人工智能课件第三次课

合集下载

2024版《人工智能》PPT课件

2024版《人工智能》PPT课件

《人工智能》PPT课件•人工智能概述•机器学习原理及算法•自然语言处理技术•计算机视觉技术•语音识别与合成技术•智能推荐系统与数据挖掘•人工智能伦理、法律与社会影响目录定义与发展历程定义人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新技术科学。

发展历程从早期的符号学习到现代的深度学习,人工智能经历了多个发展阶段,包括专家系统、知识工程、机器学习等。

重要事件人工智能领域的重要事件包括图灵测试、达特茅斯会议、AlphaGo战胜围棋世界冠军等。

人工智能的技术原理包括感知、思考、学习和行动四个方面,通过模拟人类的思维和行为方式来实现智能化。

技术原理人工智能的核心思想是让机器能够像人类一样具有智能,包括理解、推理、决策、学习等能力。

核心思想人工智能的实现方式包括符号主义、连接主义和行为主义等多种方法,其中深度学习是当前最热门的技术之一。

实现方式技术原理及核心思想前景展望未来人工智能的发展前景非常广阔,将会在更多领域得到应用,同时也会出现更多的技术创新和突破。

应用领域人工智能已经广泛应用于各个领域,包括智能家居、自动驾驶、医疗诊断、金融风控等。

挑战与机遇人工智能的发展也面临着一些挑战,如数据安全、隐私保护等问题,但同时也带来了巨大的机遇和发展空间。

应用领域与前景展望原理通过最小化预测值与真实值之间的均方误差,学习得到最优的线性模型参数。

应用预测连续型数值,如房价、销售额等。

原理在特征空间中寻找最大间隔超平面,使得不同类别的样本能够被正确分类。

应用分类问题,如图像识别、文本分类等。

原理通过递归地选择最优特征进行划分,构建一棵树状结构,用于分类或回归。

应用分类、回归问题,如信用评分、医学诊断等。

原理将数据划分为K个簇,使得同一簇内的数据尽可能相似,不同簇间的数据尽可能不同。

应用数据挖掘、图像压缩等。

原理通过计算数据点间的相似度,将数据逐层进行聚合或分裂,形成树状结构。

应用社交网络分析、生物信息学等。

《人工智能》大学课件PPT

《人工智能》大学课件PPT
《人工智能》大学 课件
contents
目录
• 人工智能概述 • 机器学习与深度学习 • 自然语言处理 • 计算机视觉 • 语音识别与合成 • 人工智能的伦理与法律问题
01
CATALOGUE
人工智能概述
人工智能的定义
人工智能定义
人工智能是计算机科学的一个分支,旨在研究和开发能够 模拟、延伸和扩展人类智能的理论、方法、技术及应用系 统的一门新的技术科学。
自然语言处理的基本任务
分词、词性标注、句法分析、语义理解和对话系统等。
自然语言处理的技术与方法
基于规则的方法
通过人工定义规则来处理自然语言,例如正则表达式和手工编写 的解析器。
基于统计的方法
利用大规模语料库进行训练,通过机器学习算法找到语言的内在 规律,例如隐马尔可夫模型和条件随机场。
基于深度学习的方法
替代就业
人工智能的发展可能导致部分传统岗位被自动化取代,需要关注由此产生的失业 问题,并采取措施进行缓解。
创造就业
同时,人工智能的发展也将催生新的产业和就业机会,需要培养适应新时代的技 能和人才。
人工智能的决策责任问题
决策透明度
人工智能系统在做出决策时,应具备足够的透明度,以便理 解和追踪其决策过程。
利用神经网络进行自然语言处理,例如循环神经网络和 Transformer模型。
自然语言处理的应用实例
机器翻译
利用NLP技术将一种自然语言 自动翻译成另一种自然语言。
智能客服
通过NLP技术实现智能化的客 户服务,自动回答用户的问题 和提供帮助。
信息抽取
从大量文本中自动提取关键信 息,例如人物、事件和地点等 。
计算机视觉的构成
计算机视觉主要由图像获取、图 像处理和图像理解三个部分组成 。

