磁共振基础知识及30T磁共振1
30T磁共振诊断优势:腹部篇7页word
3.0T磁共振诊断优势:腹部篇3.0T磁共振具有极高的软组织分辨率和信噪比,多种成像方法(T1、T2、脂肪抑制、弥散、动态增强)相互补充,可以综合判断病灶内的成份和血液供应状态,从而判别病灶的良恶性,可以较多排螺旋CT动态增强反映更多的信息。
腹部是实质脏器与空腔脏器相互交叉最集中的部位,也是影像学检查中最易受到伪影干扰、检查技术最复杂的部位,其中呼吸运动、胃肠蠕动对图像质量的影响最为重要,如何减少这些因素的影响是我们努力解决的问题。
下面就一些图例具体展示一下3.0T磁共振在腹部检查中的应用。
一、腹部常用序列:1、呼吸触发脂肪抑制T2序列:优点:发现病灶较为敏感;缺点:容易受呼吸运动及胃肠蠕动的影响,对呼吸不规则的患者,图像质量较差。
可以用屏气快速FSE序列来弥补,但图像信噪比较差。
呼吸触发脂肪抑制序列:腹壁2、同相位反相位T1加权序列:依据TE回波时间的不同,水及脂肪信号相加即为同相位,水和脂肪信号分离即为反相位,用于评价病灶内是否含有脂肪成分,对评价脂肪肝、肾上腺腺瘤、髓样脂肪瘤具有极高的诊断价值。
3、冠状位快速T2加权序列:主要用于观察肝门部结果,对评价胆总管结石及占位、门静脉血栓、肝门部淋巴结肿大具有非常高的价值。
4、弥散加权(DWI0序列:弥散成像使用了强大的扩散敏感新梯度场,使水分子布朗运动所引起的相位偏移得到累加,从而引起信号强度的下降,实际上是反映组织中水分子运动的成像,在肿瘤组织中,水分子运动受限,从而表现为信号增高,是发现肿瘤性病变最为敏感的序列。
5、LAVA 动态增强扫描:需注射磁共振造影剂,3D 容积内插超快速扰相GRE 序列,无间隔容积扫描,分为动脉期、静脉期、延迟期三个时相。
动态增同相位图像:TE 2.5 反相位图像:TE 5.8 冠状位T2序列弥散成像强扫描不但可以增加病变的检出率,对于肝脏及腹部病灶的定性诊断也非常有帮助。
6、胰胆管成像(MRCP):主要分为两种方法:3D容积采集:获得多层连续的薄层图像,利用MIP进行重建,需要呼吸触发,如果患者呼吸运动不均匀,图像质量差。
MRI的基本原理和概念
磁场均匀性好;
冷头消耗;1 万/月
稳定性好.
维修,维护困难,需要
稳定的低温技术.
•按磁体的外形可分为
•开放式磁体 •封闭式磁体 •特殊外形磁体
•MR按主磁场的场强分类
–MRI图像信噪比与主磁场场强成正比
–低场: 小于0.5T –中场:0.5T-1.0T –高场: 1.0T-2.0T(1.0T、1.5T、2.0T) –超高场强:大于2.0T(3.0T、4.7T、7T)
磁共振基础知识 MRI = Magnetic Resonance Imaging
MRI = 磁-共振-成像(装置)
旧称 NMRI(核磁共振成像装置), 其中N=Nuclear(核)
MRI的历史
➢ 1946年由美国斯坦福大学的Felix Bloch和哈 佛大学的Edward Purcell发现核磁共振现象, 为此获得1952年诺贝尔奖。
梯度线圈性能的提高 磁共振成像速度加快
没有梯度磁场的进步就 没有快速、超快速成像 技术
加快信号采集速度 提高图像的SNR
梯度、梯度磁场
梯度磁场的产生
Z轴方向梯度磁场的产 生
X、Y、Z轴上梯度磁场的产生
•梯度线圈性能指标
–梯度场强 25-60mT/m –切换率 120-200mT/m.s
OPER-0.35T
高斯(gauss, G)。 Gauss (1777-1855)
德国著名数学家,于1832年首次测量了地球的磁场。
1高斯为距离5安培电流的直导线1厘米处检测到的 磁场强度
5安培
1厘米
1高斯
地球的磁场强度分布图
特斯拉(Tesla,T)
Nikola Tesla (18571943), 奥地利电器 工程师,物理学家 ,旋转磁场原理及 其应用的先驱者之 一。
核磁共振专题知识
➢ 陀螺存在自旋 ➢ 陀螺处于重力场中 ➢ 重力力矩垂直于自转轴
(角动量)方向
结果
陀螺旋进 力矩越大旋进角速度越大
核磁共振专题知识
图 14-2 陀螺旋进
T L
第17页
旋进也称进动,描述是含 有角动量物体或体系在外力矩 作用下,其角动量方向发生连 续改变现象。
核磁共振专题知识
第18页
原子核在磁场中旋进
核磁共振专题知识
图 磁共振成像原理图
第36页
1.层面选择
利用梯度磁场 依据拉莫尔方程理 论,实现选层定片
