数学第一次月考测试卷
2023年部编人教版四年级数学(上册)第一次月考综合能力测试卷及答案
2023年部编人教版四年级数学(上册)第一次月考综合能力测试卷及答案(时间:60分钟分数:100分)班级:姓名:分数:一、填空题。
(每题2分,共20分)1、一瓶洗手液有0.25L,用去0.08L后,剩下的洗手液有()L。
2、站在不同位置观察长方体,最多能看到()个面。
3、小明一个星期看完一本书,平均每天看了这本书的();5天看了().4、在括号里填上“>”“<”或“=”。
450×5()40×55 49000()5万 40千万()4亿5、一个两位小数“四舍”后的近似数是2.5,这个小数最大是(),最小是()。
6、两个因数的积是8.45,如果两个因数同时扩大到原来的10倍,则积是().7、用字母表示乘法分配律是().8、12000000平方米=()公顷=()平方千米.9、□28÷7,要使商是三位数,□中最小填(),要使商是两位数,□中最大填().10、一个两位小数四舍五入后约是9.5,这个两位小数最大是(),最小是().二、判断题(对的打“√”,错的打“×”。
每题2分,共10分)1、两个锐角的和一定大于直角.()2、整数加减法的交换律、结合律可以用在小数加减法计算中,使计算更加简便。
()3、100张纸大约厚1厘米,照这样计算,100000张这样的纸大约厚100米。
()4、三位数乘两位数,积一定是五位数。
()5、7.9和7.90的大小相等,计数单位不同.()三、选择题。
(每题1分,共5分)1、下面说法错误的是()A.0.8和0.80大小意义都相同 B.7.4吨>7吨4千克C.3个是0.003 D.2.56保留一位小数是2.6 2、大于0.2小于0.3的两位小数有( )个.A.9 B.10 C.无数个3、小青在计算小数减法时,错把减数20.2看成了2.02,结果得到的差是32.6,正确的差是()。
A.14.42 B.18.18 C.34.624、用3、4、8、0四个数字组成一个最小的小数是().A.3.408 B.0.843 C.0.348 D.0.4385、两位小数加两位小数的结果不可能是()小数。
2023-2024学年八年级数学上学期第一次月考【北师大版】(附解析)
2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .52.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2 B .﹣2与√−83 C .﹣2与−12 D .2与|﹣2|3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 24.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0 B .x ≥﹣1 C .x <﹣1 D .x >﹣1且x ≠05.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .256.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C 到旗杆底部B 的距离为5米,则旗杆的高度为( )米.A.5B.12C.13D.177.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:58.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√139.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤1610.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为,面积为.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.18.计算:(1)2√3(√12−√75+13√108)(2)(√a3b−√ab3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法;(填“正确”或“错误”)(2)已知△ABC的其中两边长分别为1,√7,若△ABC为“类勾股三角形”,则另一边长为;(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为x,y,z(x,y为直角边长且x<y,z为斜边长),用只含有x的式子表示其周长和面积.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .5 【答案】D【分析】直接利用算术平方根的定义得出答案.【解答】解:25的算术平方根是:5.故选:D .【点评】此题主要考查了算术平方根,正确把握定义是解题关键.2.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2B .﹣2与√−83C .﹣2与−12D .2与|﹣2| 【答案】A【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A 、√(−2)2=2,﹣2与√(−2)2是互为相反数,故本选项正确; B 、√−83=−2,﹣2与√−83相等,不是互为相反数,故本选项错误;C 、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D 、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A .【点评】本题考查了实数的性质,对各项准确计算是解题的关键.3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 2 【答案】C【分析】A 选项的被开方数中含有分母;B 、D 选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【解答】解:因为:A 、√0.2b =√5b 5; B 、√12a −12b =2√3a −3b ;D 、√5ab 2=√5a |b |;所以这三项都可化简,不是最简二次根式.故选:C .【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0B .x ≥﹣1C .x <﹣1D .x >﹣1且x ≠0【答案】A【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意,得{x +1≥0x ≠0, 解得:x ≥﹣1且x ≠0.故选:A .【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后,应排除在取值范围内使分母为0的x 的值.5.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .25【答案】C【分析】先根据勾股定理求出AB的长,再由正方形的面积公式即可得出结论.【解答】解:∵∠C=90°,AC=3,BC=2,∴AB=√AC2+BC2=√32+22=√13,∴正方形的面积=(√13)2=13.故选:C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.6.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,则旗杆的高度为()米.A.5B.12C.13D.17【答案】B【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【解答】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12.答:旗杆的高度为12米.故选:B.【点评】此题考查了勾股定理的应用,熟知勾股定理是解题关键.7.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【答案】C【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√13【答案】C【分析】先估算√13的大小,再估算9−√13的大小,进而确定a、b的值,最后代入计算即可.【解答】解:∵3<√13<4,∴﹣4<−√13<−3,∴5<9−√13<6,又∵9−√13的整数部分为a,小数部分为b,∴a=5,b=9−√13−5=4−√13,∴2a+b=10+(4−√13)=14−√13,故选:C.【点评】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.9.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤16【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB=√AD2+BD2=17,∴此时h=24﹣17=7,所以h的取值范围是7≤h≤16.故选:D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.10.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个【答案】A【分析】利用面积法证明勾股定理即可解决问题.【解答】解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×12ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×12ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=12(a+b)(a+b)=2×12×ab+12c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b−b−a2)(a+b−a2)=12ab+12c⋅12c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.【点评】本题考查了勾股定理的证明、正方形的性质、直角三角形面积的计算;熟练掌握正方形的性质,运用面积法得出等式是解决问题的关键.二.填空题(共6小题)11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=1.【答案】见试题解答内容【分析】先把√8化为最简二次根式2√2,再根据同类二次根式得到m+1=2,然后解方程即可.【解答】解:∵√8=2√2,∴m+1=2,∴m=1.故答案为1.【点评】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为2√3cm,面积为√5cm2.【答案】见试题解答内容【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长=√(√2)2+(√10)2=2√3cm;直角三角形的面积=12×√2×√10=√5cm2.故填2√3cm,√5cm2.【点评】此题主要考查勾股定理及三角形的面积.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈249.3.【答案】249.3.【分析】根据“被开方数的小数点向右或向左移动2位,它们的算术平方根的小数点就相应地向右或向左移动1位”解答即可.【解答】解:∵被开方数62130可由6.213的小数点向右移动4位得到,∴√62130可由√6.123的算术平方根2.493的小数点向右移动2位得到,即√62130≈249.3.故答案为:249.3.【点评】本题考查算术平方根的规律,熟悉被开方数小数点移动与其算术平方根小数点移动的规律是解题的关键.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=4√2.【答案】见试题解答内容【分析】根据二次根式的运算法则即可求出答案.【解答】解:∵a=3+2√2,b=3﹣2√2,∴ab=9﹣8=1,a﹣b=4√2,∴原式=ab(a﹣b)=4√2,故答案为:4√2【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【答案】见试题解答内容【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=√5,OC=√6,OD=√7∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为600√3米.【答案】见试题解答内容【分析】过点C作CO⊥AB,垂足为O,由图可看出,三角形OAC为一直角三角形,已知一直角边和一角,则可求斜边.【解答】解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300√3∴AC=600√3米.故答案为600√3.【点评】本题考查了直角三角形的性质和勾股定理.三.解答题(共7小题)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.【答案】见试题解答内容【分析】(1)根据题意,可以分别求得BC 、AC 、AB 的长,然后利用勾股定理的逆定理,即可判断△ABC 的形状;(2)根据等积法,可以求得AB 边上的高.【解答】解:(1)△ABC 为直角三角形, 理由:由图可知,AC =√22+42=2√5,BC =√12+22=√5,AB =√32+42=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形;(2)设AB 边上的高为h , 由(1)知,AC =2√5,BC =√5,AB =5,△ABC 是直角三角形,∴12BC ⋅AC =12AB ⋅ℎ, 即12×√5×2√5=12×5h ,解得,h =2, 即AB 边上的高为2.【点评】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.18.计算: (1)2√3(√12−√75+13√108)(2)(√a 3b −√ab 3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.【答案】见试题解答内容【分析】(1)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(2)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(3)先把各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(4)先进行二次根式的乘法运算,然后合并即可;(5)利用平方差公式计算;(6)利用积的乘方进行计算.【解答】解:(1)原式=2√3(2√3−5√3+2√3)=2√3×(−√3)=﹣6;(2)原式=(a√ab−b√ab)•√ab=(a﹣b)√ab•√ab=ab(a﹣b)=a2b﹣ab2;(3)原式=(√2−2√3)(3√2+4√3)=6+4√6−6√6−24=﹣2√6−18;(4)原式=54√12×8+5√12×23−32√32×8−6√32×23=52+5√33−3√3−6=−72−4√33;(5)原式=(5√2)2﹣(2√7)2=50﹣28=22;(6)原式=[(√3+√2)(√3−√2)]2012•(√3+√2)=√3+√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【答案】见试题解答内容【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.