3/m/d95dda43c8d376eeafaa3123.png)
x2 y2
方向导数
f l
li m 0 f(xx,yy)f(x,y)
方向 f导 fc 数 o sfsin
运动学 动力学
以实际流体为主
24.11.2020
h
2
主要内容:
第一章 场论与张量分析初步
第二章 流体运动学
第三章 流体力学基本方程组
第四章 粘性流动基础
第五章 Navier-Stokes 方程的解
第六章 边界层理论
第七章 流体的旋涡运动
第八章 湍流理论
24.11.2020
h
3
第一章 场论与张量分析初步
h
8
矢量的标量积(数量积)(点积)(内积):
功:当力F作用在质点上使之移动一无限小位移 ds,此力所做功定义为力在位移方向的投影乘以
位移的大小.
a b a b co a ,b s
coa ,sb axbxa yb yazbz ab
a ba xi a yj a zkb xi b yj b zk
cx cy cz
a a b b c c c a c a b b b c a
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
24.11.2020
h
13
数量三重积几何意义:作为平行六面体的体积 。
a b c
c a b = 0 , 是 a ,b ,c 共 面 的 充 分 条 件
矢量线的描述是从欧拉法引出
矢量线方程:
设
dr
是矢量线的切向元素,
则据矢量线的定义有
a d r0
直角坐标:
d r id x jd k y d z a ia x ja y k a z
则有:
流体力学章1~4知识点概括
![流体力学章1~4知识点概括](https://img.taocdn.com/s3/m/b9243e06ccbff121dd3683a0.png)
一、第一章 流体惯性:(1)、流体的比容:指单位质量流体的体积。
kg m v /13ρ=(2)、流体的重度:指单位体积的流体所具有的重量(所受的重力)。
3/m N gργ= 水的密度:1000kg/m3 重度:9800N/m3流体粘性:(1)、流体的粘性:粘性是流体阻止其发生剪切变形的一种特性,是由流体分子的结构及分子间的相互作用力所引起的。
流体的粘性是流体的固有属性。
(2)、牛顿内摩擦定律: A )流体的内摩擦切应力:当相邻两层流体发生相对运动时,各层流体之间将因其粘性而产生摩擦力(剪切力),摩擦应力的大小为:切应力是粘性的客观表现。
速度梯度和流体的变形密切相关,速度梯度愈大,变形愈快,粘性力愈大。
B )牛顿通过实验证明:内摩擦力的大小与两层之间的速度差及流层接触面积的大小成正比,而与流层之间的距离成反比,即:dyduAF μ±= (3)、粘度:流体粘性的大小用粘度来表示,粘度是流体粘性的度量,它是流体温度和压力的函数。
A)动力粘度μ:是指速度梯度为1/=dy du 时的流层单位面积上的内摩擦力τ。
动力粘度μ表征了流体抵抗变形的能力,即流体粘性的大小。
与流体的种类、温度和压强有关的比例系数,在一定温度和压强下,是常数。
单位:s Pa ⋅;B)运动粘度:ρμυ=。
单位:s m /2(4)温度对粘性的影响:温度对液体和气体粘性的影响截然不同。
温度升高时,液体的粘性降低。
温度升高时,气体的粘性增加。
毛细高度:在20度时的上升高度水:h=30/d(mm) 酒精:h=10/d(mm) 二、第二章3、压强微分公式)(dz f dy f dx f dp z y x ++=ρ4、等压面0)(=++=dz f dy f dx f dp z y x ρyu A F d d μτ==5、流体静力学基本方程C g pz =+ρ gp z g p z ρρ2211+=+1)几何意义:Z 为位置水头,gpρ为压强水头,g p z ρ+为静压水头。
工程流体力学-15162第一讲 工程流体力学导论(第二节 流体的特征和连续介质假设——第3,4课)