人工智能PPT课件

人工智能PPT课件
21世纪初,随着大数据和 云计算技术的普及,人工 智能在机器学习和深度学 习等领域取得重大进展。
人工智能的应用领域
自动驾驶
利用计算机视觉和传感 器技术,实现车辆自主
导航和驾驶。
智能语音助手
通过语音识别和自然语 言处理技术,实现人机
语音交互。
医疗诊断
利用人工智能技术辅助 医生进行疾病诊断和治
疗方案制定。
金融风控
通过大数据分析和机器 学习技术,实现金融风
险控制和欺诈检测。
02
人工智能技术
机器学习
总结词
机器学习是人工智能的核心技术之一,通过从数据中自动学习模型和规律,实现 对新数据的预测和分析。
详细描述
机器学习算法可以分为监督学习、无监督学习和强化学习等类型,其中监督学习 是指通过已知标签的数据进行学习,无监督学习是指在没有标签的情况下进行聚 类、降维等操作,强化学习是指通过与环境的交互进行学习。
教育领域
01 02 03 04
人工智能在教育领域的应用,可以实现个性化教育和智能化教学。
人工智能可以根据学生的学习情况和兴趣爱好,自动推荐学习资源和 课程计划,提高学习效果。
人工智能还可以通过智能评估和反馈系统,自动评估学生的学习成果 和提供改进建议,帮助教师更好地指导学生。
人工智能在教育领域的应用将改变教学方式和评估方式,提高教育质 量和效率。
人工智能的就业影响
自动化与就业
人工智能的发展可能导致某些工作被自动化,对传统行业和职业产生冲击。需要关注就业市场的变化 ,采取措施帮助受影响的劳动者转岗和再就业。
新兴职业与技能需求
随着人工智能技术的普及,新兴职业和技能需求将不断涌现。需要培养和更新劳动者的技能,以适应 新的就业市场需求。

【全国青少年人工智能技术水平测试】03三级ppt第三课

【全国青少年人工智能技术水平测试】03三级ppt第三课

小练习
关于“探究加速度与力、质量的关系”的实验,下列说法中正确的是( )
A.通过同时改变小车的质量m及受到的拉力F的研究,能归纳出加速度、力、质量三者之 B.通过保持小车质量不变,只改变小车的拉力的研究,就可以归纳出加速度、力、质量 C.通过保持小车受力不变,只改变小车质量的研究,就可以得出加速度、力、质量三者 D.先保持小车质量不变,研究加速度与力的关系;再保持小车受力不变,研究加速度与
青少年人工智能技术水平测试
THE YOUTH ARTIFICIAL INTELLIGENCE TECHNICAL LEVEL TEST
人工智能载体(二)
第三级 第3课
青少年人工智能技术水平测试工作站
青少年人工智能技术水平测试课程研究中心
青少年人工智能技术水平测试
THE YOUTH ARTIFICIAL INTELLIGENCE TECHNICAL LEVEL TEST
三轮运动平台的搭建
三轮运动平台
该运动平台,由三个轮做支撑,其中一个为万向 轮,一般放在车子的正前或正后,另外两个为对称的 差分驱动轮,通过控制此两轮连接的电机功率来控制 车的直行和转向。
常见的模型如下。
Makeblock三轮运动平台
乐高搭建模型
多元创客模型
青少年人工智能技术水平测试
THE YOUTH ARTIFICIAL INTELLIGENCE TECHNICAL LEVEL TEST
解析:探究加速度与力、质量的关系时,先保持质量不变,研究加速度与力 的关系;再保持受力不变,研究加速度与质量的关系。再总结出加速度与力 、质量的关系。所以,只有选项D正确。
本章总结
本章需要掌握的知识点: 1、了解各种真实生活中的连接方式,能够搭建出较复杂的模拟结构、机械动力结构和创意结构; 2、熟悉三轮运动平台的搭建,了解四轮、麦轮等其它运动方式; 3、了解力与加速度的关系,了解加速度与速度的关系; 4、了解工程设计的过程,在设计的时候要考虑它的用途和条件限制。