【点评】此题不但考查了勾股定理,还考查了学生折叠的知识,折叠中学生一定要弄清其中的等量关系.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.【答案】见试题解答内容【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+92c的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵√36<√43<√49,∴6<√43<7,∴√43的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+92c=−6﹣5+92×6=16,2a﹣b+92c的平方根为±√16=±4.【点评】本题考查算术平方根、立方根、无理数的估算,掌握算术平方根、立方根和无理数的估算是正确解答的前提.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=14﹣x;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.【答案】见试题解答内容【分析】(1)直接利用BC的长表示出DC的长;(2)直接利用勾股定理进而得出x的值;(3)利用三角形面积求法得出答案.【解答】解:(1)∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;(2)∵AD⊥BC,∴AD2=AC2﹣CD2,AD2=AB2﹣BD2,∴132﹣(14﹣x)2=152﹣x2,解得:x=9;(3)由(2)得:AD=√AB2−BD2=√152−92=12,∴S△ABC=12•BC•AD=12×14×12=84.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法 正确 ;(填“正确”或“错误”)(2)已知△ABC 的其中两边长分别为1,√7,若△ABC 为“类勾股三角形”,则另一边长为 2或√13 ; (3)如果Rt △ABC 是“类勾股三角形”,它的三边长分别为x ,y ,z (x ,y 为直角边长且x <y ,z 为斜边长),用只含有x 的式子表示其周长和面积.【答案】(1)正确;(2)2或√13;(3)周长为(1+√2+√3)x ,面积为√22x 2. 【分析】(1)根据“类勾股三角形”的定义进行判断即可;(2)设出第三边,利用“类勾股三角形”的定义分三种情况讨论求解并进行验证即可;(3)根据勾股定理和类勾股三角形的性质将b 、c 用a 表示,即可求出结果.【解答】解:(1)设等边三角形三边长分别是a ,b ,c ,则a =b =c ,∴a 2+b 2=2c 2,∴等边三角形是“类勾股三角形”,∴小璐的说法正确.故答案为:正确;(2)设另一边长为x ,①12+(√7)2=2x 2,解得x =2,符合题意;②12+x 2=2(√7)2,解得x =√13,符合题意;③x 2+(√7)2=2×12,x 无解;故答案为:2或√13;(3)∵Rt △ABC 是“类勾股三角形”且x <y ,z 为斜边长,∴x 2+z 2=2y 2,由勾股定理得x 2+y 2=z 2,整理得x 2+x 2+y 2=2y 2,即2x 2=y 2,∴y =√2x , ∴z 2=3x 2,∴z =√3x ,∴Rt △ABC 的周长为x +y +z =(1+√2+√3)x ,Rt △ABC 的面积为12xy =12x •√2x =√22x 2. 【点评】本题考查勾股定理,理解题目中的新定义及掌握勾股定理是解题关键.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【答案】(1)7;(2)答案见解答.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD=√AB2−BD2=√132−52=12,Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH在△CHB和△AEF中,∵{BH=EF∠CBH=∠AFE=45°BC=AF,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.。
七年级数学第一次月考卷(人教版2024)(考试版)【测试范围:第一、二章】A4版
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.12024-的相反数是( )A .2024-B .12024C .12024-D .以上都不是2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .880.1610´B .98.01610´C .100.801610´D .1080.1610´3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤a -一定是负数,其中正确的个数是( )A .1B .2C .3D .44.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5mm 的零部件,其中()4.50.2mm ±范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A .4.4mmB .4.5mmC .4.6mmD .4.8mm5.下列各组数相等的有( )A .()22-与22-B .()31-与()21--C .0.3--与 0.3D .a 与a 6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.6cm ”对应数轴上的数为( )A . 1.4-B . 1.6-C . 2.6-D .1.67.观察下图,它的计算过程可以解释( )这一运算规律A .加法交换律B .乘法结合律C .乘法交换律D .乘法分配律8.如图,A 、B 两点在数轴上表示的数分别为a ,b ,有下列结论:①0a b -<;②0a b +>;③()()110b a -+>;④101b a ->-.其中正确的有( )个.A .4个B .3个C .2个D .1个9. 定义运算:()1a b a b Ä=-.下面给出了关于这种运算的几种结论:①()226Ä-=,②a b b a Ä=Ä,③若0a b +=,则()()2a a b b ab Ä+Ä=,④若0a b Ä=,则0a =或1b =,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32´方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66´方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48第II 卷二、填空题(本题共6小题,每小题3分,共18分.)11.甲地海拔高度为50-米,乙地海拔高度为65-米,那么甲地比乙地 .(填“高”或者“低”).12.绝对值大于1且不大于5的负整数有 .13.若2(21)a -与23b -互为相反数,则b a = .14.电影《哈利•波特》中,小哈利波特穿越墙进入“394站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于23-,83处,2AP PB =,则P 站台用类似电影的方法可称为“ 站台”.15.若2a b c d a b c d +++=,则abcd abcd 的值为 .16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1-的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字 的点与数轴上表示2023的点重合.三、解答题(本题共8小题,共72分.第17-18题每题6分,第19-20题每题8分,第21-22题每题10分,第23-24题每题12分,解答应写出文字说明、证明过程或演算步骤.)17.计算.(1)()()()()59463473---+--+(2)3112(3)(2)(4)(5)14263---+----18.计算:(1)134 2.5624æö´--+--ç÷èø;(2)()()241110.5233éù---´---ëû.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是3-.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,4-,152,122-,| 1.5|-,( 1.6)-+.20.(1)已知5a =,3b =,且a b b a -=-,求a b -的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: ()a b x a b cd cd+-+++的值.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减5+2-4-13+6-6+3-(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.23.观察下列三列数:1-、3+、5-、7+、9-、11+、……①3-、1+、7-、5+、11-、9+、……②3+、9-、15+、-、……③+、21-、27(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;-,求k的值.(3)若在每行取第k个数,这三个数的和正好为10124.如图,数轴上有A ,B ,C 三个点,分别表示数208--,,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),24PQ MN ==,,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当20t =时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ PM =时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.。
2024-2025学年初中七年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面).23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−【答案】D【解析】【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小,进行比较判断即可. 【详解】解:53 1.51−>−>−>− 53 1.51∴−<−<−<−故选D .【点睛】本题考查了有理数比较大小,解决本题的关键是掌握有理数间的大小比较方法. 2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 的值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值. 根据绝对值大于1的数,用科学记数法表示为10n a ×,其中110a ≤<,n 的值为整数位数少1,即可得出结果.【详解】解:3150000000大于1,用科学记数法表示为10n a ×,其中 3.15a =,9n =, 故选:B .3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】D【解析】【分析】本题考查了数轴、相反数以及绝对值的意义,解题的关键是确定原点的位置.由“点M ,N 表示的有理数互为相反数”可知原点在点M 与点N 的中点,再根据离原点越远,绝对值越大即可解答.【详解】 点M ,N 表示的有理数互为相反数, ∴原点在点M 与点N 的中点,根据数轴可知,点Q 到原点的距离最大,即点Q 的绝对值最大,故选:D5. 下列运算中,错误的是( )A ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=【答案】A【解析】 【分析】本题考查有理数的除法.掌握有理数的除法运算的法则是解题关键.根据有理数的除法运算法则逐项计算即可. 【详解】()1115555 ÷−=×−,故A 错误,符合题意; ()()()15522 −÷−=−×−,故B 正确,不符合题意; ()18484 ÷−=×−,故C 正确,不符合题意; 080÷=,故D 正确,不符合题意..6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数和为0,则它们必定互为相反数D. 倒数是它本身的数只有1【答案】C【解析】【分析】分别利用有理数的定义、绝对值的性质、有理数的加法法则、倒数的定义得出即可.【详解】解:A 、一个有理数可能是正数、0、负数,故此选项错误;B 、绝对值等于它本身的数是非负数,故此选项错误;C 、若两个有理数的和为0,则它们必定互为相反数,此选项正确;D 、倒数等于它本身的数有:±1,故此选项错误.故选:C .【点睛】此题主要考查了有理数的定义、绝对值的性质、有理数的加法、倒数,正确区分它们是解题关键.7. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 【答案】A【解析】【分析】本题考查了相反数的定义,有理数的乘方以及化简绝对值,先分别算出每个选项的值,再结合相反数的定义进行逐个比较分析,即可作答.【详解】解:A 、229(33)9, ,它们是互为相反数,符合题意,故该选项是正确的; B 、223939−==,,它们不是互为相反数,不符合题意,故该选项是错误的; C 、2211113939−== ,,它们不是互为相反数,不符合题意,故该选项是错误的; D 、223939−−=−−=−,,它们不是互为相反数,不符合题意,故该选项是错误的;故选:A .8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的面展开图可能是()A. B. C. D.【答案】D【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∵相对面上的两数之和为7,∴3与4相对,5与2相对,6与1相对观察选项,只有选项D符合题意.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 有理数,a b在数轴上的位置如图所示,则化简a b a−+的结果为()A. bB. b−C. 2a b−− D. 2a b−【答案】A【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】由数轴得:0a b<<,即0a b−<则原式b a a b=−+=故选:A【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1121=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A. 3B. 23C. 12−D. 