核磁共振专题知识
图 选层定片
第37页
核磁共振专题知识
层面选择
第38页
层面选择
核磁共振专题知识
第39页
2.编码 (1)相位编码 如图1
图1 磁矩旋进相位差异
图2 磁矩旋进频率差异
(2)频率编码 核磁共振专题知识 如图2
核磁共振专题知识
第42页
核磁共振专题知识
Proton
质子
氢原子核1H
Electron
电子
第43页
2. 人体各种组织含水百分比不一样
3.人体不一样正常组织和病变组织 、
核磁共振专题知识
第44页
三、怎样产生氢核密度 和 、 加权成像
1.自旋回波序列
核磁共振专题知识
图14-21 自旋回波序列
第45页
第12页
而且,Damadian前瞻性地预言了核磁共 振作为临床诊疗工具可能性。
Damadian工作直接启发了 Lauterbur 对 成像技术研究,Lauterbur在认识到这一发 觉医学价值同时,也敏锐地意识到假如不能 进行空间上定位,核磁共振在临床应用可能
30T磁共振参数要求
3.0T磁共振参数要求3.0T磁共振1台,设备需为整机原装进口并为各投标品牌厂家最新型最高端的产品。
设备需满足下列参数要求:一、磁体1、磁场强度需≥3.0T。
2、中心共振频率需≥127MHz。
3、应用类型需为全身通用型。
4、需为超导体磁场类型。
5、需具有主动屏蔽和抗外界干扰屏蔽等屏蔽方式。
6、需具有主动匀场、被动匀场、动态匀场等匀场方式。
7、需提供超导匀场、病人个性化匀场、高级高序匀场。
8、匀场通道需≥36个。
9、匀场点数≥1600个。
10、需具有3.0T不锈钢专用磁体。
11、磁体长度(不含外壳)需≥170cm。
12、磁体长度(含外壳)需≤190cm。
13、患者检查孔道内径大小需≥70cm。
14、患者检查孔道长度需≥163cm。
15、磁体需为两端开放式和对称式设计。
16、病人检查床至扫描孔道顶端的距离需≥45cm。
17、磁体重量(含液氦)需≤7.0吨。
18、磁场稳定度需≤0.1ppm/h。
19、磁场均匀度:(1)40cmDSV需≤0.27ppm。
(2)30cmDSV需≤0.08ppm。
(3)20cmDSV需≤0.03ppm。
20、液氦需零消耗。
21、5高斯磁力线轴向范围需≤5.2m,5高斯磁力线径向范围需≤2.8m。
22、1高斯磁力线轴向范围需≤7.8m, 1高斯磁力线径向范围需≤4.9m。
二、梯度系统1、梯度线圈需具有中空内冷式冷却方式。
2、最大单轴梯度场强:(1)若为环绕式梯度需≥35mT/m(非有效值)。
(2)若为非环绕式梯度需≥60mT/m(非有效值)。
3、最大单轴梯度切换率:(1)若为环绕式矩阵梯度需≥150mT/m/s(非有效值)。
(2)若为非环绕式矩阵梯度需≥200mT/m/s(非有效值)。
4、梯度功能单元数量需≥46个。
三、扫描床与环境调节系统1、扫描床最低高度需≤53cm。
2、垂直运动时扫描床最大承受重量需≥250kg。
3、扫描床水平运动最大速度需≥250mm/s。
4、需具备智能触控病人定位系统。
磁共振基础知识教学教材
多核磁共振(Multi-nuclear MRI):利用不同原子核的磁共 振特性,可以提供更多关于组织 成分的信息。例如,利用氢、碳 和磷的磁共振信号,可以提供关 于脂肪、蛋白质和水含量的信息。
功能和代谢成像:随着磁共振技 术的不断发展,未来将更加关注 功能和代谢成像。这包括利用磁 共振波谱(MRS)技术测量组织 代谢物,以及利用fMRI技术研究 大脑功能活动。
MRI图像的解读技巧
熟悉正常解剖结构
掌握人体各部位的正常 MRI表现,以便更好地识 别异常病变。
观察病变形态和信号
注意观察病变的形态、大 小、边缘和信号特点,与 正常结构进行对比。
结合临床病史
综合患者的临床病史、症 状和体征,对MRI图像进 行综合分析和诊断。
动态观察
对于需要观察病变演变过 程的病例,进行动态MRI 检查,以便更好地评估病 情。
感谢观看
常见病变的MRI表现
01
02
03
脑部病变
脑梗塞、脑肿瘤、脑炎等 疾病的MRI图像,分析其 病变形态、信号特点和扩 散方式。
脊柱病变
椎间盘突出、椎管狭窄、 脊柱骨折等疾病的MRI图 像,描述其病变部位、程 度和对脊髓的影响。
骨关节病变
骨关节炎、骨折、骨髓炎 等疾病的MRI图像,解释 其病变信号、骨质破坏和 关节积液情况。
05
磁共振成像的伪影与校正