人工智能教学PPT课件

人工智能教学PPT课件
人机对弈
人工智能
2
4
6
5
3
1
个人助理
自驾领域
电商零售
安防
教育
金融
7
医疗健康
人工智能的柒大应用领域
人工智能的柒大应用领域
个人助理
“个人助理时代”
以Siri为首的“个人助理时代”大幕正在拉开,最终很可能会成为人们与移动设备、计算机、汽车、可穿戴设备、家用电器,或其他要求复杂人机交互技术的主要交互方式。当前市场上已经有了Siri,GoogleNow,以及Cortana,但必须承认,这些产品所在的市场和所用技术仍处于“青春期”。再过几年,人工智能技术进步将帮助虚拟助手理解我们正在从事的工作,像真的私人助手一样提供帮助。给你安排行程、协调时间,告诉你交通情况,给你提供可行性方案。
人工智能
Artificial Inte lligence
人工智能是什么What is Artificial Intelligence?
人工智能的发展与应用 Application of Artificial Intelligence
人工智能面临的考验 The facing problems of AI
Co mp u t e r v i s i o n
Na t u r a ll a n g u a g e l e a r n i n g
Pa t t e r nr e c o g n i t i o n
Ex p e r t s y s t e m
AI
人工智能评判标准
阿兰·图灵英国数学家、逻辑学家,被视为计算机科学之父。
无人驾驶共享汽车
智能汽车
ห้องสมุดไป่ตู้
人工智能的柒大应用领域

人工智能讲稿ppt课件

人工智能讲稿ppt课件

第一节 问题求解与问题表示
二、状态空间法 1、图的概念与术语
图,父辈结点与后继结点
nr
nh
np
路径, 树
ni
nq
nj
ns
nl3
nl1
nl2
第一节 问题求解与问题表示
2、状态空间表示 一个问题求解系统,问题的状态可由图中的结点代表,
它的所有可能的状态就成结点的集合,构成了状态空间, 或称状态图。
状态空间图中: 有向弧线代表操作,反应状态间的转移关系; 节点代表问题的状态。
第二节 人工智能的学科范畴
一、研究目标
AI是一门研究:如何使机器具有智能,如何设计智能 机器的学科,即使机器具有象人那样的
(1)感知能力 (2)思维能力 (3)行为能力 (4)学习、记忆能力
四种能力:
感知能力 听、看、闻
行为能力
将作出的结论付之于行 动,即去说、写、画,
进行操作、处理等。
思维能力
讨论
如果设d(n)反映搜索层次或深度, 当w(n)=0,
f(n)=d(n),即同一层代价相同,就全部要扩展,挨个判 断是否为目标——宽度优先搜索 当d(n)=0,极好地反映被解问题的特性,使搜索完全向 目标结点进行——深度优先搜索。
283
1644
7
5
283 164
75
6
2 18
76
5
283
1
44
部分成果: 1、1984年完成了串行推理机PSI和操作系统SIMPOS
2、1988年完成了并行推理机Multi-PSI和操作系统
PIMOS !
80年代末期ANN飞速发展给AI发展注入新血液:
1、80年代Hopfield模型及B-P反向传播模型的提出使 ANN兴起了一个热潮

《人工智能课件》.pptx

《人工智能课件》.pptx
策略梯度方法
一种基于策略迭代的方法,直接优化策略参数以最大化期望回报。通过计算梯度并更新策 略参数来实现策略改进。
Actor-Critic 方法
结合了值迭代和策略迭代的方法。Actor 负责根据当前策略选择动作,Critic负责评估当前 策略的性能并指导Actor进行改进。两者相互促进,共同优化智能体的行为。
03 深度学习技术与应用
神经网络基本原理
01
神经元模型
神经网络的基本单元,模 拟生物神经元的结构和功
能。
前向传播
输入信号经过神经元处理 后向前传递的过程。
反向传播
根据误差信号调整神经元 权重的过程。
卷积神经网络 (CNN)
卷积层
通过卷积操作提取输入数 据的特征。
池化层
降低数据维度,减少计算
量。
06
人工智能伦理、法律和社会影