无法确定 【答案】C【解析】【分析】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出2a 、3a 、4a ,找出数字变化的规律.根据规则计算出2a 、3a 、4a ,即可发现每3个数为一个循环,然后用2024除以3,即可得出答案.【详解】解:由题意可得,13a =,211213a =−=−, 3121312a == −−, 413213a ==−, …,由上可得,每三个数一个循环,202436742÷=⋅⋅⋅,∴202412a =−. 故选:C . 二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.【答案】面动成体【解析】分析】根据点动成面、面动成体原理即可解答.【详解】解:硬币桌面上快速地转动时,看上去像球,这说明了面动成体.【在故答案为:面动成体.【点睛】本题主要考查了面动成体,这是面动成体的原理在现实中的具体表现.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.【答案】7【解析】【分析】本题主要考查了从不同方向看几何体,从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,得出组成这个几何体的小正方体的个数最少有7个.【详解】解:从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有7个,∴n 的最小值为7,故答案为:7.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.【答案】12【解析】【分析】根据题中“数对”的新定义,求出所求即可.【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.【答案】5【解析】【分析】根据绝对值的意义和正负数的意义,求出x 和y 的值然后求解即可. 【详解】∵2x =, 3y =,∴xx =2或-2,3y =或-3,∵0xy <,∴x 和y 异号,又∵0x y +<,∴xx =2,3y =−,∴()235x y −=−−=,故答案为:5.【点睛】本题考查了绝对值和正负数的意义,解决本题的关键是正确理解题意,熟练掌握绝对值的意义.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C 表示的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.【答案】6【解析】【分析】先由|2||1|0a b +++=,根据绝对值的非负性,得出a 和b 的值,根据倒数的定义,得出点C 表示的数,再根据对折的要求,得出对折点,从而根据对折的性质得出与点B 重合的点表示的数.【详解】解:∵|2||1|0a b +++=,|2|0a +≥,|1|0b +≥, ∴20a +=,10b +=, ∴2a =−,1b =−,∵点C 表示的数是17的倒数, ∴点C 表示的数是7,∵7(2)9−−=, 将数轴折叠,使得点A 与点C 重合, ∴对折点表示的数为:97 2.52−=, ∴[]2.5(2.5(1) 2.5 3.56+−−=+=.【点睛】本题考查了绝对值非负性、倒数的定义,对折的性质等基础知识,根据题意正确地用数学语言表示相关概念,是解题的关键.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 【答案】(1)10−(2)22(3)16−(4)52− 【解析】(1)先计算乘方,再计算乘法,最后计算加法即可;(2)先计算乘方,再计算除法,最后计算减法即可;(3)先计算除法,再计算乘法即可;(4)先计算乘方,再计算乘除法,最后计算减法即可.【小问1详解】解:()()2832+−×− ()892=+×−818=−10=−;【小问2详解】解:()()22100223 ÷−−−÷−的()1004232=÷−−×−25322=;【小问3详解】解:()()3434⎛⎫⎪-÷-⨯- ⎪⎝⎭()()4433=−×−×−16=−;【小问4详解】 解:231114332−÷−−×−1811394=−÷−×−132=−+52=−.17. 计算:(1)1564358−÷×;(2)35344+−−−− ;(3)()()0.350.60.25 5.4+−++−;(4)()457369612−×−+− ;(5)18991819−×;(6)22218134333×−+×−× .【答案】(1)252−(2)1−(3) 5.4−(4)7(5)1179919− (6)6−【解析】【分析】本题考查了有理数的混合运算,乘法运算律,绝对值等知识.熟练掌握有理数的混合运算,乘法运算律,绝对值是解题的关键.(1)先进行除法运算,然后进行乘法运算即可;(2)先去括号,计算绝对值,然后进行加减运算即可;(3)利用乘法运算律计算求解即可;(4)利用乘法运算律计算求解即可;(5)利用乘法运算律计算求解即可;(6)利用乘法运算律计算求解即可.【小问1详解】 解:1564358−÷× 5564168=−×× 252=−; 【小问2详解】 解:35344 +−−−− 35344=+− 23=−1=−;【小问3详解】解:()()0.350.60.25 5.4+−++−0.350.60.25 5.4−+−()0.350.250.6 5.4=+−−5.4=−;【小问4详解】解:()457369612 −×−+−()()()4573636369612 =−×−+−×−−×163021=−+7=;【小问5详解】 解:18991819−× 11001819 =−−×1100181819=−×+× 18180019=−+ 1179919=−; 【小问6详解】 解:22218134333 ×−+×−× ()2181343=×−+− ()293=×− 6=−四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,. 【答案】(1)3−,3.5,2, 0,0.5;300.52 3.5−<<<<(2)见详解,443.50753−<−<<< 【解析】【分析】本题考查了有理数大小比较,数轴,准确熟练地进行计算是解题的关键.(1)先根据数轴得出各点代表的有理数,然后根据数轴比较有理数的大小即可.(2)先在数轴上把各数表示出来,然后根据数轴比较有理数的大小即可.【详解】解:(1)点A 表示的有理数为:3−,点B 表示的有理数为:3.5,点C 表示的有理数为:2,点D 表示的有理数为:0,点E 表示的有理数为:0.5,用<将它们连接起来为:300.52 3.5−<<<<.(2)各数在数轴上的表示如图:大小如下:443.50753−<−<<< 19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26) =6÷(﹣16) =6×(﹣6)=﹣36【点睛】本题考查有理数的混合运算,解答本题的关键是掌握乘法分配律.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.【答案】(1)36 (2)330【解析】【分析】本题主要考查了图形类的规律探索,根据已知图形的面积得出变化规律,第n 个几何体的表面积为:()31n n +是解题的关键.(1)只需要写出第3个几何体露在外面的小正方形面即可得到答案;(2)根据前3个几何体的表面积找到规律第n 个几何体的表面积为:()31n n +,在代入10n =进行求解即可.【小问1详解】解:由题意得,第3个几何体的表面积是66666636+++++=;【小问2详解】解:第1个几何体的表面积为()31116××+=, 第2个几何体的表面积为()322118××+=, 第3个几何体的表面积是()333136××+=, ......,以此类推,第n 个几何体的表面积是()31n n +,∴第10个几何体的表面积为()310101330××+=. 21. 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?【答案】(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm,求出小明所搭的几何体的表面积(包括底面).【答案】(1)见解析(2)①10个;②表面积为3800平方厘米【解析】【分析】本题主要考查了正方体的展开图,求几何体的表面积:(1)根据正方体展开图“33型”有1种,“222型”有1种,“141型”有6种,“132型”有3种,结合已给图形进行求解即可;(2)①根据从不同方向看的图形分别确定每个位置小正方体的个数即可得到答案;②根据几何体表面积计算公式求解即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:①如图所示,每个位置的小立方体数如下所示:+++++=个正方体盒子组成这个几何体;∴小明用了23111210第16页/共17页 ②()()26662210103800cm ++×+××=,答:表面积为3800平方厘米. 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.【答案】(1)0 (2)<;>;<(3)a【解析】【分析】(1)根据相反数的意义,即可求解;(2)观察数轴得:0c b a <<<,且c b a >=,即可求解; (3)先根据绝对值的性质化简,再合并,即可求解.【小问1详解】解:∵||||a b =,且a ,b 所对应的点分别位于原点的两侧,∴a ,b 互为相反数,∴0a b +=;故答案为:0【小问2详解】解:观察数轴得:0c b a <<<,且c b a >=, ∴0b c +<;0a c −>;0ac <;故答案为:<;>;<【小问3详解】解:|2|||||||c b c a b c −+−+−+−()2c b a c b c =−−−+−+−2c b a c b c −+−+−a =.【点睛】本题主要考查了数轴,绝对值的性质,整式的加减,利用数形结合思想解答是解题的关键.。
24-25七年级数学第一次月考卷(考试版A4)【测试范围:人教版2024七上第一章-第二章】北京专用
2024-2025学年七年级数学上学期第一次月考卷(北京专用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版2024七年级上第一章-第二章。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2-的相反数是( )A .2B .12C .12-D .2-2.如果80m 表示向东走80m ,则表示( )A .向东走50mB .向北走50mC .向南走50mD .向西走50m3.2024年5月3日,我国嫦娥六号顺利发射飞向太空,随后历时五天抵达第四阶段,进行环月飞行任务.6月2号早上嫦娥六号在月球背面的南极﹣艾特肯盆地成功落月,月球距离地球约384000000千米,将384000000用科学记数法表示为( )A .738.410´B .83.8410´C .93.8410´D .90.38410´4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是( )A .B .C .D .5.如果230x y -++=, 那么x y -的值为( )A .1B .-1C .5D .-56.数轴上的三点A 、B 、C 所表示的数分别为a 、b 、c 且满足0a b +>,0a c ×<,则原点在( )A .点A 左侧B .点A 点B 之间(不含点A 点B )C .点B 点C 之间(不含点B 点C )D .点C 右侧7.若a ,b 为有理数,0a >,0b <,且a b <,那么a ,b ,a -,b -的大小关系是()A .b a b a <-<-<B .b b a a<-<-<C .b a a b <-<<-D .a b b a-<-<<8.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤2π-不仅是有理数,而且是分数;⑥带“-”号的数一定是负数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数;其中错误的说法的个数为( )A .3个B .4个C .5个D .6个第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分。
苏教版五年级上册数学第一次月考1-2单元试卷及答案
第一次月考(1-2单元) 2024-2025学年五年级上册数学苏教版一、填空题(共8题;共17分)1.(2分)一个平行四边形的底是10厘米,高是6厘米.如果把它的底和高分别乘3,那么它的面积2.(2分)数轴上所有的负数都在0的边,所有正数都在0的边。
3.(2分)把一个长10厘米、宽8厘米的长方形框架,拉成一个高为9厘米平行四边形,这个平行四边形的面积是平方厘米.4.(2分)一瓶饮料的外包装上标有“净含量500克士5克”。
这瓶饮料最多不多于克,最少不少于克。
5.(2分)如图,两条平行线之间画了一个长方形和一个平行四边形.长方形的长是8厘米,宽是6厘米,则平行四边形的面积是cm2.6.(3分)晶晶爱吃的薯片包装上标着净重(280±5)克,那么这种薯片的标准质量是克,实际上每袋最少不少于克,最多不多于克。
7.(2分)用一块长60厘米,宽45厘米的长方形红纸,做底和高都是6厘米的直角三角形的小红旗,最多可以做面。
8.(2分)五年级(1)班第一小组男生进行一分钟仰卧起坐测试,18个为及格标准,超过的部分用正数表示,不足的部分用负数表示。
下表是他们的成绩记录,成绩最好的做了个。
如果第二组的一个男生做了33个,那么他的成绩应该记作个。
编号12345678成绩/个0+8+18-2+4+22-3+6二、判断题(共5题;共15分)9.(3分)一个三角形的底是4厘米,高是3厘米,面积是12平方厘米。
()10.(3分)面积相等的两个三角形的底和高一定分别相等。
()11.(3分)一个平行四边形的面积是28平方厘米,则与它等底等高的三角形的面积是14平方厘米。
()12.(3分)用4根木条钉成的长方形框架,拉成平行四边形后,它的面积不会发生变化。
()13.(3分)用手拉一个活动的长方形框架,使它变成一个平行四边形,这个平行四边形的面积与原来长方形面积相等。
()三、单选题(共5题;共15分)14.(3分)在-9、+16.4、10、0、-4.5、+100中,一共有()个正数。
2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
七年级数学第一次月考卷(苏科版2024)(解析版)【测试范围:第一章~第二章】
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选6题,填空10题,解答8题。