伪影的产生与分类
伪影的产生
磁共振成像过程中,由于多种因素影响,如磁场 不均匀、射频脉冲激发不充分等,会导致图像质 量下降,形成伪影。
伪影的分类
根据产生原因和表现形式,伪影可分为多种类型, 如运动伪影、截断伪影、化学位移伪影等。
伪影的校正方法
1 2
硬件校正
磁共振基础知识及3.0T磁共振1讲课稿
西门子0.2T磁共振
西门子1.5T磁共振
西门子3.0T磁共振
二、磁共振成像物理学原理
• 1.磁共振成像的物质基础: • 人体由很多分子组成,分子由原子组成; • 所有原子的核心都是原子核;
–带正电荷和中性粒子的集合体; –占原子质量的绝大部分;
• 质子带正电荷, 它们象地球一样 在不停地绕轴旋 转,并有自身的 磁场。
为T1WI • 8.磁共振成像生理门控及导航回波技术:心电门控、呼吸门控,用于减
少呼吸运动伪影 • 9.组织弛豫时间的测量:
图1:压脂序列显示前列腺占位
图2:压脂序列显示肝内占位
图3:化学位移同反相位成像
图4:Dixon技术水脂分离显示臂丛神经及淋巴结
图5:空间预饱和技术显示静脉畸形
六、磁共振血管成像技术
前列腺癌波普分析图
十二、磁共振成像对比剂
• 1.阳性对比剂:钆喷酸葡胺、钆贝普安 • 2.阴性对比剂:
脑膜瘤平扫及增强
脑转移瘤平扫及增强
十三、MRI检查的注意事项及禁忌症
• (一)注意事项: • 1.病人进入检查室以前,必须取出身上的一
切金属物品,如手表、钥匙、钢笔、硬币、 眼镜以及各种磁卡等。 • 2.对幼儿、烦躁不安和忧郁恐惧症病人给与 适量镇静剂。 • 3.腹盆部检查最好空腹、憋尿。
• 1.时间飞跃法MRA • 2.相位对比法MRA • 3.对比增强MRA • 4.其他MRA方法 • 除对比增强MRA需要造影剂外,其他方
法均不需要造影剂,无创、无辐射检查血 管情况
动脉瘤及血管狭窄
• 血管狭窄
正常颈部MRA
主动脉夹层MRA
腹部MRA
下肢MRA
全身血管成像
七、MR水成像及排泄性腔道MR成 像技术
MRI基础知识题库单选题100道及答案解析
MRI基础知识题库单选题100道及答案解析1. MRI 利用的是以下哪种物理现象?()A. 电离辐射B. 电磁感应C. 光电效应D. 康普顿效应答案:B解析:MRI 是利用人体内氢质子在磁场中受到射频脉冲激励而发生磁共振现象,产生信号,通过计算机处理成像,其利用的是电磁感应原理。
2. 磁共振成像中,T1 加权像重点突出的是组织的()A. 横向弛豫差别B. 纵向弛豫差别C. 质子密度差别D. 进动频率差别答案:B解析:T1 加权像主要反映的是组织纵向弛豫的差别。
3. 下列哪种元素不能用于MRI 成像?()A. 氢B. 碳C. 氮D. 氧答案:D解析:氢质子是MRI 成像的主要物质基础,碳和氮在特定情况下也可用于成像,而氧不用于MRI 成像。
4. 在MRI 中,图像的对比度主要取决于()A. 组织的T1 值B. 组织的T2 值C. 组织的质子密度D. 以上都是答案:D解析:组织的T1 值、T2 值和质子密度都会影响MRI 图像的对比度。
5. 以下哪种序列对出血最敏感?()A. T1WIB. T2WIC. 质子密度加权像D. 磁敏感加权成像(SWI)答案:D解析:SWI 对出血尤其是微出血非常敏感。
6. 下列哪种情况会导致T1 值缩短?()A. 组织含水量增加B. 磁场强度增加C. 大分子蛋白含量增加D. 顺磁性物质存在答案:C解析:大分子蛋白含量增加会使T1 值缩短。
7. 关于T2 加权像的描述,错误的是()A. 长TR、长TEB. 突出组织的T2 差别C. 对水肿敏感D. 对脂肪信号高答案:D解析:T2 加权像对脂肪信号不高。
8. 磁共振成像中,空间定位依靠的是()A. 梯度磁场B. 主磁场C. 射频脉冲D. 接收线圈答案:A解析:梯度磁场用于空间定位。
9. 下列哪种组织在T1 加权像上信号最高?()A. 脑脊液B. 脑灰质C. 脂肪D. 肌肉答案:C解析:脂肪在T1 加权像上信号最高。
10. 以下哪种技术可以减少运动伪影?()A. 快速自旋回波B. 梯度回波C. 呼吸门控D. 脂肪抑制答案:C解析:呼吸门控技术可以减少因呼吸运动导致的伪影。
头颅磁共振MRI诊断入门知识ppt课件
可编辑课件PPT
17
正常磁共振图像的特征