数据隐私和安全问题
数据隐私泄露
人工智能系统通常需要大量数据进行训练和学习,其中可能包含用户的个人隐 私信息。如果这些数据没有得到妥善保护,就可能导致隐私泄露事件。
网络安全问题
人工智能系统可能成为网络攻击的目标,例如黑客利用漏洞攻击人工智能系统, 获取敏感信息或者破坏系统的正常运行。
将数据划分为K个簇,每个簇的中心由簇内所有样本的均值表示。通过
迭代更新簇中心和重新划分样本,使得每个样本与其所属簇中心的距离
之和最小。
层次聚类
通过计算样本之间的距离,将距离近的样本合并为一个簇,然后不断重 复该过程,直到达到预设的簇数量或满足其他停止条件。
03
主成分分析 (PCA)
通过正交变换将原始特征空间中的线性相关变量转换为线性无关的新变
深度学习在图像识别与分类中的应用 通过训练深度神经网络模型,学习从原始图像数据中提取有用 的特征,进而实现图像的高效识别和分类。

人工智能PPT第三章3.2

人工智能PPT第三章3.2

以匠心 致创新
3.2 应用实例:智能小区
3.2.3技术体验1:人脸识别AI开放平台步骤1:成为开发者。脸识 别应用,获得AppID,API Key,Secret Key。 步骤2:下载Java HTTP SDK。
步骤3:在eclipse中新建一个工程,添加SDK工具包。 步骤4:参考官方说明文档,编写并修改代码。 步骤5:分别运行人脸识别和人脸对比的程序,查看输出结果。
以匠心 致创新
3.2 应用实例:智能小区
图:智能小区架构
3.2.1案例分析
如图所示,智能 小区具体功能包括人 脸识别、人脸布控、 人脸梯控、车辆识别、 视频结构化、视频浓 缩摘要、智能分析、 客流统计、停车场管 理、周界防护、电子 地图、 致创新
3.2 应用实例:智能小区
虹膜数据库
特征比对
识别
以匠心 致创新
3.2 应用实例:智能小区
3.2.6知识拓展
三维人脸识别
三维人脸识别是采用3D结构光技术,通过3D结构光内的数万个光线点对人脸进 行扫描后,从而提供更为精确的面部信息,而这类面部信息并不会受到化妆品比如口 红、粉底等的影响。
视频分析 视频分析技术来源于计算机视觉,其实质是自动分析和抽取视频源中的关键信息。
以匠心 致创新
3.2 应用实例:智能小区
3.2.4技术体验2:图像识别AI开放平台步骤1:成为开发者。脸识 别应用,获得AppID,API Key,Secret Key。 步骤2:下载Java HTTP SDK。
步骤3:在eclipse中新建一个工程,添加SDK工具包。 步骤4:参考官方说明文档,编写并修改代码。
步骤4:参考官方说明文档,编写并修改代码。 步骤5:运行图像审核的代码,查看输出结果。

人工智能课件第三次课共26页文档

人工智能课件第三次课共26页文档

Evaluation only. Evaluation only. Created with Aspose.Slides for .NET 4.0 Client Profile reated with Aspose.Slides for .NET 4.0 Client Profile 17.
17.1. Copyright 2019-2019Aspose Pty Ltd. Copyright 2019-2019Aspose Pty Ltd.
Evaluation only. Evaluation only. Created with Aspose.Slides for .NET 4.0 Client Profile reated with Aspose.Slides for .NET 4.0 Client Profile 17.
Evaluation only. Evaluation only. Created with Aspose.Slides for .NET 4.0 Client Profile reated with Aspose.Slides for .NET 4.0 Client Profile 17.
17.1. Copyright 2019-2019Aspose Pty Ltd. Copyright 2019-2019Aspose Pty Ltd.
Evaluation only. Evaluation only. Created with Aspose.Slides for .NET 4.0 Client Profile reated with Aspose.Slides for .NET 4.0 Client Profile 17.
17.1. Copyright 2019-2019Aspose Pty Ltd. Copyright 2019-2019Aspose Pty Ltd.

