交流伺服电机的驱动技术
三相交流伺服电机驱动系统的研究

第 5期
李
军 :三相交流伺服 电机驱 动系统的研究
1 7
图 1 交 流伺服进 给系统原理 图
高系统 的快速 性 ,抑 制 电流 环 内部 干扰 限制 最大 电
流,保障系统安全运行。电流环 中的电流调节器输
出控制 电压 与 外 加 调 制 电压 叠 加 ,送 人 脉 冲形 成 、 分配 和驱动 环 节 ,从 而 控 制 IB G T通 断 时 间 ,调 节 P WM 对 电动 机输 出的平 均功率 ,通 过霍尔 电流 传感
器检测 电枢 电流 ,形 成 电流反馈环节 。
速度环 的 作 用 是保 证 转 速 跟 随给 定 电压 变 化 , 具有 良好 的跟 随性 ;对 负载 变化 具 有较 强 的 抗 干扰
作用 ,电机运行稳定 。
位置环作 为 系统外 环 ,其作 用 是保 证 系统 静 态 精度 和动态跟 踪 的能力 。半 闭环 结 构 以伺 服 电动 机 轴 的角位 移为 反馈 量 ,全 闭环结 构 以工 作 台 的直 线 位移作 为系统 的位 置反 馈 。位置 环 的位 置 检测 元 件 光 电编码 器将运 动 机构 实 时 的转 角变化 以脉 冲形 式 传输 到 D P中进 行编 码器 脉 冲计数 ,以获得 数字 化 S 位置信 息 。位置 环 的给 定可 以使 操 作者 在 现 场 即时 输入期 望的位 置数 据 ,也可 以由编 写好 的运 动轨 迹 程序 给出位置信 息。
本 文设计 的三相 交 流伺 服 电机 驱 动 系统主 要 由
功 率逆 变 、P WM、位 置 控 制 、速 度 控 制 、电 流 控
统能够实现高精度 、高动态性能等优点,越来越受
到人们 的关 注 。
制 、电动机等部分组成。伺服系统中有 电流环、速
交流伺服电机的工作原理

交流伺服电机的工作原理
伺服电机是一种特殊的电动机,它通过对电机的控制器进行反馈控制,实现精确的位置、速度和力矩控制。
以下是伺服电机的工作原理:
1. 传感器反馈:伺服电机系统通常会使用编码器来测量电机的转子位置,并将该信息反馈给控制器。
编码器可以采用绝对编码器或增量编码器,用于提供准确的位置信息。
2. 控制器:控制器是伺服电机系统的核心部件,它接收传感器反馈的位置信号,并根据设定值和反馈值之间的误差来生成控制信号。
控制器可以采用PID控制算法或其他控制算法,以确保输出信号能够精确地调节电机的转速和位置。
3. 动力放大器:控制器生成的控制信号会经过动力放大器,放大器会将低电平的控制信号转换为足够大的电流或电压,以驱动电机。
动力放大器通常具有过载保护功能,以防止电机过载或损坏。
4. 电机:伺服电机是一种特殊设计的电动机,它通常由一个转子和一个固定的定子组成。
控制器通过控制输出信号,调节电机的电流、电压和频率,以驱动转子旋转。
伺服电机通常具有高转矩、高精度和高响应速度的特点。
5. 反馈系统:伺服电机系统中的反馈系统起到提供准确位置信息的作用。
当电机工作时,编码器会不断测量转子的位置,并通过传感器将该信息反馈给控制器。
控制器会根据反馈信号和
设定值之间的误差来调整控制信号,以实现精确的位置控制。
通过以上的工作原理,伺服电机可以实现高精度的位置控制、速度控制和力矩控制。
它广泛应用于工业自动化、机器人技术、医疗设备等领域,为各种应用提供高效、精准的运动控制。
交流伺服电机实验报告

一、实验目的1. 了解交流伺服电机的结构、工作原理和特点。
2. 掌握交流伺服电机的驱动方法及控制策略。
3. 通过实验验证交流伺服电机的性能,为实际应用提供参考。