脑组织结构完整 脑组织界面清晰 中线及中线旁结构居中 脑室系统的形态、大小及位置完好 脑沟、脑池的形态、大小无改变 各扫描序列中脑内未见异常信号 正常血管流空现象存在 颅骨结构无破坏与增生 脑内无异常强化
L-`0`位线左
OAx-轴位
A-`0`位线前
OSag-矢位
P-`0`位线后
OCor-冠位
可编辑课件PPT
12
磁共振图像上的标记的意义
可编辑课件PPT
13
常见磁共振成像扫描序列
SE(FSE)-自旋回波(快速自旋回波) T1WI T2WI
GRE-梯度回波 T2*WI
IR-反转回波(包括T2FLAIR和T1FLAIR) 弥散加权(DWI) 脂肪抑制(T1脂肪抑制、T2脂肪抑制) MT-磁化传递 TOF-时空飞跃血管成像
19
正常轴位 T1WI
可编辑课件PPT
20
正常轴位 T2WI
可编辑课件PPT
21
如何区分T1、T2
n 根据水的信号 n 水在T1上是低信号、T2上为高信号
可编辑课件PPT
22
可编辑课件PPT
23
液体衰减反转恢复序列(Flair)
该序列是近年发展起来的扫描序列,分为T1Flair和 T2Flair两种:
T1Flair主要有显著的灰白质对比度,图像的组织界 面清晰。
T2Flai是T2WI序列重要的补充,主要是通过编制扫 描序列中不同的脉冲方式,达到抑制自由水,突出 显示结合水的目的
可编辑课件PPT
磁共振基础知识
脉冲序列的优化
为了提高图像质量和分辨率,需要不断优化脉冲序列。
例如,通过调整射频脉冲的幅度、频率和持续时间,可以更好地控制原子核的共振 行为,从而提高图像的对比度和分辨率。
同时,优化磁场脉冲的强度和持续时间,可以更好地控制原子核的排列方向和程度 ,从而更好地产生可检测的磁共振信号。
04
CATALOGUE
、环境科学等领域。
02
CATALOGUE
磁共振设备
磁共振扫描仪
磁体
产生静磁场,使人体组织处于 固定磁化状态。
梯度系统
产生磁场梯度,用于定位和选 择特定的组织部位。
核心组成
磁体、射频系统、梯度系统和 计算机系统。
射频系统
发出电磁波,打破组织内的氢 原子核的磁化状态,并在特定 射频脉冲下共振。
计算机系统
梯度磁场的安全
梯度磁场是实现图像定位和空间编码的关键部分,但高梯度强度可能对人体造成影响,需要确保梯度磁场在安全 范围内。
避免梯度切换过快
过快的梯度切换可能导致患者不适或损伤,需要控制梯度切换的速度和幅度。
THANKS
感谢观看
磁共振成像技术广泛应用于医 学诊断,特别是对于脑部、关 节和软组织等部位的病变诊断
。
材料研究
在材料科学领域,磁共振技术 用于研究材料的微观结构和性 能,如聚合物、陶瓷和金属等 。
化学分析
核磁共振波谱法可以用于分析 化学样品中的分子结构和化学 反应过程。
其他领域
除了上述领域,磁共振成像技 术还应用于生物学、地球科学
采集和分析信号,并生成图像 。
磁体系统
类型
分为高磁场和低磁场两种类型。高磁 场通常具有更高的敏感性和分辨率, 但成本也更高。低磁场适用于小范围 的检查,如关节检查等。
核磁共振基础知识
◆p与n同为偶数,I = 0。如 12C, 16O, 32S等。
◆p + n =奇数,I =半整数(1/2, 3/2等)。
如 1H, 13C, 15N, 17O, 31P等。
◆p与n同为奇数,I =整数。如2H, 6Li等。
◆原子核的自旋状态:2I+1
NMR中电磁辐射的频率为兆赫数量级,属于射频 区,但是射频辐射只有置于强磁场F的原子核才 会发生能级间的跃迁,即发生能级裂分。当吸收 的辐射能量与核能级差相等时,就发生能级跃迁, 从而产生核磁共振信号。
核磁共振谱常按测定的核分类
◆ 测定氢核的称为氢谱(1H-NMR) ◆ 测定碳-13的称为碳谱(13C-NMR)
1H—核磁共振波谱(氢谱)
1H—核磁共振(1H—NMR)也称为质子核磁共 振,是研究化合物中1H原子核(即质子的核磁共 振。可提供化合物分子中氢原子所处的不同化 学环境和它们之间相互关联的信息。依据这些 信息可确定分子的组成、连接方式及其空间结 构。
Chapter2 基本原理
原子核的磁矩和自旋角动量
两种进动取向不同的氢核之间的能级
差:E= H0 (磁矩)
共振条件
(1) 核有自旋(磁性核) (2)外磁场,能级裂分;
(3)照射频率与外磁场的比值0 / H0 = / (2 )
讨论:
共振条件: 0 = H0 / (2 ) (1)对于同一种核 ,磁旋比 为定值, H0变,射频频率
H (1 ) 2 0