![工程流体力学-15162第一讲 工程流体力学导论(第二节 流体的特征和连续介质假设——第3,4课)](https://img.taocdn.com/s3/m/6c7f426fcc175527072208ef.png)
p px, y, z,t x, y, z,t T T x, y, z,t x, y, z,t
第二节 流体的特征和连续介质假设
三、说明的问题
此假设内容,并不是对于所有的工程问题都是适用, 是有一定的适用范围。
适用范围: 物体的特征尺寸远远大于流体质点特征尺寸。
第二节 流体的特征和连续介质假设
知识点(一)
流体的特征
第二节 流体的特征和连续介质假设
流体的特征
一、流体的定义 二、流体的特征
第二节 流体的特征和连续介质假设
一、流体的定义
固态 物质形态: 液态
气态
固体 液体 气体
流体
流体定义 在微小剪切力的持续作用下能够连续变形的物质
第二节 流体的特征和连续介质假设 二、流体的特征
1mm3液体中含有3.3×1019个左右的分子 1mm3气体中含有2.7×1016个左右的分子
宏观:一般工程中,所研究流体的空间尺度要比 分子距离大得多,关心的是宏观流动问题。
第二节 流体的特征和连续介质假设
知识点(二)
流体连续介质假设
第二节 流体的特征和连续介质假设
流体连续介质假设
一、流体连续介质假设内容 二、引入连续介质假设的必要性和合理性 三、说明的问题二来自引入连续介质假设的必要性和合理性
1.必要性
连续介质假设后——物理量在流体中连续分布——可 将流体的各物理量看作是空间坐标和时间的连续函 数——解析方法等数学工具来研究流体的平衡和运动 规律
2.合理性
在工程上,人们并不关心个 别分子的运动,而关心的是有无 数个流体微团所组成宏观流体的 连续流动,这样假设的结果与实 际相差不大。
L 100
适用
《流体力学》各章节复习要点
![《流体力学》各章节复习要点](https://img.taocdn.com/s3/m/6c6c7c7f0812a21614791711cc7931b765ce7b18.png)
《流体力学》各章节复习要点第一章:流体力学基本概念1.流体力学的研究对象是流体运动的性质、规律和力学行为。
2.流体和固体的区别,流体的分类和性质。
3.流体的基本力学性质,包括压强、密度和粘度等。
4.流体的运动描述,包括质点、流线、流管和速度场等概念。
5.流体的变形和应力,包括剪切应力、正应力、黏性和流变性等。
第二章:流体静力学1.流体静压力的基本特征,流体静力学方程和压强的传递规律。
2.流体的浮力,浸没体和浮力的计算方法。
3.子液面、大气压和液体柱的压强和压力计的应用。
4.流体的液面,压强分布和压力容器。
第三章:流体动力学基本方程1.流体运动描述的方法,包括拉格朗日方法和欧拉方法。
2.质点、质点流函数和速度场等的关系。
3.流体的基本方程,包括连续性方程、动量方程和能量方程。
4.流体的不可压缩性和可压缩性假设。
第四章:定常流动和流动的形态1.定常流动和非定常流动的概念和特点。
2.流体流动的形态,包括层流和紊流。
3.流体的压强分布和速度分布。
4.流体的速度分布和速度云。
第五章:流体的动能和势能1.流体的动能、动能方程和功率。
2.流体的势能、势能方程和能率。
3.流体的势能和扬程。
第六章:粘性流体力学基本方程1.粘性流体的三个基本性质,包括黏性、切变应力和流变规律。
2.线性流体的黏性流动,包括牛顿黏性流体模型和黏性损失。
3.非线性流体的黏性流动,包括非牛顿流体和粘弹性流体。
第七章:边界层流动1.边界层的概念和特点。
2.压强分布和速度分布的边界层。
3.边界层和物体间的摩擦阻力。
第八章:维持边界层流动的力1.维持边界层流动的作用力,包括压力梯度、粘性力和凸面力。
2.维持边界层流动的条件和影响因素。
第九章:相似定律和模型试验1.流体力学中的相似原理和相似定律。
2.物理模型和模型试验的概念和应用。