人工智能第三章ppt课件

人工智能第三章ppt课件
〔4〕普通模块化的知识易于检索、了解,但也有无 法模块化的知识。
〔5〕排除自然言语的二义性。
〔6〕参与必要的常识。
3.2 逻辑表示法
逻辑表示法主要用于定理的自动证明、 问题求解、机器 人学等领域。
逻辑表示学的主要特点是它建立在某种方式逻辑的根底上 。优点:自然;明确:灵敏;模块化。
缺乏:它所表示的知识属于表层知识,不易表达过程性知 识和启发式知识;另外它把推理演算和知识的含义截然 分开,丢弃了表达内容中含有的语义信息,往往使推理 难以深化,特别是当问题比较复杂、系统知识量比较大 的时候,容易产生组合爆炸问题。
3.1.3 AI对知识表示方法的要求
首先,要求有较强的表达才干和足够的精细程度, 可以从三方面思索:表示才干;可了解性;自然性。
然后,从知识利用上讲,衡量知识表示方法可以从 以下3个方面调查:便于获取和表示新知识,并以适宜 方式与以后知识相衔接;便于搜索,在求解问题时,可 以较快地在知识库中找到相关知识;便于推理,要可以 从已有知识中推出需求的答案或结论。
3.4.4 衔接词和量词的表示
1.合取 链GIVER,OBJ以及RECIP之间是合取关系
2.析取 将“或〞关系的弧用一条封锁虚线包围起来,并标志DIS
3.否认 采用¬ISA和¬PART-OF关系或标注出NEG界限。
4.蕴涵 可用标注ANTE和CONSE界限来表示蕴涵关系。
5.量化 〔1〕存在量词的量化 用ISA链来表示 〔2〕全称量词的量化 整个语义网络或者把语义网络分割后的 某个范围
2.知识表示
知识表示是指将知识符号化,并输入计算机的 过程和方法。它包含两层含义: 〔1〕用给定的构造,按一定的原那么、组织方法表示知 识。 〔2〕解释所表示知识的含义。 详细表现为:选取适宜的数据构造描画用于求解某问题 所需的知识。 在AI领域,研讨知识表示方法的目的是用知识来改善程 序的性能,详细表现为: ①利用知识来协助选择或限制程序搜索的范围。 ②利用知识来协助程序识别、判别、规划与学习。

《人工智能》课件

《人工智能》课件
人工智能伦理与法规
数据隐私与安全
数据隐私
确保个人数据在收集、存储和使 用过程中的保密性和安全性,防 止数据泄露和滥用。
数据安全
采取措施保护数据免受未经授权 的访问、修改或破坏,确保数据 的完整性和可用性。
人工智能的就业影响
就业机会
人工智能的发展将创造新的就业机会 ,包括人工智能专业人才、技术研发 人员等。

人工智能对人类社会的影响
提高生产效率
人工智能技术能够提高 生产效率,降低成本,
促进经济发展。
改善生活质量
人工智能在医疗、教育 、交通等领域的应用能 够改善人们的生活质量