2.测试范围:第一章~第二章(苏科版2024)。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a 一定是负数,其中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a 不一定是负数,故④不正确,故选:B .【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.3.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.4.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.5.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A6.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)7.将数据52.93万用科学记数法表示为.【答案】5.293×105【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【详解】解:52.93万=529300=5.293×105.故答案为:5.293×105.8.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.9.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.10.下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的点时数):城市纽约伦敦东京巴黎时差/时―13―8+1―7如果北京时间是9月13日17时,那么伦敦的当地时间是9月日时.【答案】13 9【分析】本题考查了正负数在实际生活中的应用.这是一个典型的正数与负数的实际运用问题,我们应联系现实生活认清正数与负数所代表的实际意义.此题中正数表示在北京时间向后推几个小时,即加上这个正数;负数表示向前推几个小时,即加上这个负数,据此解答即可.【详解】解:17―8=9,∵―8表示向前推8个小时,∴北京时间是9月13日17时,那么伦敦的当地时间是9月13日9时,故答案为:13,9.11.如图,将一刻度尺放在数轴上.若刻度尺上0cm和5cm对应数轴上的点表示的数分别为―3和2,则刻度尺上7cm对应数轴上的点表示的数是.【答案】4【分析】本题考查数轴的概念.由数轴的概念即可求解.【详解】解:∵0cm和5cm对应数轴上的点表示的数分别为―3和2,∴数轴的单位长度是1cm,∴原点对应3cm的刻度,∴数轴上与7cm刻度对齐的点表示的数是4,故答案为:4.12.如图所示是计算机程序计算,若开始输入x=―2,则最后输出的结果是.【答案】16【分析】本题主要考查了与程序流程图有关的有理数计算.先代入x=―2,计算出结果,若结果不大于10,则把计算的结果重新输入计算,如此往复直至计算的结果大于10即可.【详解】解:―2+4―(―2)=―2+4+2=4<10,4+4―(―2)=4+4+2=10,10+4―(―2)=10+4+2=16>0,故答案为:16.13.若(2a―1)2与2|b―3|互为相反数,则a b=.【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a―1)2与2|b―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a,b.【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.若a |a |+b |b |+c |c |+d |d |=2,则|abcd |abcd 的值为 .【答案】-1【分析】先根据a |a |+b |b |+c |c |+d |d |=2,a |a |,b |b |,c |c |,d |d |的值为1或-1,得出a 、b 、c 、d 中有3个正数,1个负数,进而得出abcd 为负数,即可得出答案.【详解】解:∵当a 、b 、c 、d 为正数时,a |a |,b |b |,c |c |,d |d |的值为1,当a 、b 、c 、d 为负数时,a |a |,b |b |,c |c |,d |d |的值为-1,又∵a |a |+b |b |+c |c |+d |d |=2,∴a 、b 、c 、d 中有3个正数,1个负数,∴abcd 为负数,∴|abcd |abcd =-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a 、b 、c 、d 中有3个正数,1个负数,是解题的关键.15.新定义如下:f(x)=|x ―3|, g(y)=|y +2|; 例如:f(―2)=|―2―3|=5,g(3)=|3+2|=5;根据上述知识, 若f(x)+g(x)=6, 则x 的值为 .【答案】72或―52【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据f(x)+g(x)=6得出含绝对值的方程,解方程可得答案.【详解】解:由题可得:|x ―3|+|x +2|=6,当x ≥3时,x ―3+x +2=6,解得x =72;当―2<x <3时,3―x +x +2=6,方程无解;当x ≤―2时,3―x ―x ―2=6,解得x =―52;故答案为:72或―52.16.定义一种关于整数n 的“F ”运算:(1)当n 是奇数时,结果为3n +5;(2)当n 是偶数时,结果是n 2k (其中k 是使n 2k 是奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74,……;若n =9,则第2023次运算结果是 .【答案】8【分析】此题考查的是探索规律题.由题意所给的定义新运算可得当n =9时,第一次经F 运算是32,第二次经F 运算是1,第三次经F 运算是8,第四次经F 运算是1,⋯,由此规律可进行求解.【详解】解:由题意n =9时,第一次经F 运算是3×9+5=32,第二次经F 运算是3225=1,第三次经F 运算是3×1+5=8,第四次经F 运算是823=1,⋯;从第二次开始出现1、8循环,奇数次是8,偶数次是1,∴第2023次运算结果8,故答案为:8.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)= 1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a|=5,|b|=3,且|a―b|=b―a,可以得到a、b的值,然后代入所求式子计算即可;(2)根据a与b互为相反数,c与d互为倒数,x的绝对值等于2,可以得到a+b=0,cd=1,x=±2,然后代入所求式子计算即可.【详解】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a―b|=b―a,∴b≥a,∴a=―5,b=±3,当a=―5,b=3时,a―b=―5―3=―8,当a=―5,b=―3时,a―b=―5―(―3)=―5+3=―2,由上可得,a+b的值是―8或―2;(2)∵a与b互为相反数,c与d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴当x=2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t=18.25或t=19.75,∴重合部分长度为1.5时所对应的t的值是5.5或8.5或18.25或19.75.。
七年级上册数学人教版第一次月考测试卷(1-3章)(无答案)
七年级上册数学人教版第一次月考测试卷(1-3章)一、选择题(本大题共12 个小题,每小题3分,共36分)1.下列说法中不能表示代数式“5x”的意义的是 ( )A. x 的5倍B.5 和x 相乘C.5个x 相加D. x 个5相乘2.下列运算结果为正数的是 ( )A.(−3)²B. -3÷2C.0×( -2024)D.2-33.下列对代数式 1b −a 的描述,正确的是 ( )A. b 的相反数与a 的差B. b 与a 的差的倒数C. a 的相反数与b 的差的倒数D. b 的倒数与a 的差4.与 −(13−14)互为倒数的是 ( ) A.−13×4 B.3×4C.13×4D. -3×4m 个25.计算: 2×2×⋯×23+3+⋯+3的结果为 ( )一个3A.2m 3nB.2m 3nC.2m n 3D.m 23n 6.如图,在数轴上,点A 表示的数是6,将点A 沿数轴向左移动a(a>6)个单位长度得到点P ,则点P 表示的数可能是 ( )A.0B. -1C.0.5D.27.如果甲、乙是两个成反比例的量,那么当甲增加50%时,乙一定会 ( )A.增加50%B.减少50%C. 减 23D.减 138.已知光速为300000 km/s,光经过 ts(1≤t≤10)传播的距离用科学记数法表示为a×10" km,则n 可能为 ( )A.5B.6C.5 或6D.5或6或79.已知a=-2,b=1,c=-1,下列各式中最小的是 ( )A. a+b+cB. a+b-cC. a-b+cD. a-b-c10.点A,B在数轴上的位置如图,其对应的数分别是a和b.对于以下结论:甲:b-a<0;乙:a+b>0;丙:|a|<|b|;丁:|b|>0.其中正确的是 ( )A.甲、乙B.丙、丁C. 甲、丙D.乙、丁11.下列计算正确的是 ( )−20×(−37)=1507A.−30×37B.(−23+45)÷(−115)=−2C.(12−13)÷(13−14)×(14−15)=310÷(+45)×(−827)=0D.−4512.对于正整数x,我们可以用符号f(x)表示代数式,并规定:若x为奇数,则f(x)=3x+1;若x为偶数,则f(x)=1x.例如:f(1) =4,f(10) =5.设x1=6,x2=f(x1),x3=f(x2),⋯,依此规律进行下去,得到2一列数:x₁,x₂,x₃,…,xₙ((n为正整数),则x1−x2+x3−x4+⋯+x2023−x2024的值是( )A.16B.18C.20D.2024二、填空题(本大题共4个小题,每小题3分,共12分)而小于2的所有整数是 .13.大于−23414.已知γ=x-1,则((x−y)²+(y−x)+1的值为15.如图是一个计算程序,若输入的值为1,则输出的值应为 .16.如图是某种杆秤,在秤杆的点A 处固定提纽,点 B处挂秤盘,点C为O 刻度点. 当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点 C,秤杆处于平衡状态.秤盘放入x克物品后移动秤砣,当秤砣所挂位置与提纽的距离为γ毫米时秤杆处于平衡状态. 测得x与γ的几组对应数据如下表:x(克)0246810y(毫米101418222630)由表中数据的规律可知,当x =20 时,y=三、解答题(本大题共8个小题,共72分)17.(6分)某书店新进了一批图书,甲、乙两种书的进价分别为4 元/本、10 元/本. 现购进m本甲·种书和n本乙种书,共付款P元.(1)用含 m,n的代数式表示 P;(2)若共购进5×10⁴本甲种书及3×10³本乙种书,用科学记数法表示 P的值.18.(8分)如图,小林为“小鱼”设计了一个计算程序.输入x值,由上面的一条运算路线从左至右逐步进行运算得到m,由下面的一条运算路线从左至右逐步进行运算得到n.如输入x=1,得到m=1×(-3)+(-2)=-5,n=(1-4)÷(−2)=3.2(1)若输入x=2,试比较m与n的大小;(2)若得到 m=10,求输入的x值及相应n的值.19.(8分)有理数a,b在数轴上的对应点的位置如图所示.(1)比较大小: ab 0,b-1 0,a-b 0;(2)化简:|a|+|b|-|b-1|.20.(9分)老师设计了接力游戏,用合作的方式完成有理数运算,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图:(1)接力中,计算错误的学生是;(2)请给出正确的计算过程.21.(9分)某中学七年级一班有44人,一次数学活动中分为四个组,第一组有a人,第二组人数比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数;(用含 a的代数式表示,不用化简)(2)夕夕通过计算发现:“第一组不可能有12人.”你同意她的答案吗? 请说明理由.22.(10分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×( -15);+999×(−15)−999×1835.(2)999×1184523.(10分)【阅读理解】已知代数式x²+x+3的值为9,求代数式2x²+2x−3的值.嘉琪采用的方法如下:由题意,得x²+x+3=9,则有x²+x=6.所以2x²+2x−3=2(x²+x)−3=2×6−3=9.所以代数式2x²+2x−3的值为9.【方法运用】(1)若−x²=x+2,则x²+x+3=.(2)若代数式x²+x+1的值为15,求代数式−2x²−2x+3的值.【拓展应用】(3)若x²+2xy=−2,xy−y²=−4,求代数式4x²+7xy+y²的值.24.(12分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价为30元,乒乓球每盒定价为10 元.现两家商店搞促销活动,甲商店的优惠方案:每买一副乒乓球拍赠一盒乒乓球;乙商店的优惠方案:按定价的9折出售.某班需购买乒乓球拍6副,乒乓球若干盒(不少于6盒).(1)用代数式表示(所填式子需化简):当购买乒乓球拍6副,乒乓球x(x≥6,且x为整数)盒时,在甲商店购买共需付款元,在乙商店购买共需付款元.(2)当购买乒乓球拍6副,乒乓球15 盒时,到哪家商店购买比较省钱? 说出你的理由.(3)当购买乒乓球拍6副,乒乓球15 盒时,你能给出一种更省钱的购买方案吗? 试写出你的购买方案,并求出此时需付款多少元.。
河南省信阳市息县2024~2025学年八年级上学期第一次月考数学试题[含答案]