第十章:流体力学的应用1.流体力学在水利工程中的应用,包括水力学、河流动力学和波动力学等。
2.流体力学在能源领域中的应用,包括风力发电和水力发电等。
液压流体力学基础
![液压流体力学基础](https://img.taocdn.com/s3/m/54a2dfd2960590c69ec376fb.png)
液压传动
一、液体静压力及其特性
表面力 法向力
切向力
液体
由于理想液体质点间的内聚力很小,液体不 能抵抗拉力或切向力,即使是微小的拉力或切向 力都会使液体产生流动。
因为静止液体不存在质点间的相对运动,也 就不存在拉力或切向力,所以,静止液体只能承 受压力 。
液压传动
三、重力作用下静力学基本规律
容器内盛有液体,液体水平面上的表面压力
p0
p0 为 p0,现研究距液面 h 深处某点 b 的压力。
h
在液体中取出一底部通过 b 点的垂直小液柱,
ρgh
b
液柱的高为 h,底面积为dA。
dA
pb
pb
处于平衡状态时,液柱在垂直方向的力平衡
方程为 pbdA=p0dA+ ghdA
A1
q vA 常数
2
1
不可压缩液体作定常流动时的连续性方程。
【物理意义】在稳定流动的情况下,当不考虑液体的压缩性时, 通过管道各通流截面的流量相等。
液压传动
二、连续性方程
【 例 题 1】 已 知 流 量 q1=25L/min , 小 活
v1
塞 杆 直 径 d1=20mm , 直 径 D1=75mm ,
向的动量方程。如在x方向的动量方程可写成
Fx q 2v2x 1v1x
特别注意,在工程上往往需要的是固体壁面所受到的液流作用 力,即ΣF的反作用力ΣF’(称为稳态液动力)。
液压传动
三、动量方程
【例题3】求图中滑阀阀芯所受的轴向稳态液动力。
θ q
解:取阀进出口之间的液体为研究
v2 v1 q
一、液体的流动状态 二、雷诺实验 三、雷诺数
流体力学第二章
![流体力学第二章](https://img.taocdn.com/s3/m/c66e397b81c758f5f71f6749.png)
对于液面与上边线平齐的矩形平面而言,压力中心坐标为
yD
=yC
+ JC = yCA
l+ bl3/12 = 2 (l/2)bl
2 3l
根据合力矩定理,对 o点取矩可得
Pl=P1
l1 3
-P2
l2 3
=P13sHin1α-P23sHin2α
代入已知数据可解得 l=2.54m
这就是作用在闸门上的总压力的作用点距闸门下端的距离。
— 5—
蔡增基《流体力学》考点精讲及复习思路
解 作用在闸门上的总压力为左右两边液体总压力之差,即 P =P1 -P2。 因为 hC1 =H1/2,A1 =bH1/sinα, hC2 =H2/2,A2 =bl2 =bH2/sinα, 所以 P =ρghC1A1 -ρghC2A2
=ρgH21bsHin1α-ρgH22bsHin2α =97030N。
槡P2x +P2y +P2z
总压力的大小为:P =Pxi+Pyj+Pzk (2)压力体 压力体是由受力曲面、液体自由表面(或其延长面)以及两者间
∫ 的铅垂面所围成的封闭体积。压力体是从积分 AhdAz得到的一个体
积,是一个纯数学的概念,与体积内有无液体无关。
— 6—
实压力体 如果压力体与形成压力的液体在曲面的同侧,则称这样的压力体为实压力体,用(+)来表示,其 方向垂直向下。 虚压力体 如果压力体与形成压力的液体在曲面的异侧,则称这样的压力体为虚压力体,用(-)来表示,其 方向垂直向上。 需要注意的是:以上的两个压力体给人的感觉是实压力体就是内部充满液体的压力体,虚压力体 就是内部没有液体的压力体。其实压力体的虚实与其内部是否充满液体无关 压力体的合成
0.075m处,试求该正方形平板的上缘在液面下的深度。
流体力学知识结构与概念
![流体力学知识结构与概念](https://img.taocdn.com/s3/m/db07053159eef8c75fbfb394.png)