1H核所处的化学环境不同, 不同,也不同。
化学位移
特定质子的吸收位置与标准质子(TMS)的吸收 位置之差,称为该质子的化学位移,用(ppm)表 示。 有机化学中多用表示,=10-
磁共振基本知识讲课文档
25、屏状核 26、顶盖
27、中央沟
28、内囊后肢
29、背内侧核
30 、尾状核头部 31、侧脑室额角
32、穹窿 33、透明隔
34、扣带回 35大脑前动脉胼胝体缘 支
36、上矢状窦
第25页,共147页。
Zongmiao.2004-11-20
断层分布图七
尾状核
丘脑
颞 上 回
角回 枕回
第26页,共147页。
断层示意图七
32 4
5 6 7 8 9
10 11
13 14 15 16
第24页,共147页。
17 18
34 33 32
31 30
29 28
25
24 23
22 20
Zongmiao.2004-11-20
断层示意图七
• 1、大脑前动脉胼周分支 • 2、胼胝体额钳
• 3、丘脑前核 • 4、内囊前肢 • 5、内囊膝部
• 7、中央后回
• 8、顶枕沟 • 9、楔前回
• 10、顶下小叶
• 11、中央后沟 • 12、中央后回 • 13、中央沟 • 14、中央前回
• 15、中央前沟 • 16、额上沟
• 17、额上回 • 18、上矢状窦
第17页,共147页。
Zongmiao.2004-11-20
断层示意图五
1 2
4
22 21 20 19
运动的检测不敏感。
第40页,共147页。
• 因此,b值的选择非常重要, 用小b值进行DWI,在 一定程度上反映了局部组织的微循环灌注,但所测得 的ADC值稳定性较差,且易受其他生理活动的影响,不能 有效反映水分子的弥散运动,用大b值进行DWI,所测得 的ADC值受局部组织的微循环灌注影响较小,能较好反映 水分子的弥散运动,因此,大b值进行DWI称高弥散加权 成像,用小b值进行DWI称低弥散加权成像。b=0时产 生无弥散加权的t2wi。
体部30T与15T磁共振比较
• 在高场强下提高空间分辨力能够增加SNR,通过给定的FOV下增加矩 阵直径也即更小的象素与层厚来实现。在横断面上较高的空间分辨力 能提高病变的检出率(图2)。质量高的重组图像也有助于病变性质 的反映(图3)。SNR的提高与缩短采集时间之间做一个权衡,缩短 时间降低呼吸造成的运动伪影,增加患者流通量。
• 随着高场强磁共振的发展,在信噪比、对比噪声比、 空间-时间分辨率以及光谱分辨率等方面都有了较大 的改善和提高,但是从1.5T MR到3.0T MR的转换也不 是一帆风顺的。相对于低场强下的体部成像而言, 3.0T体部成像改变了弛豫时间,增加和产生新的伪影, 化学位移的影响加强,能量沉积明显增加,所有这些 在应用3.0T MR时是必须要考虑到的。3.0T MR的静磁 场与射频磁场的多相性使得在线圈与硬件设计以及新 序列的制订都必须有所变化。应用减少体部热量沉积 的技术限定了特异性吸收率(SAR值),而且3.0T MR系统的安装与维护时要特别注意安全,以防伤害。 这些都是3.0T MR在临床实践中面临的机遇与挑战。
• 优点
• SNR是描述相对于背景噪声下的有用信号的数量的,据此产生MR图 像。SNR与场强呈线性变化。在3.0T下,静磁场内排列的质子数是 1.5T下的2倍,由此产生的信号强度也应该是2倍的关系(图1),但 是由于一些因素的影响,包括弛豫时间的变化、体部的总热量等,实 际的SNR的增益率为1.5T的1.7-1.8倍。在特殊检查中,高SNR通过 两种不同的方式获得:增加空间分辨力或者间接缩短采集时间。
体部30T与15T磁共振比较资料
• 优点 • SNR是描述相对于背景噪声下的有用信号的数量的,据此产生MR图 像。SNR与场强呈线性变化。在3.0T下,静磁场内排列的质子数是 1.5T下的2倍,由此产生的信号强度也应该是2倍的关系(图1),但 是由于一些因素的影响,包括弛豫时间的变化、体部的总热量等,实 际的SNR的增益率为1.5T的1.7-1.8倍。在特殊检查中,高SNR通过 两种不同的方式获得:增加空间分辨力或者间接缩短采集时间。 • 在高场强下提高空间分辨力能够增加SNR,通过给定的FOV下增加矩 阵直径也即更小的象素与层厚来实现。在横断面上较高的空间分辨力 能提高病变的检出率(图2)。质量高的重组图像也有助于病变性质 的反映(图3)。SNR的提高与缩短采集时间之间做一个权衡,缩短 时间降低呼吸造成的运动伪影,增加患者流通量。