2024-2025学年关店理想学校八上数学第一次月考测试卷一、选择题(每小题3分,共30分)1.如图,在△ABC 中,线段BE 表示ABC V 的边AC 上的高的图是( )A .B .C .D .2.AD 是ABC V 的高,若6040BAD CAD Ð=°Ð=°,,则BAC Ð的度数是( )A .100°B .20°C .50°或110°D .20°或100°3.在探究证明“三角形的内角和是180°”时,综合实践小组的同学作了如下四种辅助线,其中能证明“三角形的内角和是180°”的有( )①如图1,过点C 作EF AB ∥;②如图2,过AB 上一点D 分别作DE BC ∥,DF AC ∥;③如图3,延长AC 到点F ,过点C 作CE AB ∥;④如图4,过点C 作CD AB ^于点D .A .①②③B .①②④C .②③④D .①③④4.已知a ,b ,c 是ABC V 的三边长,a ,b 满足()2710a b -+-=,c 为奇数,则c 的值是( )A .7B .5C .3D .15.如图,AD ,CE 是ABC V 的两条中线,连接ED .若12ABC S =△,则S =阴影( )A .1B .2C .3D .66.若一个正多边形的每一个外角为30°,则这个多边形的内角和为( )A .1440°B .1620°C .1800°D .1980°7.已知直线AB CD ∥,将一个含有30°角的三角尺按如图所示的方式摆放,若46MEF а=,则CFM Ð的大小为( )A .104°B .107°C .114°D .134°8.如图,A B C D E F Ð+Ð+Ð+Ð+Ð+Ð等于( )A .240°B .300°C .360°D .540°9.在一个凸边形内角和为1080°的纸板上切下一个三角形后,剩下一个边长为n 的多边形,则n 的值不可能是( )A .6B .7C .8D .910.如图,在ABC V 中,BAC а90=,6AB =,AC 8=,BC 10=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面结论:ABE V ① 的面积=BCE △ 的面积;AFG AGF ÐÐ=②;FAG ACF ÐÐ2=③;.AD 24=④.其中结论正确的是( )A .①②B .①②④C .①②③D .①②③④二、填空题(每小题3分,共15分)11.如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的 .12.一个多边形的内角和等于外角和的3倍,那么这个多边形为 边形.13.如图,AD ,CE 是ABC V 的两条高,4cm AB =,8cm BC =,6CE cm =,则AD 的长为 .14.如图,小明从A 点出发,向前走30m 后向右转36°,继续向前走30m ,再向右转36°,他回到A 点时共走了 米.15.如图,AC BD ^,AF 平分 BAC Ð,DF 平分EDB Ð,100BED Ð=°,则F Ð的度数为 .三、解答题(共75分)16.已知a ,b ,c 是ABC V 的三边长.(1)若 8a =,2b =,c 为偶数,求c 的长;(2)化简∶a b c a b c --++-.17.(1)若多边形的内角和为1620°,求此多边形的边数;(2)已知一个正多边形的一个内角等于一个外角的32倍,求这个正多边形是几边形?18.如图,ABC V 中,已知CD 为ACB Ð的平分线,AM CD ^于M ,45B Ð=°,8BAM Ð=°,求ACB Ð的度数.19.如图,在ABC V 中,AD BC ^,AE 平分BAC Ð.(1)若72B Ð=°,30C Ð=°,求BAE Ð和DAE Ð的度数;(2)若42B C Ð=Ð+°,求DAE Ð的度数.20.如图,在ABC V 中,AD 平分BAC Ð交BC 于点D ,BE 平分ABC Ð交AD 于点E .(1)若50C Ð=°,60BAC Ð=°,求ADB Ð的度数;(2)若45BED Ð=°,求C Ð的度数.21.如图,在ABC V 中,ABC Ð与外角ACD Ð的角平分线相交于点O .(1)当60ABC Ð=°,130ACD Ð=°时,求BOC Ð的度数;(2)求证:12O A Ð=∠.22.在△ABC 中,AD 是角平分线,∠B <∠C ,(1)如图(1),AE 是高,∠B =50°,∠C =70°,求∠DAE 的度数;(2)如图(2),点E 在AD 上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系,并证明你的结论;(3)如图(3),点E 在AD 的延长线上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系是 (直接写出结论,不需证明).23.操作:如图1,将ABC V 沿射线BF 平移到DCE △,使原B 点与C 点重合,这时CD AB ∥,所以1A Ð=Ð,2B Ð=Ð,请回答:(1)A B ACB Ð+Ð+Ð的值为 °;(2)若56A Ð=°,40B Ð=°,则ACF Ð= °;若A x Ð=°,B y Ð=°,则ACF Ð= ;(3)我们把A Ð、B Ð、ACB Ð称为ABC V 的内角;把ACF Ð称为ABC V 的外角,DEF Ð为DCE △的外角,每个三角形都有六个外角.运用(1)(2)结论,解决问题:如图2,已知ABC V 中,56A Ð=°,BP 、CP 分别平分ABC Ð、BCA Ð,CQ 平分外角ACF Ð交BP 与点Q ,求BPC Ð,BQC Ð.1.D【分析】本题主要考查了三角形高线的定义,熟练掌握从三角形的一个顶点向对边所在直线作垂线,顶点与垂足间的线段叫做三角形的高是解题的关键.根据三角形高线的定义,即可求解.【详解】解:过点B 作AC 的垂线,且垂足在直线AC 上,所以正确画出AC 边上的高的是D 选项,故选:D .2.D【分析】本题考查了三角形的高线,难点在于要分情况讨论.分高AD 在ABC V 内部和外部两种情况讨论求解即可.【详解】①如图1,当高AD 在ABC V 的内部时,6040100BAC BAD CAD Ð=Ð+Ð=°+°=°;②如图2,当高AD 在ABC V 的外部时,604020BAC BAD CAD Ð=Ð-Ð=°-°=°,综上所述,BAC Ð的度数为20°或100°.故选:D .3.A【分析】本题主要考查三角形内角和的定理的证明,平行线的性质,熟练掌握转化的思想以及平角的定义是解决本题的关键.运用转化的思想作出相应的平行线,把三角形的内角进行转化,再根据平角的定义逐一判断即可得答案.【详解】①∵EF AB ∥,∴,ECA A FCB B Ð=ÐÐ=Ð,∵180ECA ACB FCB Ð+Ð+Ð=°,∴180A B ACB Ð+Ð+Ð=°,故①符合题意,②∵DE BC ∥,DF AC ∥,∴,ADE B BDF A Ð=ÐÐ=Ð,,C AED AED EDF Ð=ÐÐ=Ð,∴C EDF Ð=Ð,∵180ADE EDF BDF Ð+Ð+Ð=°,∴180A B C Ð+Ð+Ð=°,故②符合题意,③∵CE AB ∥,∴,FCE A ECB B Ð=ÐÐ=Ð,∵180FCE ECB ACB Ð+Ð+Ð=°,∴180A B ACB Ð+Ð+Ð=°,故③符合题意,④Q CD AB ^,90CDB CDA \Ð=Ð=°,不能证明“三角形的内角和等于180°”故④不符合题意,故选:A .4.A【分析】本题考查三角形三边关系,非负数的应用,先根据绝对值和平方的非负性求出a ,b ,再利用三角形三边关系求出c 的取值范围,结合c 为奇数确定c 的值.【详解】解:Q ()2710a b -+-=,\70-=a ,10b -=,\7a =,1b =,Q a ,b ,c 是ABC V 的三边长,\a b c a b -<<+,即68c <<,∵c 为奇数,∴7c =.故选A .5.C 【分析】本题主要考查了三角形中线的性质,根据三角形中线平分三角形面积先求出162BCE ABC S S ==V V ,进而可得132BCE S S ==△阴影.【详解】解:∵CE 是ABC V 的中线,12ABC S =△,∴162BCE ABC S S ==V V ,∵AD 是ABC V 的中线,即D 为BC 的中点,∴DE 是BCE V 的中线,∴132BCE S S ==△阴影,故选C .6.C【分析】本题考查了多边形的内角与外角,求正多边形的边数通常用外角和360°除以每一个外角的度数.根据正多边形的边数等于外角和除以每一个外角的度数先求出边数,然后再根据多边形的内角和公式列式计算即可得解.【详解】解:Q 多边形的每一个外角等于30°,3603012°¸°=,\这个多边形是12边形;其内角和()1221801800=-´°=°.故选:C .7.A【分析】本题考查平行线的性质,由平行线的性质推出180AMF CFM Ð+Ð=°,由三角形外角的性质求出76AMF MFE MEF Ð=Ð+Ð=°,即可得到104CFM Ð=°.【详解】解:∵AB CD ∥,∴180AMF CFM Ð+Ð=°,∵304676AMF MFE MEF Ð=Ð+Ð=°+°=°,∴104CFM Ð=°.故选:A .8.C【分析】连接BD ,根据四边形内角和可得360A ABO OBD BDO CDO C Ð+Ð++Ð+Ð+Ð=°,再由“8”字三角形可得OBD ODB E F Ð+Ð=Ð+Ð,进而可得答案.【详解】解:连接BD ,如图,∵360A ABO OBD BDO CDO C Ð+Ð+Ð+Ð+Ð+Ð=°,OBD ODB E F Ð+Ð=Ð+Ð,∴360A ABO E F CDO C Ð+Ð+Ð+Ð+Ð+Ð=°,故选C .【点睛】本题考查了多边形的内角和,以及“8”字三角形的特点,正确作出辅助线是解答本题的关键.9.A【分析】本题主要考查了多边形的内角和.在一个凸n边形的纸板上切下一个三角形,则所得新的多边形的边可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【详解】解:设一个内角和为1080°的多边形的边数为x,则x-´°=°,解得8(2)1801080x=.在一个凸n边形的纸板上切下一个三角形,分三种情况:①若新多边形的边增加一条,则n的值为9;②若新多边形的边不变,则n的值为8;③若新多边形的边减少一条,则n的值为7.故选:A.10.C【分析】根据三角形角平分线和高的性质可确定角之间的数量关系;根据三角形的中线和面△的面积关系以及求出AD的长度.积公式可确定ABE△和BCEV的中线【详解】解:BEQ是ABC\=AE EC△的面积\V的面积等于BCEABE故①正确;V的高BAC90Q,AD是ABCÐ=°9090,DCG DGCÐ+Ð=°\Ð+Ð=°AFG ACGQ是ABCCFV的角平分线ACG DCGÐ=Ð\Ð=ÐAFG DGC又DGC AGF Ð=ÐQAFG AGF \Ð=Ð故②正确;FAG DAC DAC ACD Ð+Ð=Ð+Ð=°90QFAG ACD \Ð=ÐACD ACF DCF ACF Ð=Ð+Ð=Ð2QFAG ACF \Ð=Ð2故③正确;ABC S AB AC BC AD ==2V Q g g.AB AC AD BC ´\===684810g 故④错误;故选:C【点睛】本题考查了三角形的中线、高、角平分线,灵活运用三角形的中线、高、角平分线的性质是解决本题的关键.11.稳定性【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机,这是利用了三角形的稳定性,故答案为:稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是掌握三角形具有稳定性.12.八##8【分析】本题主要考查了多边形内角和公式、多边形外角和,根据多边形内角和公式()2180n -´°和多边形的外角和是360°,由一个多边形的内角和等于外角和的3倍,列出方程求解即可.【详解】解:设这个多边形有n 条边.由题意得:()21803603n -´°=°´,解得8n =.则这个多边形是八边形.故答案为:八.13.3cm【分析】此题解题的关键是掌握三角形的面积公式,利用等面积法求解即可,即1122ABC S BC AD AB CE =×=×V .【详解】解:AD BC Q ^,CE BA ^1122ABC S BC AD AB CE D =×=×BC AD AB CE\×=×846AD \=´3AD \=故答案为:3cm .14.300【分析】根据多边形的外角和等于360°求出所走过的边数,然后根据多边形的周长列式计算即可得解.本题考查了多边形的内角与外角,读懂题目信息,求出所走过的边数是解题的关键.【详解】解:3603610°¸°=,所以他走回到A 点时共走了:3010300´=(米).故答案为:300.15.85°##85度【分析】本题主要考查了三角形外角.熟练掌握三角形外角性质,角平分线性质,是解决问题的关键.设AF 与DE 相交于点G ,DF 与AC 相交于点H ,根据AC BD ^,100BED Ð=°,得到=90ACD а,80AED Ð=°,根据角平分线定义得到1122BAC Ð=Ð=Ð,1342BDE Ð=Ð=∠,则根据三角形外角性质得到31AGD F AED Ð=Ð+Ð=Ð+Ð,24AHD F ACD Ð=Ð+Ð=Ð+Ð,得到32801904F F Ð+Ð+Ð+Ð=°+Ð+°+Ð,即得85F Ð=°.【详解】如图,设AF 与DE 相交于点G ,DF 与AC 相交于点H ,∵AC BD ^,∴=90ACD а,∵100BED Ð=°,∴18080AED BED Ð=°-Ð=°,∵AF 平分 BAC Ð,DF 平分EDB Ð,∴1122BAC Ð=Ð=Ð,1342BDE Ð=Ð=,∵31801AGD F AED Ð=Ð+Ð=Ð+Ð=°+Ð①,24904AHD F ACD Ð=Ð+Ð=Ð+Ð=°+Ð②,+①②,得,32801904F F Ð+Ð+Ð+Ð=°+Ð+°+Ð,∴2170F Ð=°,∴85F Ð=°.故答案为:85°.16.(1)8c =(2)2b【分析】本题考查了三角形三边关系,(1)根据三角形的三边关系可得610c <<,进而根据c 为偶数,即可求解;(2)根据三角形的三边关系得出0a b c --<,0a b c +->,进而化简绝对值,即可求解.【详解】(1)解:8a =Q ,2b =a bc a b\-<<+610c \<<c Q 为偶数8c \=(2)a b c <+Q ,a b c+>0a b c \--<,0a b c +->a b c a b c\--++-a b c a b c=-++++-2b=17.(1)11(2)5【分析】本题考查了多边形的内角和与外角和.关键是记住内角和的公式与外角和的公式.(1)根据多边形的内角和计算公式作答;(2)设多边形的边数为n ,则多边形的内角和可以表示成(2)180n -×°,外角和是固定的360°,从而可根据一个正多边形的一个内角等于一个外角的32列方程求解可得.【详解】解:(1)设此多边形的边数为n ,则(2)1801620n -×°=,解得11n =.∴此多边形的边数为11;(2)设此正多边形为正n 边形.Q 正多边形的一个内角等于一个外角的32,\此正多边形的内角和等于其外角和的32,\3360(2)1802n ´°=-×°,解得:5n =.答:正多边形的边数为5.18.74ACB Ð=°【分析】本题考查三角形内角和定理,三角形的外角的性质等知识.求出ADC Ð,再利用三角形的外角的性质求出DCB Ð即可解决问题.【详解】解:AM CD ^Q ,90AMD \Ð=°,8DAM Ð=°Q ,82ADM \Ð=°,ADM B DCB Ð=Ð+ÐQ ,45B Ð=°,37DCB \Ð=°,DC Q 平分ACB Ð,23774ACB \Ð=´°=°.19.(1)39BAE Ð=°,21DAE =°∠(2)21°【分析】本题主要考查了三角形内角和定理,角平分线的定义,(1)先利用三角形内角和定理求出BAC Ð的度数,进而利用角平分线的定义求出BAE CAE Ð∠、的度数,再根据三角形内角和定理求出CAD Ð的度数即可得到答案;(2)同(1)求解即可.【详解】(1)解:∵72B Ð=°,30C Ð=°,∴18078BAC B C =°--=°∠∠∠,∵AE 平分BAC Ð,∴1392BAE CAE BAC ===°∠∠∠,∵AD BC ^,即90ADC Ð=°,∴18060CAD C ADC =°--=°∠∠∠,∴21DAE CAD CAE =-=°∠∠∠;(2)解:∵42B C Ð=Ð+°,∴1801382BAC B C C =°--=°-∠∠∠∠,∵AE 平分BAC Ð,∴1692BAE CAE BAC C ===°-∠∠∠∠,∵AD BC ^,即90ADC Ð=°,∴18090CAD C ADC C =°--=°-∠∠∠∠,∴21DAE CAD CAE =-=°∠∠∠.20.(1)80°(2)90°【分析】(1)由角平分线的定义求出DAC Ð.再根据三角形外角的性质即可得到ADB Ð的度数;(2)由角平分线的定义得到22BAC BAD ABC ABE Ð=ÐÐ=Ð,.再根据三角形外角的性质得到45BAD ABE BED Ð+Ð=Ð=°.