二、实验内容1. 交流伺服电机的结构分析2. 交流伺服电机的工作原理3. 交流伺服电机的驱动方法4. 交流伺服电机的控制策略5. 交流伺服电机的性能测试三、实验设备及仪器1. 交流伺服电机实验台2. 交流伺服电机驱动器3. 交流伺服电机控制器4. 功率分析仪5. 数据采集卡6. 计算机四、实验步骤1. 交流伺服电机的结构分析(1)观察交流伺服电机的结构,了解其主要组成部分,如定子、转子、端盖、轴承等。
(2)分析各部分的功能及相互关系。
2. 交流伺服电机的工作原理(1)观察交流伺服电机的工作过程,了解其电磁感应原理。
(2)分析交流伺服电机的启动、运行和停止过程。
3. 交流伺服电机的驱动方法(1)学习交流伺服电机的驱动电路,了解其工作原理。
(2)分析驱动电路中的主要元件及其作用。
4. 交流伺服电机的控制策略(1)学习交流伺服电机的控制方法,了解其闭环控制原理。
(2)分析控制策略中的主要参数及其调整方法。
5. 交流伺服电机的性能测试(1)连接实验设备,进行实验前的准备工作。
(2)启动交流伺服电机,观察其运行状态,记录相关数据。
(3)分析实验数据,验证交流伺服电机的性能。
五、实验结果与分析1. 交流伺服电机的结构分析通过观察实验台上的交流伺服电机,我们可以看到其主要由定子、转子、端盖、轴承等部分组成。
定子由线圈绕制而成,转子由永磁体构成。
当交流电源通过定子线圈时,产生旋转磁场,驱动转子旋转。
2. 交流伺服电机的工作原理实验过程中,我们发现交流伺服电机在启动、运行和停止过程中,其转速、转矩和功率等参数均与输入的交流电源频率、电压和相位角有关。
通过调整这些参数,可以实现交流伺服电机的精确控制。
3. 交流伺服电机的驱动方法实验中,我们学习了交流伺服电机的驱动电路,了解到其主要由逆变器、滤波器、电机和控制器等部分组成。
交流伺服电机

交流伺服电机交流伺服电机是一种广泛应用于工业自动化领域的电机类型,在现代生产中发挥着重要作用。
交流伺服电机通过内置的编码器反馈系统,可以实现精确的位置控制和速度控制,从而提高了生产效率和产品质量。
本文将介绍交流伺服电机的工作原理、应用领域以及优势特点。
工作原理交流伺服电机通过电子控制系统控制电流的大小和方向,从而控制电机转子的位置和速度。
其工作原理包括位置控制回路、速度控制回路和电流控制回路。
位置控制回路接收编码器反馈信号,比较目标位置和当前位置之间的差异,通过控制电流大小和方向来驱动电机转子转动至目标位置。
速度控制回路根据编码器反馈信号和设定速度值之间的差异,控制电机的转速。
电流控制回路则根据速度控制回路的输出,控制电机的电流大小和方向,以实现精确的速度控制。
应用领域交流伺服电机广泛应用于各种自动化设备和机械领域,如工业机器人、数控机床、包装设备、印刷设备等。
在这些领域,交流伺服电机可以提供精确的位置控制和速度控制,满足高效生产的需求。
同时,在医疗设备、航空航天等领域也有着重要应用,用于控制精密的运动系统。
优势特点交流伺服电机相比其他类型的电机具有以下优势特点:•高精度:交流伺服电机具有较高的控制精度,可以实现微米级的定位精度,适用于需要高精度控制的应用。
•高效率:交流伺服电机运行稳定,能够提供较高的效率,降低能源消耗,节省生产成本。
•响应速度快:交流伺服电机响应速度快,可以在短时间内实现从静止到目标速度的转变,提高生产效率。
•可编程控制:交流伺服电机可以通过程序控制实现各种运动模式和轨迹规划,满足不同应用的需求。
总体而言,交流伺服电机在工业自动化领域具有重要地位,通过其高精度、高效率和快速的特点,为生产提供了稳定可靠的动力支持。
本文简要介绍了交流伺服电机的工作原理、应用领域以及优势特点,希望能够帮助读者更好地了解交流伺服电机的基本知识。
东能交流伺服驱动器基础技术手册