流体力学复习资料Ⅰ知识结构第二章流体及其物理性质1.流体的定义和特征;2.作用在流体上的力;3.流体的物性参数(密度、压缩系数、膨胀系数、粘度、表面张力)。
第三章流体静力学4.流体的平衡状态;5.流体的静压强及其特性;6.流体平衡微分方程式;7.流体静力学基本方程式;8.绝对压强,计示压强和测压计;9.液体的相对平衡;10.静止液体作用在平面上的总压力;11.静止液体作用在曲面上的总压力;12.静止液体对物体的浮力。
第四章流体运动的基本概念和基本方程13.流场(速度场、压强场、密度场等);14.流动(定常、非定常、一维、二维、三维);15.迹线,流线,流管,流束,流量,水力半径;16.系统与控制体,输运公式;17.连续性方程,动量方程,动量矩方程,能量方程,伯努利方程。
第五章相似原理和量纲分析18.相似原理(几何相似、动力相似、运动相似);19.相似准则;20.相似条件;21.模型实验;22.量纲分析。
第六章管流损失和水力计算23.沿程能量损失;24.局部能量损失;25.粘性流体的两种流动状态;26.管流能量损失的计算;27.管道水力计算;28.液体的出流;29.水击现象;30.气穴和气蚀简介。
第九章 粘性流体绕过物体的流动31.纳维—斯托克斯方程;32.不可压粘性流体层流流动;33.边界层基本概念;34.边界层微分方程及其近似计算;35.曲面边界层的分离现象;36.绕过圆柱体的流动,卡门涡街;37.自由淹没射流。
Ⅱ概念汇总第二章 流体及其物理性质1. 流体力学:研究流体平衡与运动规律的科学。
2. 流体:能流动的物质,它受任何微小剪切力作用时都能连续变形。
3. 表面力:作用在所取分离体表面上的力。
4. 质量力:作用在单位质量流体上的某种场作用力(如:重力,电磁力)。
5. 体积力:作用在单位体积流体上的某种场作用力(如:重力,电磁力)。
6. 流体的密度:流体单位体积内具有的质量,表征流体的密集程度。
第二章 流体力学基础(1-6)知识讲解
![第二章 流体力学基础(1-6)知识讲解](https://img.taocdn.com/s3/m/2fe1b759c1c708a1294a4413.png)
34
2.2 液体静力学
2.2.3 压力表示方法和单位
压力有两种表示方法:绝对压力和相对压力。
以绝对真空为基准度量的压力叫做绝对 压力; 以大气压为基准度量的压力叫做相对压 力或表压。
这是因为大多数测量仪表都受大气 压作用,这些仪表指示的压力是相对压 力。
在液压与气压传动系统中,如不特别 说明,提到的压力均指相对压力。
液压油的粘度等级就是以其40ºC时运动粘度的某一平均 值来表示,
如L-HM32液压油(32号液压油)的粘度等级为32,则 40ºC时其运动粘度的平均值为32mm2/s 。
12
2.1 液压油
相对粘度 雷氏粘度〞R——英国、欧洲 赛氏粘度SSU——美国 恩氏粘度oE——俄国、德国、中国
oE=
t1
t2
单位:无量纲
(2)润滑性能好 (3)质地纯净,杂质少。 (4)具有良好的相容性。
(5)具有良好的稳定性。(氧化) (6)抗乳化性、抗泡沫性、防锈性、腐蚀性小。
(7)膨胀系数低、比热容高。 (8)流动点和凝固点低,闪点和燃点高。 (9)对人体无害,成本低。
18
2.1 液压油
2.1.4 液压油的选择
正确合理地选择液压油液,对保证液压传动系统正常工作、延 长液压传动系统和液压元件的使用寿命以及提高液压传动系统的工 作可靠性等都有重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章流体力学基础
第一讲
1.物质的三种状态: 固、液、气
2.流动性:在切向力的作用下,物质内部各部分之间就会产
生相对运动,物体的这一性质称为流动性。
3.流体:具有流动性的物体,具体指液体和气体。
4.流体力学: 将流体看作无数连续分布的流体粒子组成的
连续介质.