• 图3. 1.5T(a,b)与3.0T(c,d)下横断面图像(a,c) 与冠状重组图像(b,d)对照,3.0T下显示右侧肾上腺 肿块边缘比1.5T的清晰(ac箭,bd箭头)。因为在3.0T 下高的SNR,能够减小体素大小,在保证SNR的情况下 增加空间分辨力。在b图显示病变位于肾上腺外,使整个 肾上腺向一侧移位。在d图中,清晰显示病变源于肾上腺 的中间支,将外周支向外扩张。病变切除后病理分析为肾 上腺嗜铬细胞瘤。1.5T影像参数:4.0/1.9;矩阵 256×192;FOV:31cm;重组层厚4mm(a)与2mm (b);3.0T影像参数:5.4/12.5;矩阵320×224;FOV: 35cm;重组层厚3mm(c)与1.5mm(d)。
• 图6. • 3.0T屏气下MRS。(a)单次激发快速自旋回波(SSFSE) 图像显示所选MRS分析的体素置于右侧肾上腺,源于肾细 胞癌转移瘤。(b)所选体素的波谱容易从背景噪声中清 晰分出代谢产物峰。三甲胺(TMA)或胆碱峰在3.2ppm, 此征象与恶性变相关。在3.0T下高SNR与波谱高离散度很 清晰的鉴别诊断和离散代谢物。另外,高SNR使得采集时 间缩短,在一个呼吸屏气期实行波谱扫描,降低呼吸运动 的影响。
磁共振基础知识课件
肌肉和肌腱
磁共振成像能够观察肌肉和肌腱的 形态和信号变化,对肌肉和肌腱的 损伤进行诊断。
关节病变
磁共振成像能够检测关节的炎症、 退行性病变以及关节腔内病变,为 关节疾病的诊断和治疗提供重要信息。
04
磁共振成像的优缺点
优点
01
02
03
04
无电离辐射
磁共振成像技术不使用X射线, 因此没有电离辐射,对患者的
肿瘤成像
肿瘤检测
磁共振成像具有高软组织 分辨率,能够检测出早期 肿瘤病变,提高肿瘤的检 出率。
肿瘤分期
磁共振成像可以用于肿瘤 分期,了解肿瘤的大小、 侵犯范围以及是否有转移。
肿瘤疗效评估
在治疗过程中,磁共振成 像可以评估肿瘤对治疗的 反应,为调整治疗方案提 供依据。
骨骼肌肉系统成像
骨骼结构
磁共振成像能够清晰显示骨骼的 结构,如骨皮质、骨髓腔等。
健康风险较小。
高软组织分辨率
磁共振能够提供高分辨率的软 组织图像,有助于诊断肿瘤、
炎症和其他软组织病变。
多参数成像
磁共振可以获取多种参数的图 像,如T1、T2和质子密度等,
有助于疾病的鉴别诊断。
无骨伪影干扰
由于磁共振不受骨骼的影响, 因此能够清晰地显示脑部和软
组织结构。
缺点
价格昂贵
磁共振成像设备成本高,导致 检查费用相对较高。
详细描述
随着科技的进步,磁共振成像系统的磁场强度不断提高,高场强磁共振技术应运而生。 与常规磁共振相比,高场强磁共振具有更高的分辨率和更准确的诊断信息,能够更好地 揭示组织结构和病变特征。这使得医生能够更准确地诊断病情,为患者提供更好的治疗
方案。
快速成像技 术
总结词
MRI基础知识
纵向弛豫一
• 纵向弛豫是一个从零状态恢复到最大值的过程。 • 磁矩是有空间方向性的,当人体进入B0环境后, 将形成一个与方向一致的净磁矩,我们称其为 M0 。
纵向弛豫二
• B0方向是一条空间的中心轴线,我们定 义它为纵轴。在外加的RF(B1)作用下, B0将发生偏离纵轴的改变,此时B0方向 上的磁矩将减小,当B1终止后,纵轴 ( B0轴)上的分磁矩又逐渐恢复,直至 恢复到RF作用前的状态,这个过程就叫 纵向驰豫。所需时间就是纵向驰豫时间。
进动频率
• 进动频率也叫Lamor(拉莫)频率,原子核在 1.0Tesla的磁场中的进动频率称为该原子的旋 磁比(γ ),为一常值。 • 氢原子的旋磁比为42.58MHz,B0等于0.5Tesla 时,氢原子进动频率为21.29MHz, B0等于 1.5Tesla时,氢原子进动频率为63.87MHz。 • Lamor公式: f=γ .B0/2π
核磁弛豫一
• 原子核在外加的RF(B1)作用下产生共振 后,吸收了能量,磁矩旋进的角度变大, 偏离B0 轴的角度加大了,在B1消失后将 迅速恢复原状。 • 原子核发生磁共振而达到稳定的高能态 后,从外加的B1消失开始,到恢复至发 生磁共振前的磁矩状态为止,整个变化 过程就叫弛豫过程。
核磁弛豫二
• 弛豫过程是一个能量转变的过程,需要 一定的时间,磁矩的能量状态随时间延 长而改变,磁矩的整个恢复过程是较复 杂的,但却是磁共振成像的关键部分。 • 弛豫分为纵向弛豫和横向弛豫。