改变就业结构
人工智能的发展将改变 就业结构,需要人们不 断更新技能以适应变化

推动创新发展
人工智能技术能够激发 创新,推动科技发展, 改变人类社会的面貌。
跨界融合
促进人工智能与其他产业 的融合发展,推动经济转 型升级。
可持续发展
引导人工智能技术在环境 保护、能源利用等领域的 运用,推动可持续发展。
THANKS
感谢观看
《人工智能》ppt课件
目录
• 人工智能概述 • 人工智能技术 • 人工智能伦理与法规 • 人工智能未来展望 • 人工智能的实际应用案例 • 总结与思考
01
人工智能概述
人工智能的定义
人工智能定义
人工智能是研究、开发用于模拟、延 伸和扩展人的智能的理论、方法、技 术及应用系统的一门新的技术科学。
人工智能的学科性质
深度学习在计算机视觉中取得了 重大突破,如YOLO、SSD和 Faster R-CNN等目标检测算法 。
语音识别
语音识别是使计算机能够理解和识别 人类语音的能力。

人工智能PPT课件 (3)全文

人工智能PPT课件 (3)全文

2024/8/16
17
无人作战系统
X-47B无人作战飞机
无人机蜂群
2015年4月22日,美海军X-47B无人机与欧米伽 空中加油服务公司的K-707加油机完成了自主空中 受油试飞验证。
蜂群式无人系统是美国国防部战略能力办公室的项目,该项 目是美国与中俄军事竞争的关键。蜂群式无人机未来有可能成为 改变游戏规则的项目。蜂群式无人机的第一步是发展空军研究实 验室所谓的“忠诚僚机”。
6
大忽悠:强人工智能即将实现
强人工智能,是真正的像人类的 思考和决策,目前的典型例子都 是在电影里。
实际上,目前所有的人工智能领 域取得进展的领域都是在弱人工 智能上。
2024/8/16
7
2024/8/16
8
2024/8/16
9
问题:谈谈你对人工智能发展及应用 的认识?
2024/8/16
10
人工智能是一个研究范围十分广泛的学术领域: 包括机器学习、语言识别、图像识别、自然语 言处理和专家系统等。
其中机器学习是人工智能的核心,专门研究计 算机怎样模拟或实现人类的学习行为,以获取 新的知识或技能,重新组织已有的知识结构使 之不断改善自身的性能。
人工智能从诞生以来,理论和技术日益成熟, 应用领域也不断扩大。越来越多人开始看好人 工智能这一领域。
4
2024/8/16
对于人工智能的理解,我们大多数人 还停留在科幻片上。无论是残暴冰冷 的“终结者”,还是可以把人心融化的 呆萌“大白”,都是我们对人工智能未 来发展的想象。人工智能是一把双刃 剑,只有利用人工智能好的方面,才 能将人工智能优势最大化。
5
2024/8/16
一、什么是人工智能?
简单来说,人工智能是对人的意识、思维的信 息过程的模拟。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于rowOffset,colOffset说明
-1,-1 -1,0 -1,1
0,-1
当前点 (row,col)
1,0
0,1
1,-1
1,1
j=0; for(i=0;i<8;i++) if(pattern[row+rowOffset[i]][col+colOffset[i]]==1) if(!(((row+rowOffset[i])==previousRow)&& ((col+colOffset[i])==previousCol))) { possibleRowPath[j]=row+rowOffset[i]; possibleColPath[j]=col+colOffset[i]; j++; } i=Rnd(0,j-1); //随机函数 previousRow=row; previousCol=col; row=possibleRowPath[i]; col=possibleColPath[i]; }
基于方块的模式运动 Pattern Movement in tile-based environments
Paths will be made up of line segments. 路径是由一些线段组成。 Each line is only a segment of the overall pattern. 每一条线段是整个运动模式的一部分。
if(currentStep>=kMaxPathLength) return; if(deltaCol>deltaRow) { fraction=deltaRow*2-deltaCol; while(nextCol!=endCol) { if(fraction>=0) { nextRow+=stepRow; fraction=fraction-deltaCol; }
处理模式数组 Processing the pattern array
Void GameLoop(void) { … Object.orientation+=Pattern[CurrentIndex].turnRight; Object.orientation-=Pattern[CurrentIndex].turnLeft; Object.x+=Pattern[CurrentIndex].stepForward; Object.x-=Pattern[CurrentIndex].stepBackward; CurrentIndex++; … }
Rectangular pattern movement
(10,3) (10,12)
(18,3)
(18,12)
NormalizePattern function
void ai_Entity::NormalizePattern(void) { int i; int rowOrigin=pathRow[0]; int colOrigin=pathCol[0]; for(i=0; i<kMaxPathLength; i++) if((pathRow[i]==-1)&&(pathCol[i]==-1)) { pathSize=i-1; ; break; } for(i=0; i<=pathSize; i++) { pathRow[i]=pathRow[i]-rowOrigin; pathCol[i]=pathCol[i]-colOrigin; } }