即可得到90BAC ABC Ð+Ð=°,再根据三角形内角和定理求出答案即可;本题考查了三角形外角的性质、三角形内角和定理、角平分线的相关计算等知识,熟练掌握三角形外角的性质、三角形内角和定理是解题的关键.【详解】(1)解:∵AD 平分BAC Ð交BC 于点D ,60BAC Ð=°,∴1302DAC BAC Ð=Ð=°.∵ADB Ð是ADC △的外角,50C Ð=°,∴80ADB C DAC Ð=Ð+Ð=°;(2)∵AD 平分BAC Ð交BC 于点D ,BE 平分ABC Ð交AD 于点E ,∴22BAC BAD ABC ABE Ð=ÐÐ=Ð,.∵BED Ð是ABE V 的外角,45BED Ð=°,∴45BAD ABE BED Ð+Ð=Ð=°.∴()290BAC ABC BAD ABE Ð+Ð=Ð+Ð=°∵180BAC ABC C Ð+Ð+Ð=°,∴()18090C BAC ABC Ð=°-Ð+Ð=°.21.(1)35°(2)见解析【分析】(1)根据角平分线的定义分别求出OBC Ð和OCD Ð的度数,再利用三角形外角性质求出BOC Ð的度数;(2)由三角形外角的性质可得A ACD ABC Ð=Ð-Ð,再由角平分线的定义可得12DCO ACD Ð=Ð,12CBO ABC Ð=Ð,则可求得O DCO CBO Ð=Ð-Ð,从而可得到12O A Ð=的关系.【详解】(1)解:BO Q 平分ABC Ð,CO 平分ACD Ð,1230OBC ABC \Ð=Ð=°,1652OCD ACD Ð=Ð=°,OCD OBC BOC Ð=Ð+ÐQ ,653035BOC OCD OBC \Ð=Ð-Ð=°-°=°;(2)证明:ACD ÐQ 为ABC V 的外角,A ACD ABC \Ð=Ð-Ð,BO Q 平分ABC Ð,CO 平分ACD Ð,12DCO ACD \Ð=Ð,12CBO ABC Ð=Ð,DCO ÐQ 是BCO V 的外角,()1122O DCO CBO ACD ABC A \Ð=Ð-Ð=Ð-Ð=Ð.【点睛】本题主要考查三角形的外角性质,角平分线的定义,解答的关键是结合图形分析清楚各角之间的关系.22.(1)∠DAE =10°;(2)∠DEF 12=(∠C ﹣∠B ).证明见解析;(3)∠DEF 12=(∠C ﹣∠B ).【分析】(1)依据角平分线的定义以及垂线的定义,即可得到1,902CAD BAC CAE C °Ð=ÐÐ=-Ð,进而得出1()2DAE C B Ð=Ð-Ð,由此即可解决问题.(2)过A 作AG ⊥BC 于G ,依据平行线的性质可得∠DAG=∠DEF ,依据(1)中结论即可得到1()2DEF C B Ð=Ð-Ð(3)过A 作AG ⊥BC 于G ,依据平行线的性质可得∠DAG=∠DEF ,依据(1)中结论即可得到1()2DEF C B Ð=Ð-Ð【详解】(1)如图1,∵AD 平分∠BAC ,∴∠CAD 12=∠BAC ,∵AE ⊥BC ,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE 12=∠BAC ﹣(90°﹣∠C )12=(180°﹣∠B ﹣∠C )﹣(90°﹣∠C )12=∠C 12-∠B 12=(∠C ﹣∠B ),∵∠B =50°,∠C =70°,∴∠DAE 12=(70°﹣50°)=10°.(2)结论:∠DEF 12=(∠C ﹣∠B ).理由:如图2,过A 作AG ⊥BC 于G ,∵EF ⊥BC ,∴AG ∥EF ,∴∠DAG =∠DEF ,由(1)可得,∠DAG 12=(∠C ﹣∠B ),∴∠DEF 12=(∠C ﹣∠B ).(3)仍成立.如图3,过A 作AG ⊥BC 于G ,∵EF ⊥BC ,∴AG ∥EF ,∴∠DAG =∠DEF ,由(1)可得,∠DAG 12=(∠C ﹣∠B ),∴∠DEF 12=(∠C ﹣∠B ),故答案为∠DEF 12=(∠C ﹣∠B ).【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,解题时注意:三角形内角和是180°.23.(1)180(2)96,()x y +°;(3)118BPC Ð=°;28BQC Ð=°【分析】本题主要考查了平移的性质,三角形内角和定理,三角形外角的性质,角平分线的定义等等:(1)根据平角的定义,可得12180ACB Ð+Ð+Ð=°,求解即可;(2)先求出12ÐÐ,的度数,再根据12ACF Ð=Ð+Ð代入求解即可;(3)根据(1)的结论可知124ACB ABC Ð+Ð=°,根据角平分线的定义以及(1)的结论即可求出BPC Ð,根据角平分线的定义以及(2)的结论即可求出BQC Ð.【详解】(1)解:∵12180ACB Ð+Ð+Ð=°,1A Ð=Ð,2B Ð=Ð,∴180A B ACB Ð+Ð+Ð=°,故答案为:180;(2)∵56A Ð=°,40B Ð=°,∴156A Ð==°∠,240B Ð=Ð=°,∴1296ACF Ð=Ð+Ð=°,当A x Ð=°,B y Ð=°,则1A x Ð==°∠,2B y Ð==°∠,∴()12ACF x y Ð=+=+°∠∠,故答案为:96,()x y +°;(3)解:∵56A Ð=°,180A ACB ABC Ð+Ð+Ð=°,∴18056124ABC ACB Ð+Ð=°-°=°,∵BP 、CP 分别平分ABC Ð、BCA Ð,∴12PBC ABC Ð=Ð,12PCB ACB Ð=Ð,∴116222PBC PCB ABC ACB Ð+Ð=Ð+Ð=°∵180PBC PCB BPC Ð+Ð+Ð=°,∴18062118BPC Ð=°-°=°;∵BP 平分ABC Ð,∴12QBC ABC Ð=Ð,∵CQ 平分外角ACF Ð,∴12QCF ACF Ð=Ð,∵ACF BAC ABC Ð=Ð+Ð,∴1()2QCF ABC BAC Ð=Ð+Ð,∴1282BQC QCF QBC BAC Ð=Ð-Ð=Ð=°,∴BPC Ð的度数为118°,BQC Ð的度数为28°.。
24-25七年级数学第一次月考卷(考试版A4)【测试范围:苏科版2024七上第1章-第2章】(苏科版
2024-2025学年七年级数学上学期第一次月考卷(苏科版2024)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题和解答题时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第2章。
5.难度系数:0.8。
一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在数学史上,中国古代著作《九章算术》是最早采用正负数表示相反意义量的.如果公元前500年记作500-,那么公元2024年记作( )A .2024-B .2024C .1524D .25242.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .(0.5)-+与()0.5+-C .114æöç÷-+ç÷èø与45æö--ç÷èøD .()0.01+-与1100æö--ç÷èø3.2024年6月25日14时07分,嫦娥六号返回器准确着陆于内蒙古四子王旗预定区域,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.嫦娥六号返回器在距地面高度约120公里处,以接近第二宇宙速度(约为112000米/秒)高速在大西洋上空第一次进入地球大气层,实施初次气动减速.其中112000用科学记数法可表示为( )A .311210´B .411.210´C .51.1210´D .61.1210´4.将()()()()5632--+++--+写成省略加号后的形式是( )A .5632+--B .5632-+--C .5632++-D .5632-+-+5.实数,a b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0ab >B .0a b +<C .a b >D .0a b -<6.下列计算不正确的是( )A .()212343--´-+=-B .()2123415--´--=-C .()2(1)23415--´--=D .()2(1)2341--´-+=-7.如图,正六边形ABCDEF (每条边都相等)在数轴上的位置如图所示,点A 、F 对应的数分别为2-和1-,现将正六边形ABCDEF 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E 所对应的数为0,连续翻转后数轴上2025这个数所对应的点是( )A .A 点B .B 点C .C 点D .F 点8.把长为2022个单位长度的线段AB 放在单位长度为1的数轴上,则线段AB 能盖住的整点有( )A .2021个B .2022个C .2021或2022个D .2022或2023个9.数轴上的三点A 、B 、C 所表示的数分别为a 、b 、c 且满足0a b +>,0a c ×<,则原点在( )A .点A 左侧B .点A 点B 之间(不含点A 点B )C .点B 点C 之间(不含点B 点C )D .点C 右侧10.数形结合是解决一些数学问题的重要思想方法,比如12x x -在数轴上表示数1x ,2x 对应的点之间的距离.现定义一种“H 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1-,1,2进行“H 运算”,得1112126--+--+-=.下列说法:①对m ,1-进行“H 运算”的结果是3,则m 的值是4-;②对n ,3-,5进行“H 运算”的结果是16,则n 的取值范围是35n -<<;③对a a b c ,,,进行“H 运算”,化简后的结果可能存在6种不同的表达式.其中正确的个数是( )A .0B .1C .2D .3二、填空题:本题共8小题,每小题4分,共32分。
2023-2024学年人教版数学八年级上册+第一次月考测试卷
第一次月考测试卷(满分120分,时间120分钟)题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列长度的三条线段不能组成三角形的是( )A.5,5,10B.4,5,6C.4,4,4D.3,4,52.如图所示,AD=AE,BD=CE,∠ADB=∠AEC=100°,∠BAE=70°,下列结论错误的是( )A.△ABE≌△ACDB.△ABD≌△ACEC.∠C=30°D.∠DAE=40°3.如图,在Rt△ABC中,∠ACB=90°,点D在AB 边上,将△CBD沿CD 折叠,使B 恰好落在AC 边上的点E处,若∠A=26°,则∠CDE的度数为( )A.71°B.64°C.80°D.45°4.如图,下列条件中,不能证明△ABC≌△DCB的是( )A. AB=DC,AC=DBB. AB=DC,∠ABC=∠DCBC. BO=CO,∠A=∠DD. AB=DC,∠DBC=∠ACB5.有下列说法:①三角形的中线就是过顶点平分对边的射线;②三角形的三条高所在的直线相交于一点.这一点不在三角形内部就在三角形的外部;③三角形的两边之差大于第三边;④三角形按边分类可分为等腰三角形和三边都不相等的三角形,其中,说法不正确的是( )A.①②B.①③C.①②③D.①②③④6.若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF的长为( )A.5B.8C.7D.7或87.设四边形的内角和等于a,五角形的外角和等于b,则a与b的大小关系是( )A. a>bB. a=bC. a<bD. b=a+180°8.如图,AD∥BC,AD=BC,AC和BD 相交于点O,EF 过点O并分别交AD,BC于点 E,F,则图中的全等三角形共有( )A.1对B.2对C.3对D.4对9.上午9时,一艘船从A 处出发以每小时20km的速度向正北方向航行,11时到达B 处.若在A 处测得灯塔C在北偏西34°方向上,且∠ACB=32∠BAC,则在 B 处测得灯塔C 的方向为( )A.北偏西68°B.南偏西85°C.北偏西85°D.南偏西68°10.如图,在△ABC中,求作一点P,使点P 到∠CAB 两边的距离相等,且PA=PB,下列确定点 P 的方法正确的是( )A. P为∠CAB,∠CBA平分线的交点B. P 为∠CAB的平分线与AB 的垂直平分线的交点C. P 为AC,AB两边上的高的交点D. P为AC,AB 两边的垂直平分线的交点二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)B11.如图,△ABC≌△ADE,BC的延长线交DA 于点F,交DE 于点G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB 的度数为 .12.如图,AD是△ABC的中线,AE 是△ABD的中线,若DE=3cm,则 EC= cm.13.如图,在△ABC 和△ADE 中,∠CAE=∠BAD,AC=AE.(1)若添加条件 ,则可用“SAS”判定△ABC≌△ADE;(2)若添加条件 ,则可用“ASA”判定△ABC≌△ADE.14.如图,已知在△ABC中,∠ABC与∠ACB的平分线交于点P.当∠A=70°时,则∠BPC的度数为 .15.如图,为了丰富铁路BD 附近A,E两个小区居民的业余生活,打算在铁路BD边上建一个滑雪场C,使C到两个小区的距离相等,若BD=25 km,AB=15 km,AB⊥BD 于点B,ED⊥BD 于点D,∠A=∠DC E,则C,B两点间的距离为 km.16.如图,AD和CB 相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE,你所添加的条件是.(只添一个即可)17.如图,四边形ABCD的对角线AC,BD 相交于点O,△ABO≌△ADO,下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC,其中,正确的是 (填序号).18.有一个六边形钢架ABCDEF(如图1所示),它由6条钢管铰接而成.在生活中,要保持该钢架稳定且形状不变,必须在接点处增加一些钢管铰接.通过实践可知至少再用三根钢管.请同学们想一想,下面固定方法中(如图2所示)能保持该六边形钢架稳定且形状不变的有 .(只填序号)三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(8分)如图,OC 平分∠AOB,P是OC上一点,∠1+∠2=180°,求证:PD=PE.20.(9分)已知一个等腰三角形的周长为21 cm,两边之差为6 cm,求此等腰三角形各边的长.21.(9分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点 F 在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE,AF 与BE 之间的数量关系,并说明理由.22.(10分)如图,在四边形ABCD 中,.AB≠BC,∠A=∠ABC=∠C=70°,点 E,F 分别在AD,BC上,且BE,DF 分别是∠ABC和∠ADC的平分线,求证:.BE‖DF.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CF与AB 相交于点F,且CD=BE,请探索∠ACD,∠CBA,∠DAF之间的数量关系,并说明理由.24.(12分)已知∠MON=90°,A,B分别是射线OM,ON上的动点,△OAB的两外角平分线AP,BP交于点 P.(1)如图①,.∠OAB=45°,求∠P的度数;(2)如图②,∠OAB≠45°,∠P的度数是否变化?