横向驰豫二
• 我们将横向磁矩减少至最大时的37%时 所需时间为一个单位T2时间。也叫T2值。 横向驰豫与纵向驰豫是同时发生的。
T2驰豫曲线
人体正常组织的MR信号特点
组织
自由水
磁共振成像(MRI)的基本原理PPT演示课件
同济医科大学附属协和医院MR室 刘定西
1
磁共振现象的发现及发展
1924年pauli在进行电在子波谱 试验中发现了许多原子核象带电的 自旋粒子一样具有角动量和磁动量。
1946年美国物理学家Block和 Purcell分别测出了在均匀物质中磁 共振的能量吸收,进一步证实了核 自旋的存在,并为此获得了1952年 诺贝尔物理学奖。
• 影响M的因素:静磁场强度、温度、自 旋密度(单位体积的自旋数)。
• 纵向磁化:平行于磁场方向的磁化矢量 • 横向磁化:垂直于磁场方向的磁化矢量
30
31
磁共振成像中的坐标系统
Z
Y X
32
第四节 核磁共振现象
• 单摆共振 • 核磁共振
33
单摆共振的条件
• 系统与激发源的固有频率相同 • 系统吸收能量内能增加
10
3
11
净自旋
• 原子核的运动:自旋 • 净自旋:具有自旋磁动量的自旋。 • 零自旋/非零自旋:净自旋为零/净自旋不
为零 • 净自旋产生的条件:奇数质子和/或奇数中
子 • 净自旋的意义:是磁共振信号来源的基
础。 • 自旋系统:磁场中所有自旋的集合。
12
1H的原子核结构及特性
1H原子核仅有一个质子,无中子。 其磁化敏感度高,在人体的自然 丰 富度很高,是很好的磁共振靶核。
21
M1
M2
22
Z
M0 B1 X
Y
23
24
自旋在磁场中的运动
• 进动(旋进):自旋轴绕磁场方 向的圆周运动。遵循 lamor 定理, w=rB0
• 影响进动频率的因素:磁场强度。 • 进动的方向:上旋态与下旋态。
MRI基本知识
MRI基本原理
核磁共振概念:利用人体中的氢原子核(质子)在磁场中受到射频(RF)脉冲的激励而发生核磁共振现象,产生磁共振信号,进过信号采集和计算机处理而获得重建断层图像的成像技术。
T1WI:以T1参数构成的图像,显示解剖结构好
T2WI:以T2参数构成的图像,显示病灶好
FLAIR系列:水抑制成像,在脑、脊髓MRI中常用,抑制T1WI 中脑脊液信号,使临近脑脊液、具有高信号(长T2)的病变得以显示
STIR系列:脂肪抑制成像,可抑制T1WI上脂肪的高信号(短T1)
长T1(低信号),短T1(高信号)
长T2(高信号),短T2(低信号)
几种正常组织在T1WI、T2WI上的信号强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
髙场磁共振
四、磁共振成像快速采集技术
• 快速采集是当今磁共振技术发展的主流, 合理利用快速采集技术不但可以缩短MRI的
检查时间,还可大大提高检查质量。起决 定性作用的是软、硬件的发展与提高。
•
髙场磁共振
五、临床磁共振成像常用技术
• 1.脂肪抑制技术:图1、2 • 2.化学位移成像及Dixon技术:图3、4 • 3.空间饱和及空间标记技术:图5 • 4.磁化传递技术:用于增加TOR MRA • 5.倾斜优化非饱和激励技术:用于减少血流饱和 • 6.流动补偿技术:用于减少血液、脑脊液流动伪影 • 7.磁共振增强检查技术:缩短局部组织T1弛豫时间,所以增强图像均
图2:DWI在体部肿瘤诊断中的价值
图3:全身类PET
图4:DTI图像显示脑白质纤维素的走行方向
九、磁共振灌注加权成像技术
• 脑部疾病的灌注成像临床应用 • 1.脑卒中 • 2.脑肿瘤 • 3.脑功能的研究 • 4.其他应用
DWI+PWI显示缺血半暗带
PWI显示急性脑缺血
十、脑功能成像技术及磁敏感加权 成像技术
为T1WI • 8.磁共振成像生理门控及导航回波技术:心电门控、呼吸门控,用于减
少呼吸运动伪影 • 9.组织弛豫时间的测量:
图1:压脂序列显示前列腺占位
图2:压脂序列显示肝内占位
图3:化学位移同反相位成像
图4:Dixon技术水脂分离显示臂丛神经及淋巴结
图5:空间预饱和技术显示静脉畸形
六、磁共振血管成像技术
• 1.fMRI的临床应用研究 • 2.SWI成像技术及其临床应用
fMRI
fMRI-- 躯体运动,感觉,视觉,语言,针灸镇痛
SWI显示微出血
十一、磁共振波普技术