交流全数字伺服驱动器EPS系列基础技术手册z非常感谢您选购EPS系列交流伺服驱动器z在您使用驱动器之前,请仔细阅读本技术手册,按照手册上的规范操作·安全注意事项·· 安全注意事项 ·(使用前请仔细阅读)在产品的安装、运行、维护和检查前请仔细阅读本技术手册,在熟悉了有关设备的知识、安全信息和全部注意事项后再使用本产品。
请将此技术手册妥善保存,以备随时查阅。
如果您不能解决产品出现的问题,请及时联系我们。
由于产品的改进,手册内容可能变更,恕不另行通知。
在未得我公司授权下,用户对产品的改动我公司将不承担任何责任,产品的保修将因此作废。
注意下列警告,以免伤害人员、防止器件损坏。
下面的“危险”和“警告”符号是按照其事故危险的程度标出的危险指示一个潜在的危险情况,如果使用不当,会产生危险状况,有导致人员重伤甚至死亡的可能。
警告指示一个潜在的危险情况,如果使用不当,可能会产生危险状况,有导致人员受到中等程度伤害或轻伤的可能,或者发生物件损坏。
下列符号表示哪些是禁止的操作,哪些是必须遵守的。
·1··安全注意事项··2·目 录目录第一章功能和构成 (1)1.1EPS系列驱动器技术规格 (1)1.2EPS系列驱动器功能 (2)1.3EPS系列驱动器命名规则 (3)1.4EPS2系列驱动器外形尺寸 (4)1.5EPS2系列驱动器适配电机 (7)1.6各部分名称 (8)第二章安装 (9)2.1环境条件 (9)2.2驱动器安装场合 (9)2.3安装方向和间隔 (10)2.4电机的安装 (11)2.5伺服驱动器安装示意图 (11)2.6电缆应力 (12)第三章接线 (13)3.1伺服驱动器与外围设备的连接及构成 (13)3.2标准接线 (14)3.3端子功能 (17)3.4编码器信号端子CN3 (22)3.5I/O接口原理 (24)1.开关量输入接口 (24)2.开关量输出接口 (24)3.脉冲量输入接口 (25)4.伺服驱动器光电编码器输入接口 (25)5.长线驱动器(差分输出)输出接口 (26)·1·目 录3.6电源系统电路 (26)第四章参数 (28)4.1参数功能 (28)第五章监控与操作 (40)5.1面板操作 (40)5.2监视方式(DISP) (41)5.3参数设置(SET-P) (44)5.4参数管理(EEPOP) (44)5.5速度试运行 (46)第六章报警与处理 (48)6.1驱动器报警 (48)6.2报警处理 (49)第七章伺服电机 (54)7.1型号命名 (54)7.2电机安装尺寸 (57)附录 (60)·2·第一章 功能和构成·1·第一章 功能和构成1.1 EPS 系列驱动器技术规格表1.1 驱动器技术规格控制回路电源单相AC220V-15~+10% 50/60Hz主回路电源三/单相AC220V -15~+10% 50/60Hz环境温度工作:0~55 ℃存贮:-20℃~80℃ 湿度 小于90%(无结露)振动小于0.5G(4.9m/S 2),10~60Hz (非连续运行)控制方式 IGBT PWM 正弦波控制控制模式①位置控制 ②速度控制 ③转矩控制 ④位置/速度控制⑤位置/转矩控制⑥速度/转矩控制⑦内部位置控制⑧内部速度控制⑨内部转矩控制⑩试运行控制控制输入① 伺服使能 ②报警清除 ③位置偏差清零 ④指令脉冲禁止CCW ⑤驱动禁止 CW ⑥驱动禁止 ⑦控制方式选择 ⑧零速箝位控制输出①伺服准备好 ②伺服报警 ③机械制动释放 ④位置/速度到达 ⑤零速检出 ⑥转矩限制中 Z ⑦相输出 编码器反馈 2500p/r ,15线增量型,差分输出 500 p/r ,15线增量型,差分输出 通讯方式 RS232 RS485 ①② 显示与操作 ①5位LED 显示 4②个按键 制动方式 通过内置/外接制动电阻能耗制动 