Complex patrolling pattern
entityList[1].BuildPathSegment(4,2,4,11); entityList[1].BuildPathSegment(4,11,2,24); entityList[1].BuildPathSegment(2,24,13,27); entityList[1].BuildPathSegment(13,27,16,24); entityList[1].BuildPathSegment(16,24,13,17); entityList[1].BuildPathSegment(13,17,13,13); entityList[1].BuildPathSegment(13,13,17,5); entityList[1].BuildPathSegment(17,5,4,2); entityList[1].NormalizePattern(); entityList[1].patternRowOffset=5; entityList[1].patternColOffset=2;
运动模式 Pattern Movement
The computer-controlled characters move according to some predefined pattern that makes it appear as though they are performing complex, thought-out maneuvers. 计算机控制的人物按照某种预定的运动模式 移动,好像他们执行复杂的、预先想好的策 略执行。 circle、square、zigzag、curve
Follow pattern matrix
void ai_Entity::FollowPattern(void) { int i,j; int possibleRowPath[8]={0,0,0,0,0,0,0,0}; int possibleColPath[8]={0,0,0,0,0,0,0,0}; int rowOffset[8]={-1,-1,-1,0,0,1,1,1}; int colOffset[8]={-1,0,1,-1,1,-1,0,1};
控制指令数据结构 control instructions data structure
ControlData { double turnRight; //右转 double turnLeft; //左转 double stepForward; //前进 double stepBackward; //后退 }
初始化路径数组 Initialize path arrays
Void InitializePathArrays(void) { int iห้องสมุดไป่ตู้ for(i=0; i<kMaxPathLength; i++) { pathRow[i]=-1; pathCol[i]=-1; } }
Calculate line segment
标准算法 Standard Algorithm
The standard pattern movement algorithm uses lists or arrays of encoded instructions, or control instructions, that tell the computer-controlled character how to move each step through the game loop. 标准运动模式算法用预先编好的指令或控制指 令存于列表或数组,能够指导计算机控制的人 物如何在游戏循环中移动每一步。
nextCol=nextCol+stepCol; fraction=fraction+deltaRow; pathRow[currentStep]=nextRow; pathCol[currentStep]=nextCol; currentStep++; if(currentStep>=kMaxPathLength) return; } }
变量说明
turnRight, turnLeft //the number of degrees 角度 stepForward, stepBackward //the number of distance units or tiled 长度
模式初始化 Pattern initialization
Pattern[0].turnRight=0; Pattern[0].turnLeft=0; Pattern[0].stepForward=2; Pattern[0].stepBackward=0;
for(i=0;i<kMaxPathLength;i++) if((pathRow[i]==-1)&&(pathCol[i]==-1)) { currentStep=i; break; } if(deltaRow<0) stepRow=-1; else stepRow=1; if(deltaCol<0) steoCol=-1; else stepCol=1; deltaRow=abs(deltaRow*2); deltaCol=abs(deltaCol*2); pathRow[currentStep]=nextRow; pathCol[currentStep]=nextCol; currentStep++;
else { fraction=deltaCol*2-deltaRow; while(nextRow!=endRow) { if(fraction>=0) { nextCol=nextCol+stepCol; fraction=fraction-deltaRow; }
nextRow=nextRow+stepRow; fraction=fraction+deltaCol; pathRow[currentStep]=nextRow; pathCol[currentStep]=nextCol; currentStep++; if(currentStep>=kMaxPathLength) return; } } }
相关文档
最新文档