5.黏滞性:实际流体流动时内部存在阻碍相对运动的切向内摩擦力。
6.流体的分类:实际流体和理想流体
7.压缩性:实际流体的体积随压强的增大而减小,即压缩性。
8.实际流体:具有压缩性存在黏滞性流体。
9.理想流体:研究气体流动时,只要压强差不太大,气体的压缩性可以不考虑,黏滞性弱的流体(水和酒精)的黏滞性也可不考虑,故绝对不可压缩完全没有黏滞性的流体即为理想流体。
10.流体运动的描述:a.(拉格朗日法)追踪流体质点的运动, 即从个别流体质点着手来研究整个流体的运动. 这种研究方法最基本的参数是流体质点的位移. 由质点坐标代表不同的流体质点. 它们不是空间坐标, 而是流体质点的标
号.b.(欧拉法)是从分析流体流动空间中的每一点上的流体质点的运动着手来研究整个流体运动. 即研究流体质点在通过某一个空间点时流动参数随时间的化规律.
注:在流体运动的实际研究中, 对流体每个质点的来龙去脉并不关心, 所以常常采用欧拉法来描述流体的运动.
11.流场:流体流动的空间
12.流线:a.线上每一点的切线方向表示流体粒子流经该点时流速的方向。
b.通过垂直于流速方向上单位面积流线的条数等于流体粒子流经该点时流速的大小。
c.流线的疏密程度可以表示流速的大小。
d.流线不能相交,因为流体流速较小时,流体粒子流经各点时的流速唯一确定。
e.流体作稳定流动时, 流线形状保持不变, 且流线与流体粒子流动轨迹重合.
13.稳定流动:一般情况下, 流体流动时空间各点的流速随位置和时间的不同而不同, 若空间各点流速不随时间变化,流速只是空间坐标的函数v=v(x,y,z),而与时间无关,则称该流动为定常流动(稳定流动).所以,定常流动的流场是一种流速场,也只有在定常流动中,流线即为粒子运动轨迹。
而且,速度不随时间变化,不一定是匀速,只是各点速度一定。
14.流管:如果在运动流体中取一横截面S1, 则通过其周边各
点的流线所围成的管状体叫做流管.
注:a.流体作定常流动时, 流管内外流体都不会穿越管壁.流管外流体也不会流入流管内。
(因为流线不相交)
b.研究流体运动时,将流场看成是许多流管的组合,研究流管内流体的运动。
15.流量:单位时间内流过S 面流体的体积称为体积流量,简称流量。
即Q=sv.
16.连续性方程:稳定流动的不可压缩液体, 在同一时间通 过任意管段的流体质量相等 m1=m2 .得1122S v S v 即SV=常量
(文字叙述即为流量连续原理)。
注(连续性方程的医学延伸):血液在血管内的流动基本是连续的。
(忽略血管弹性,血流本身惯性,摩擦等)从而得出主动脉流速大于腔静脉大于毛细血管。
17.伯努利方程(重点):a.推导关键是S1和S2两面一个取后面液体的作用,一个取前面液体的作用,其余力相互抵消。
最后式子的两边同除V 。
b.理想流体定常流动时,同一流管内单位体积流体的压强能,动能和势能相互转化,其总和不变。
(单位体积液体的动能、重力势能和压强能三者之和是一恒量).
c. 适用条件: 1. 同一流管 2. 理想流体 3. 作稳定流动
d.本节的公式和习题需要在定常流动和理想流体受两个限制。
e.利用伯努利方程也可以解决一些不易压缩,黏滞性较弱的
实际流体的流动问题,所得结果具有实际意义。
f.伯努利方程的两种表现形式:不变型----221112221122
P gh P gh +ρυ+ρ=+ρυ+ρ(定量计算),常量型----
212P gh +ρυ+ρ=常量(定性分析)。
18.理想流体伯努利方程的应用:a.空吸现象(应用于水流抽气机,喷雾器,汽油发动机的化油器):流速与压强的关系 b.流速计(两种形式的比托管流量计):流速计算表达式 c.流量计:(文丘里流量计):流量计算表达式
d.血压与体位相关:同高出血压相同(平躺),测量值与计算值稍有偏差是血液黏滞性所致。
所以测血压一定要注意体位和测量部位。
e.飞机升天,弧旋球,火车的警戒线,球不落下来的实验
19.伯努利方程应用注意:1.正确地选取截面, 包含所求量.2. .方程正确简化:等粗管拿掉速度一项,等高管拿掉高度一项。
3.找出隐条件: 大管小孔, 大处v 不计. 与空气接触, p =p0。