若不变化,请说明理由;若发生变化,则.∠P的度数与哪些角有关?第一次月考测试卷1. A2. D3. A4. D5. C6. C7. B8. C9. C 10. B11.66° 12.913. AB=AD(答案不唯一) ∠C =∠E (答案不唯一)14.125° 15.10 16. AE=CE(答案不唯一)17.①②③ 18.①②③④⑤⑥19.证明过点P 分别作OA ,OB 的垂线,垂足分别为M ,N 则 ∠PMD =∠PNE =90°,因为点 P 在.∠AOB 的平分线上.所以 PM=PN.因为 ∠1+∠2=180°,∠1+∠PDM =180°,所以∠2=∠PDM.所以. △PDM ≅△PEN(AAS ).所以 PD=PE.20.解设此等腰三角形的腰长为x cm ,底边长为 y cm ,当腰比底长6cm 时,有 {2x +y =21,x −y =6,解得 {x =9,y =3.所以三边长分别为 9 cm,9 cm, 3cm,当底比腰长 6 cm 时,有 {2x +y =21,y −x =6. 解得 {x =5,y =11.因为5+5<11,不符合三边关系,所以不符题意,舍去.所以此等腰三角形各边的长分别为9 cm,9 cm,3cm.21.(1)证明 因为∠C=90°,所以DC⊥AC.因为AD 平分∠BAC,DE⊥AB.所以DC=DE,∠C=∠DEB=90°,在 Rt△DCF 和 Rt△DEB 中, {DF =DB,DC =DE.所以 Rt△DCF≌Rt△DEB(HL),所以CF=EB.(2)解AE=AF+BE.理由:因为 AD 平分∠BAC.所以∠CAD=∠EAD,在△ACD和△AED中,{∠CAD=∠EAD,∠C=∠DEA,AD=AD.所以△ACD≌△AED(AAS).所以AC=AE.由(1)知BE=CF.所以AC=AF+CF=AF+BE.所以AE=AF+BE.22.证明在四边形ABCD中,∠ADC=360°−3×70°=150°.因为 DF是∠ADC的平分线.所以∠ADF=12∠ADC=12×150∘=75∘.因为 BE是∠ABC的平分线.所以∠ABE=12∠ABC=12×70∘=35∘,所以∠AEB=180°−(∠A+∠ABE)=75°,所以∠AEB=∠ADF.所以BE∥DF.23.解∠ACD=∠CBA+∠DAF,理由:∠ACB=90°,CE⊥BE.所以∠ACB=∠BEC=90°.所以∠CBE+∠BCE=90°,∠ACD+∠BCE=90°.所以∠CBE=∠ACD.在△ACD和△CBE中{AC=CB,∠ACD=∠CBE,CD=BE,所以△ACD≌△CBE(SAS).所以∠ADC=∠CEB=90°,所以.∠ADF=∠BEC=90°.又因为∠DFA=∠EFB,所以∠DAF=∠EBF.所以∠ACD=∠CBE=∠CBA+∠EBF=∠CBA+∠DAF.24. 解(1)由∠MON= 90°,∠OAB=45°,得∠ABN=∠MON+∠OAB=135°,∠BAM=180°−∠OAB=135.因为AP平分∠BAM,BP 平分∠ABN.所以∠PAB=12∠BAM=67.5∘,∠PBA=12∠ABN=67.5°.因为∠P+∠PAB+∠PBA=180°,所以∠P=180°−∠PAB−∠PBA= 45°.(2)∠P 的度数不会发生变化,即∠P=45°.理由:因为AP平分∠BAM. BP 平分∠ABN.所以∠PAB=12∠BAM.∠PBA=12∠ABN.因为∠BAM=180°-∠OAB.∠ABN=180°-∠OBA.所以∠PAB+∠PBA=180∘−12(∠OAB+∠OBA).因为∠OAB+∠OBA=180°−∠MON=90°,所以∠PAB+∠PBA=135°,所以∠P=180°−(∠PAB+∠PBA)=45°.。
2024—2025学年度第一学期一年级数学 冀教版第一次月考测试卷(word版 有答案)
2024—2025学年度第一学期第一次学情诊断一年级数学试卷亲爱的同学,这份试卷将记录你的自信、沉着、智慧和收获。
请认真审题,看清要求,仔细答题,相信你能行!一、看图写数。
(8分)二、画一画,比一比。
(14分)1.高的画“√ ”,矮的画“○”。
2.最高的画“√ ”,最矮的画“△”3.重的画“√ ”,轻的画“○”。
4.最重的画“√”,最轻的画“△”。
三、看图圈数。
(6分)四、在里填上“>”“<”或“=”。
(10分)7 5 4 8 3 3 4 7 3 44 4 8 3 15 8 96 9五、数一数,圈一圈,比一比。
(12分)( )最多,( )最少。
(多,少) 比 (多,少)六.画一画(12分)1.看数继续画。
2. 按要求画一画。
(1)画,比少。
(2)画,比多。
(3)画,与同样多。
七、小动物运动会。
(8分)1. 跑在最()面,跑在最()面。
2. 跑在的()面,跑在的()面。
八、看图填一填。
(25分)1.(1)一共有( )个水果,其中有( )个,有( )个。
(2)从左数第( )个、第( )个、第( )个是。
(3分)(3)从左数,第4个水果是( );从右数,第5个水果是( )。
2.数一数,填一填。
(1)一共有( )只小动物。
从左数, 排第( ),排第( )。
(2)从右数排第()。
(3)从左数在第2个小动物下面画“△”,从右数的两个小动物圈起来。
参考答案一、6 3 5 8二、略三、四、> < = < < = > < < <五、少○< 多○>六、1.△△△△△△△△△△△2.(1)画5个○(比0个多、比6个少即可)(2)画5个 (比4个多即可) (3)画6个▲七、1.前后 2.后前八、1. (1)10 3 6 (2)1 2 6 (3)梨苹果2. 7 3 7 5 略。
人教版2023-2024学年数学五年级上册第一次月考达标测试卷(第1-2单元)
人教版2023-2024学年数学五年级上册第一次月考达标测试卷(第1-2单元)一、认真填空。
(共9小题,每空1分,共21分)1.1.36×1.2的积的末位上的数字是 ,保留两位小数约是 。
2.把1.8+1.8+1.8+⋯+1.8⏟101个1.8改写成乘法算式是 ,结果是 。
3.1.85×101=1.85×100+1.85 运用了 律。
4.16个0.75 相加的和是 。
5.36×42的积是3.6×0.42 的积的 倍。
6.刘浩、张亮、文翔三人同在五(1)班学习,刘浩坐在第2列,第5行,用数对表示是(2,5),张亮坐在第4行,第3列,用数对表示是 。
文翔的座位用数对表示是(3,6),那么他坐在第 列,第 行。
7.在横线上填上“>”“<”或“=”。
43×1.02 43 57×0.96 57 8.8×2 8.8+88.根据运算定律,在横线上填上合适的数。
(1)6.1×4.5+3.9×4.5=( +3.9)×(2)5.6×9.9= × - ×9.五年级(1)班的同学进行队列表演,每队人数相等,李鑫站在最后一列的最后一个,用数对表示是(8,6),这一队共有 人。
刘威站在李鑫的正前面,刘威的位置用数对表示是 。
二、仔细判断。
(共5小题,每小题2分,共10分)10.4.698 保留两位小数是4.7。
( )11.将点 A (3,6)向右平移两格后,位置为(3,8)。
( )12.一种布的价格是每米2.77元,奶奶买1.5米布应付4.155元。
( )13.甲数是12,乙数是甲数的 1.2倍,求乙数。
列式计算是 12×1.2=144。
( )14.1箱橘子 24.5元,买 4箱橘子的总价估计会超过90元,但不到100元。
( )三、精心选择。
(共5小题,每小题2分,共10分)15.下列各式中,( )的结果小于1。
高一上学期第一次月考数学测试卷带答案
高一上学期第一次月考数学测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题 (共6小题)1.若2313a ⎛⎫= ⎪⎝⎭,1313b ⎛⎫= ⎪⎝⎭和1323c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c b a >>D .c a b >> 2.设0a >43a a ) A .16aB .15aC .14aD .13a3.已知1a <233(1)a a -=( ) A .-1B .1C .21a -D .12a -4.已知,R x y ∈,则“x y <”是“20242024x y <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x ≤时()22xaf x =+,则()1f =( ) A .2 B .4C .2-D .4-6.已知3log 2a =,1215b ⎛⎫= ⎪⎝⎭和13125c ⎛⎫= ⎪⎝⎭,则实数,,a b c 的大小关系正确的是( ) A .a b c << B .b c a << C .c b a << D .c a b <<二.多选题(共3小题) 7.下列计算正确的是( )A .1130.0113-= B .()()2350a a a => C .()2024202444ππ--D ()360a a a a a =>8.已知14a a -+=,则( )A .11226a a -+= B .2214a a -+= C .3352a a -+= D .123a a --=9.已知9115log log 276a a -=-,则a =( ) A .181B 3C .33D .81三.填空题(共3小题) 10.求值:211log 338lg1002+++= .11.已知23a =,2log 5b =则15log 8= (用a 、b 表示) 12.若实数1a b >>,且5log log 2a b b a +=,则2ab= .参考答案1 2 3 4 5 6 7 8 9 10 11 12 C DBCACCDABCBD103a b +1一.选择题(共6小题) 1.C【详解】因为13xy ⎛⎫= ⎪⎝⎭在R 上为减函数,故21331133⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即a b < 又13y x =在(0,+∞)上为增函数,故11332133⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即c b >,故c b a >>.故选:C. 2.D11414443333a a a a a a ⎛⎫⋅= ⎪⎝⎭.故选:D3.B【详解】因为1a <323(1)111a a a a a a -=-+=-+=,故选:B 4.C【详解】因为指数函数2024x y =的定义域为R ,且在定义域上单调递增 所以当x y <时,20242024x y <成立;当20242024x y <,x y <成立; 所以“x y <”是“20242024x y <”的充要条件,故选:C. 5.A【详解】因为定义在R 上的函数()f x 满足()()0f x f x -+=所以()f x 是奇函数,且()00f =,故0202a+=,解得2a =-故当0x ≤时()222x f x =-+,由奇函数性质得()()11f f =--而()121222f --=-+=-,故()()112f f =--=,故A 正确.故选:A6.C【详解】因为331log 2log 32a =>=,1211525b ⎛⎫== ⎪⎝<⎭所以a b >,而112411525b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 13125c ⎛⎫= ⎪⎝⎭故我们构造指数函数1()25xf x ⎛⎫= ⎪⎝⎭,得到1()4b f =和1()3c f =,由指数函数性质得()f x 在R 上单调递减因为1143<,所以c b <,综上可得c b a <<,故C 正确.二.多选题(共3小题) 7.CD【详解】对A 1111330.0131030-=+=故A 错误;对B ,()()2360a a a =>故B 错误; 对C ,()2024202444ππ-=-故C 正确;对D ()111362360a a a a a a ++==>故D 正确.故选:CD.8.ABC【详解】A :因为21112224a a a a --⎛⎫+=+-= ⎪⎝⎭,所以11226a a -+=,显然11220a a -+>,所以11226a a -+=故正确;B :因为()2221216214a a a a --+=+-=-=,故正确;C :因为()()33122141352a a a a a a ---+=+-+=⨯=,故正确;D :因为21112224a a a a --⎛⎫+=-+= ⎪⎝⎭,所以211222a a -⎛⎫-= ⎪⎝⎭,所以11222a a --=11111222223a a a a a a ---⎛⎫⎛⎫-=+-=± ⎪⎪⎝⎭⎝⎭故选:ABC.9.BD【详解】设3log a t =,则913log ,log 272a a t t ==,所以原式253t t =-=-,即225120t t --=解得123,42t t =-=,所以31323log ,log 42a t a t ==-==,所以3233a -=81a =. 故选:BD三.填空题(共3小题) 10.10【详解】解:()22111+log 3log 332338+lg100+2=2+lg10+22=2+2+23=10⨯⨯; 故答案为:10.11.3a b +/3b a+ 【详解】因为23a =,则2log 3a =,又因为2log 5b =,所以215222log 833log 8log 15log 3log 5a b===++.故答案为:3+a b. 12.1【详解】因为1a b >>,所以0log 1a b <<,由15log log log log 2a b a a b a b b +=+=解得1log 2a b =或log 2a b =(舍去),所以12a b =,即2a b =,所以21a b =,故答案为:1。
江西省赣州市2024-2025学年上学期七年级数学第一次月考阶段性测试卷(第1章和第2章)