冷却方式 风冷(热传导膜具、高速强冷风扇) 适配电机 可通过参数设置适配不同型号电机 功率范围≤5KW第一章 功能和构成·2·1.2 EPS 系列驱动器功能表1.2 驱动器功能一览表控制功能位置控制外部输入脉冲形式脉冲/方向,CW/CCW ,A/B 两相最大指令脉冲频率 500Kpps (差分输入)电子齿轮 1/1800~1800(推荐:1/50~50)脉冲输入指令禁止信号位有效时,指令脉冲输入被禁止;可通过参数屏蔽此信号内部位置指令 16种位置设定 速度控制外部速度指令 0~±10V DC零速钳位 通过此功能使得速度保持为0 速度控制范围 1~3000 内部速度指令4种速度设定 转矩控制外部转矩指令 0~±10V DC 内部转矩指令4种转矩设定转矩控制范围外部转矩指令:0~300% 内部转矩指令:0~300%驱动禁止 当CCWL/CWL 信号有效时,电机在CCW/CW 方向输出零速保持力矩 监视功能转速、当前位置、指令脉冲积累、位置偏差、电机转矩、电机电流、转子位置、指令脉冲频率、运行状态、输入输出端子信号等保护功能 过压、欠压、过流、过速、过载、Z 脉冲丢失、编码器出错、EEPROM 错误、位置超差等报警功能 工作异常时输出报警号,同时5个LED 小数点位闪烁 信号显示 在显示部分显示外部输入、输出信号的ON/OFF 状态 增益调整 在电机运行或停止时改变增益以调节驱动器性能 报警记录可记忆包括当前报警在内的4个报警记录第一章 功能和构成·3·1.3 EPS 系列驱动器命名规则EPS □--- □ □ □ □ □ □□ (□□)专用机型电源方式{首数代表电压:2为220V ,3为380V末数代表相数:1为单相,3为三相 {1:2500p/r 2:500p/r 3:省线式} 连接方式{L:螺丝固定 }功率值{040→400W 075→750W …. 软件版本{A →通用 B →通用BT 通用 W 袜机} 2为型材散热器)例如:EPS2—TA150L123(H)注:通用A 和通用B 的区别:编码器信号分周输出脉波信号的功能不同,通用A 分频比只能取1-255整除倍脉波信号数,通用B 可以任意取输出脉波信号数。
交流伺服电机 原理

交流伺服电机原理
交流伺服电机是一种常见的电机类型,广泛应用于工业机械、自动化设备、机器人等领域。
它具有准确的位置控制、高速响应、高运动精度等特点,因此在许多需要精确控制运动的场合得到广泛应用。
交流伺服电机的工作原理是通过电机驱动控制器中的控制算法,将电机的转动位置与目标位置进行比较,然后通过驱动器向电机供电,调整电机的转速和转矩,使得电机的转动位置逐渐接近目标位置。
控制器中的反馈装置可以提供电机当前的位置、速度等信息,使得控制器能够实时调整驱动信号,使电机稳定在目标位置上。
交流伺服电机主要由电机本体、编码器、驱动器和控制器组成。
电机本体是负责输出转矩和转动运动的部分,通常采用三相交流异步电机。
编码器用于实时检测电机的转动位置,将位置信号反馈给控制器。
驱动器是通过控制电源的电流和电压,提供适当的电能输入给电机,以实现控制电机转动的目的。
控制器则是根据编码器反馈的信息和控制算法,产生适当的驱动信号发送给驱动器。
交流伺服电机的运动控制通常采用闭环控制系统,即通过不断调整目标位置和实际位置之间的误差,使电机的转动达到精确的位置控制。
控制器中的控制算法一般采用PID算法,即比
例-积分-微分算法。
在实际应用中,还可以根据具体的需求进
行参数调整和优化,以实现更精确的控制效果。
总的来说,交流伺服电机通过控制器和驱动器的协作工作,利用编码器反馈信号实时调整驱动信号,从而实现精确的位置控制和运动控制。