• 1.MRS在神经系统的临床应用 • 2.MRS在前列腺的临床应用研究 • 3.MRS在乳腺的临床应用研究
脑胶质瘤波普分析图
二、磁共振成像物理学原理
• 3.磁共振成像 • 核即原子核,磁有两种含义:
–①外加静磁场B0; –②由射频脉冲产生的激励磁场B1。
• B0与B1有以下方面的不同:首先,B0的场强大约是 B1的10000倍;其次,B0是恒定的,方向与磁体扫 描膛平行,B1磁场迅速转动,方向总是与B0垂直。
• 用射频线圈做天线接收器,将释放出来的 能量转化为信号。
一、磁共振成像仪硬件基本知识
• 磁共振设备的组成: • 1.主磁体:磁共振的分类的依据: • ①永磁型磁体(低场磁共振):<0.5T • ②电磁型磁体及超导型磁体(中高场磁共振):
1.5T、3.0T • 2.梯度系统 • 3.射频系统 • 4.计算机系统及其他辅助设备
西门子0.2T磁共振
西门子1.5T磁共振
西门子3.0T磁共振
பைடு நூலகம்
二、磁共振成像物理学原理
• 1.磁共振成像的物质基础: • 人体由很多分子组成,分子由原子组成; • 所有原子的核心都是原子核;
–带正电荷和中性粒子的集合体; –占原子质量的绝大部分;
• 质子带正电荷, 它们象地球一样 在不停地绕轴旋 转,并有自身的 磁场。
二、磁共振成像物理学原理
• 2.磁共振现象
• 共振是一种常见的现象。指南针是我们最熟悉 的磁体,地球是一个磁场。
• 指南针在地球表面作定向排列,即在静止状态 下指北。
• 如果我们用手指轻击指南针,使之来回摆动, 直到指南针从我们手指上得到的能量全部放出 后,又回到原来的位置,指北。这就是共振现 象。针摆动的频率为共振頻率。
前列腺癌波普分析图
十二、磁共振成像对比剂
• 1.阳性对比剂:钆喷酸葡胺、钆贝普安 • 2.阴性对比剂:
脑膜瘤平扫及增强
脑转移瘤平扫及增强
十三、MRI检查的注意事项及禁忌症
• (一)注意事项: • 1.病人进入检查室以前,必须取出身上的一
切金属物品,如手表、钥匙、钢笔、硬币、 眼镜以及各种磁卡等。 • 2.对幼儿、烦躁不安和忧郁恐惧症病人给与 适量镇静剂。 • 3.腹盆部检查最好空腹、憋尿。
• 1.MR胰胆管成像 • 2.MR尿路成像 • 3.MR内耳水成像 • 4.其他水成像技术
八、DWI及DTI
• 1.DWI在神经系统的应用:图1 • 2.DWI在体部的临床应用:图2 • 3.全身DWI技术(类PET):图3 • 4.扩散张量成像技术(DTI):图4
图1:DWI在早期脑梗塞中的应用
郑州大学附属
郑州中心医院
磁共振室 张新明
磁共振基础知识及相关临床应用
• 一、磁共振成像仪硬件基本知识 • 二、磁共振成像物理学原理 • 三、磁共振成像脉冲序列及临床应用 • 四、磁共振成像快速采集技术 • 五、临床磁共振成像常用技术 • 六、磁共振血管成像技术 • 七、MR水成像及排泄性腔道MR成像技术 • 八、DWI及DTI • 九、磁共振灌注加权成像技术 • 十、脑功能成像技术及磁敏感加权成像技术 • 十一、磁共振波普技术 • 十二、磁共振成像对比剂 • 十三、MRI检查的注意事项及禁忌症 • 十四、磁共振在临床各系统中的应用
• 与X线和CT成像的原理不同,MRI没有X线辐 射,而主要利用质子密度与质子的弛豫时 间(T1与T2)的差异成像,尤其是弛豫时间 更为重要。
• 因为质子在人体中的差异仅10%,但弛豫 时间可相差百分之数百。
三、磁共振成像脉冲序列及临床应 用
• 磁共振成像是利用脉冲序列进行的,充分 理解各种脉冲序列的基本构建和特点是保 证MR图像技术质量和提高诊断准确率的前
• 1.时间飞跃法MRA • 2.相位对比法MRA • 3.对比增强MRA • 4.其他MRA方法 • 除对比增强MRA需要造影剂外,其他方
法均不需要造影剂,无创、无辐射检查血 管情况
动脉瘤及血管狭窄
• 血管狭窄
正常颈部MRA
主动脉夹层MRA
腹部MRA
下肢MRA
全身血管成像
七、MR水成像及排泄性腔道MR成 像技术
• 在进行人体磁共振成像时,信号的强度取 决于质于的数量,也即质子的密度。
• 脂肪、肌肉、血液以及骨胳中质子含量的 不同,决定磁共振图像中各种组织信号的 强弱和对比,这种图像即称为质于密度像。
• 除了组织中质于含量的不同对成像起作用 以外,还有其他的组织特性对磁共振图像 的信号有更为重要的影响,这就是组织磁 化的弛豫时间。