江西省赣州市2024-2025学年上学期七年级数学第一次月考阶段性测试卷(第1章和第2章)一、单选题1.某市文旅局的统计信息显示2020年国庆假日期间本地接待游客9207000人次,该数据可用科学记数法表示为( )A .4920.710⨯B .592.0710⨯C .69.20710⨯D .79.20710⨯ 2.某天傍晚,北京的气温由中午的零上3C ︒下降了5C ︒,这天傍晚北京的气温是( ) A .零上8C ︒ B .零上2C ︒ C .零下2C ︒ D .零下8C ︒ 3.下列各式中计算正确的是( ).A .|3||2|1--+-=B .311252⎛⎫--÷-= ⎪⎝⎭C .43443433⎛⎫-÷-⨯= ⎪⎝⎭ D .11(2)24⎛⎫-÷-= ⎪⎝⎭ 4.已知()2230a b -++=,那么2a b 的值是( )A .12-B .6-C .12D .65.已知5x =,2y =,且0x y +<,则x y -的值等于( )A .7和7-B .7C .7-D .以上答案都不对 6.两个非零的有理数相除,如果交换它们的位置,若商不变,那么( )A .两数相等B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数7.在数轴上有间隔相等的四个点M N P Q ,,,,所表示的数分别为m n p q ,,,,其中有两个数互为相反数,若m 的绝对值最大,则数轴的原点是( )A .点NB .点PC .点P 或N ,P 的中点D .点P 或P ,Q 的中点8.甲、乙二人同时从A 地去B 地,甲每分走60米,乙每分走90米,乙到达B 地后立即返回.在离B 地180米处与甲相遇.A 、B 两地相距( )米.A .900B .720C .540D .10809.下表是小博家上半年六个月的用电情况,每月规定用电量为a 度,表中的正数表示超过每月规定用电量.电费交费标准是:在每月规定用电量内的按每度电0.6元交费,超过的部分按每度电1元交费,则小博家上半年的总电费为( )A .(618)a +元B .(3.644.8)a +元C .(1.844.8)a +元D .(3.618)a +元 10.有理数a 、b 、c 在数轴上对应点的位置如图所示,若|b |>|c |,则下列结论中正确的是( )A .abc <0B .b +c <0C .a +c >0D .ac >ab二、填空题11.把下列各数分别填在相应的大括号里:7-,3.5, 3.14-,π,0, 152-, 1319,0.03,10,5-℅, 03..- 自然数集合:{…};整数集合:{…};非负数集合:{…};负分数集合:{…};偶数集合:{…};奇数集合{…}.12.化简:①23⎡⎤⎛⎫-+-= ⎪⎢⎥⎝⎭⎣⎦,②15-的相反数是 .③比较大小0.5-23-. 13.若a ,b 互为相反数,x ,y 互为倒数,m 为最大的负整数,则2021(a +b )-(xy )2021+m 的值是.14.计算:111123344520132014++++=⨯⨯⨯⨯L ( ) 15.四个各不相等的整数a ,b ,c ,d ,它们的积···9a b c d =,那么+++a b c d 的值是. 16.有理数a ,b 两个有理数在数轴上对应的位置如图所示,化简b a b --=.17.如下是张小琴同学的一张测试卷,她的得分应是 .18.将一根绳子对折1次,从中间剪断,绳子变成3段,将一根绳子对折2次.从中间剪断,绳子变成5段,将一根绳子对折3次,从中间剪断,绳子变成9段;现把一根足够长的绳子对折7次,从中间剪断.绳子会变成段.19.现有四个有理数3,4,-6,10,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其运算的结果是24,请你写出一个符合条件的算式.三、解答题20.计算.(1)()()()()181274++----+;(2)()()()()2.7 2.5 5.57.3---+--+.(3)13.75(7.25)0.75 2.75-+----+;(4)331( 6.25)() 1.7548+---- 21.设[]a 表示不小于a 的最小整数,如:[]2.33=,[]514345⎡⎤-=⎥-⎢⎣⎦=, (1)求[][]5115 2.6⎥+-⎤⎢⎣⎦--⎡的值; (2)令{}[]a a a =-,求{}.31154444⎡⎤---⎢⎥⎣⎣⎡⎤⎢⎥⎦⎦-的值. 22.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为12.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是,点P 表示的数是 (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发.求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为6个单位长度?23.阅读下面材料:若点A B 、在数轴上分别表示实数a b 、,则A B 、两点之间的距离表示为AB ,且AB a b =-;回答下列问题:(1)①数轴上表示x 和2的两点A 和B 之间的距离是;②在①的情况下,如果3AB =,那么x 为;(2)代数式12x x ++-取最小值时,相应的x 的取值范围是.(3)若点、、A B C 在数轴上分别表示数a b c 、、,a 是最大的负整数,且2(5)0-++=c a b ,①直接写出a b c 、、的值.②点、、A B C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.24.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a ≠相除记作n a ,读作“a 的n 次商”.(1)直接写出结果:312⎛⎫= ⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( )A .任何非零数的2次商都等于1B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______ (4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭。
七年级数学第一次月考测试卷
七年级数学第一次月考测试卷一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 下列各数中,是正数的是()A. -| -2|B. -(-(1)/(2))C. (-1)^3D. -2023.3. 在数轴上,距离原点3个单位长度的点表示的数是()A. 3B. -3C. 3或 -3D. 6或 -6。
4. 计算:(-2)+3的结果是()A. -1B. 1C. -5D. 5.5. 下列式子中,正确的是()A. 5 - (-2)=5 + 2B. 5 - (-2)=5 - 2C. -1 - 1 = 0D. 3-(+5)=3 + 56. 把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是()A. -8 + 4 - 5 + 2B. -8 - 4 - 5 + 2C. -8 - 4 + 5 + 2D. 8 - 4 -5 + 2.7. 计算:-2×3的结果是()A. 6B. -6C. 5D. -5.8. 一个数的倒数是它本身,则这个数是()A. 1B. -1C. 1或 -1D. 0。
9. 计算:(-2)^3的值是()A. 8B. -8C. 6D. -6.10. 若| a| = 3,| b| = 2,且a< b,则a + b的值为()A. -1或 -5B. 1或 -5C. -1或5D. 1或5。
二、填空题(每题3分,共18分)1. 比较大小:-3___-2(填“>”“<”或“=”)。
2. 某天的最高气温为6^∘C,最低气温为-2^∘C,则这天的温差是___^∘C。
3. 绝对值小于3的整数有___个。
4. 计算:(-1)÷(-(1)/(2))=___。
5. 若a,b互为相反数,则a + b =___。
6. 规定一种新运算:a*b = a^2 - b,则2*3 =___。
三、解答题(共52分)1. (8分)计算:(1) (-12)+5 - (-14)(2) (-2)×(-5)÷(-(1)/(2))2. (8分)把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来:-3,0,2,-1(1)/(2),1。
第一次月考测试卷 (1-2单元测试)(无答案)2024-2025学年五年级数学上册北师大版
第一次月考测试卷时间:90分钟满分:100分题号一二三四五六总分得分一、填空。
(每空1分,共17分)1.28是( )的8倍;( )和4相乘的积是5。
2.4÷6的商用循环小数表示是( ),把它精确到千分位是( )。
3.长方形有( )条对称轴,正方形有( )条对称轴,等边三角形有( )条对称轴,圆有( )条对称轴。
4.汽车在笔直的公路上行驶,汽车车身的运动是( )现象。
5.在〇里填上“>”“<”或“=”。
9.4÷0.9〇9.4×0.9 13.6÷2.4〇13.6÷0.44.78÷4.78〇4.78÷0.478 3.28÷1.8〇3.28÷1.66.一根绳子长3.8dm,每0.6dm剪成一段,一共可以剪成( )段,还剩( )dm。
7.一个小数,如果把它的小数部分扩大到原来的4倍,原数就变成了5.4,如果把它的整数部分扩大到原来的6倍,原数就变成了18.6,这个小数是( )。
8.一个数与它本身分别相加、相减、相除,所得的和、差、商的和是15.76,这个数是( )。
二、判断。
(对的画“ √”,错的画“×”)(5分)1.78.6÷11的商保留两位小数是7.15。
( )2.3.7÷0.9=37÷9=4…1 ( )3.一个数除以小数,商一定大于被除数。
()4.三角形是轴对称图形。
( )5.妈妈拉抽屉时抽屉的运动是平移。
( )三、选择。
(将正确答案的序号填在括号里)(10分)1.下列图形中,对称轴最多的图形是( )。
A. B. C. D2.以虚线为对称轴,( )是右图的轴对称图形。
B. C. D.A3.下列图形中,( )是由图形平移得到的。
B.C D4.如下图,将方格纸中上面的图形平移后,和下面的图形拼成一个长方形,正确的平移方法是( )。
A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格5.在下面四个图案中,轴对称图形共有( )个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学第二学期 第一次月考试卷
一、选择题(每小题3分,共42分) 题目 1
2
3
4
5
6
7
8
9
10 11 12 13 14 答案
1. 下列说法中,不正确的是( )
A.垂线段最短
B.两直线平行,同旁内角相等
C.对顶角相等
D. 两点之间,线段最短
2.在下列运算中,正确的是( ) A.
2
1
813
=-
B. 1)1(2=--
C. 3273
-=- D.
8643
=
3. 如图,直线a ∥b ,∠1 = 60°,∠2 = 40°,则∠3等于
A . 40°.
B . 60°.
C . 80° .
D . 100°.
4.下列说法中错误的....
是( ) A.4的算术平方根是2 B. 负数有立方根,并且是负数 C.8的立方根是±2 D.-1的立方根是-1 5.如图(1)能判定EB ∥AC 的条件是( ) A .∠C =∠ABE
B . ∠A =∠EBD
C .∠C =∠ABC
D . ∠A =∠ABE
6.如图(2),BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于( )
A .35°
B .45°
C .55°
D . 65°
(2) (3)
7.如图(3),已知直线AB//CD ,BE 平分∠ABC ,交CD 于D ,∠CDE=150°,则∠C 的度数为( ) A .150° B .130° C .120° D .100°
8.下列命题错误..
的是( ) A .3是无理数 B .π+1是无理数 C.5是无限不循环小数 D .
3
2
是分数 9. 若
a 、
b 为实数,且满足032=-+-b a ,则a b -的值为( )
A 、1
B 、0
C 、-1
D 、以上都不对
10.下列说法正确的个数有( )
① 2是8的立方根 ;②4±是64的立方根;
③ 无限小数都是无理数; ④带根号的数都是无理数。
A :1个
B :2个
C :3个
D :4个 11.下列平移可以由一个图形经过平移变换得到的是( ) A. B. C. D.
.
12.AD 是∠E AC 平分线,AD ∥BC, ∠B =30°,则∠C =( ) A .20°
B .30°
C .50°
D .60°
13. 如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( ) A .105° B .110° C .115° D . 120° 14. 如图所示:直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( ) A .23° B 。
42° C 。
65° D 。
19°
二、填空题(每小题3分,共18分) 15.
32-+ =22___________.
学校: 班级: 姓名: 座号: 分数________
密
封
线
内 不
要
答 题
(1)
(2)
a
b
1
3
2
(第3题图)
A
B
C
D
E
A B C D
E
(第14题)
16.16的平方根是 .
17.如图,将直线l 1沿着AB 的方向平移得到直线l 2,若∠1=50°,则∠2的度数是_______.
18. 如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上, 如果∠1=27°,那么∠2的度数为_______________.
19.如图, AB//CD ,∠1=58°,FG 平分∠EFD,则∠FGB 的度数为______________. 20.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置
上,若∠EFG =55°, 则∠2=_______.
18题 19题 20题
三、解答题
21. 计算:
(1)04.0+364- -41 (2). 2
3)2(8-+21-+ 22、解下列方程.
(1)9x 2-25=0 (2)(x+3)3+27=0 (3)()
2143-x 2
=-
23. 如图,直线AB ∥CD ,BC 平分∠ABD ,165∠=︒,求2∠的度数.
24.已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,求证∠BDE=∠C. 证明: ΘAD ⊥BC ,FG ⊥BC (已知),
∴∠ADC=∠FGC=90°( ).
∴AD ∥FG ( ). ∴∠1=∠3( )
又Θ∠1=∠2,(已知),
∴∠3=∠2( ).
∴ED ∥AC ( ). ∴∠BDE=∠C ( ).
25.已知2a-1的平方根是±3, 3a+b-1的平方根是±4, 求a+2b 的平方根.
26.(1)如图,已知EF ∥BC ,∠1=∠B .问:DF 与AB 平行吗?
请说明理由
(2)如图,AD ∥BC ,∠B=60°,∠1=∠C. ①求∠C 的度数。
②如果DF 为∠ADC 的平分线,那么DF 与AB 平行吗?说明理由。
27.(1)【探索】小明和小亮在研究一个数学问题:已知AB ∥CD ,AB 和CD 都不经过点P ,探
索∠P 与∠A ,∠C 的数量关系.
【发现】在图①中,小明和小亮都发现∠APC =∠A +∠C .
小明是这样解答的:过点P 在∠APC 内部作PQ ∥AB ,
∴∠APQ =∠A (______________________________________). ∵PQ ∥AB ,AB ∥CD ,
∴PQ ∥CD (__________________________________________). ∴∠CPQ =∠C .
∴∠APQ +∠CPQ =∠A +∠C ,即∠APC =∠A +∠C . 小亮是这样解答的:过点P 作PQ ∥AB ∥CD . ∴∠APQ =∠A ,∠CPQ =∠C .
∴∠APQ +∠CPQ =∠A +∠C ,即∠APC =∠A +∠C .
B A
C D E F G M N 12
A
C B D
E F G
1
请在上面解答过程中的横线上填写依据.
两人的解答过程中,完全正确的是________.
(2)【应用】在图②中,若∠A=120°,∠C=140°,则∠P的度数为________;在图③中,若∠A=30°,∠C=70°,则∠P的度数为________.
(3)【拓展】在图④中,探索∠P与∠A,∠C的数量关系,并说明理由.。