它具有响应速度快、定位精度高、动态性能好等优点,成为许多自动化领域不可或缺的核心设备之一。
英威腾SV-DA200系列交流伺服驱动器直线伺服电机技术指南说明书

技术指南SV-DA200 系列交流伺服驱动器——直线伺服电机目录目录 (1)1直线电机专用型驱动器命名 (2)2直线电机调试 (3)2.1 端子接线 (3)2.2 参数设置 (3)2.3 电机相序选择 (3)2.4 磁极检测 (4)1直线电机专用型驱动器命名标识 标识说明 命名举例① 产品类别 SV :伺服系统产品 ② 产品系列DA200:产品系列 ③ 功率等级0R1:100W 0R2:200W 0R4:400W 0R7:750W 1R0:1.0kW 1R5:1.5kW 2R0:2.0kW 3R0:3.0kW 4R4:4.4kW 5R5:5.5kW④ 输入电压等级 2:220VAC 4:400VAC ⑤伺服类型E :脉冲型 S :标准型C :CANopen 总线型 N :EtherCAT 总线型 ⑥ 编码器类型 0:增量型光栅尺 ⑦直线电机专用号00Z0:直线电机专用号不同机器类型功能区别:驱动器类型 符号 脉冲 输入 16位 模拟量输入第二 编码器STO RS485CANopen EtherCAT增量型光栅尺脉冲型 E0 ○ × ○ ×○ × × ○ 标准型 S0 ○ ○ ○ ○ ○ × × ○ 总线型C0 × × ○ × × ○ × ○ N0× × ○×××○○注:表中“○”表示有此功能,“×”表示无此功能。
2直线电机调试2.1 端子接线SV-DA200伺服驱动器支持差分输入正交A/B/(Z)信号光电式编码器,最高输入3M lines/sec,将此信号接在主编码器接口-CN2端口,CN2的正面示意图如下,CN2端子各引脚接线定义及功能描述见下表。
CN2端口功能表引脚号名称功能备注1 V+/SD+ 并行编码器V+/串行编码器数据+2 W+ 并行编码器W+信号3 A+ 并行编码器A+信号4 A- 并行编码器A-信号5 5V 编码器电源6 U+ 并行编码器U+信号7 V-/SD- 并行编码器V-/串行编码器数据-8 W- 并行编码器W-信号9 B- 并行编码器B-信号10 B+ 并行编码器B+信号11 U- 并行编码器U-信号12 GND 电源地13 Z- 并行编码器Z-信号14 Z+ 并行编码器Z+信号15 - 未使用2.2 参数设置在运行之前,需要设置直线伺服电机参数,具体数值可以从直线电机厂家的相关数据手册中查找,请将参数设置在P8.00-P8.14对应的参数中,并设置如下表格中参数。
交流伺服电机驱动器通讯技术探讨

能互 不干 扰 。而 且 FG 内部 实现 逻 辑功 能 可 随时编 程 更 改 ,只要 预 留足够 PA
IO / 管脚 及 内部逻 辑 资源 ,就可 以使 以后 的功 能扩 展变 得可 能 。如扩 展伺服 控 制 系统 多轴 控 制 功能 ,使 一 个伺 服 电机 控制 器 能控 制 多轴 电机 , 降低成 本 ; 如增 加伺 服 控 制器 的输 入输 出功 能,用 户接 口 ,显示 接 口等 。完 成上
5结 论
换 实现 。这 一 数学 变 换极 大地 简化 了电机 内部 电气变 量 表达 式 ,实 现 了转
子 位置 角的解 耦 。
永 磁 同步 电机 作 为 电动 机 运 行 可 以进 行 开 环 或 闭环 控 制 , 实现 转 矩
( )、转 速 、位 置伺 服控 制 。对 于 永磁 同步 电机 开 环 调速 驱动 系统 ,不 力 需 要安 装位 置和 速度 传 感器 ,只要 改变 供 电 电源 的频 率就 可 以实 现 电机 转 速 的调 节 。不过 ,在改 变频 率 的过 程 中永磁 同步 电机 与感 应 电机 不 同 ,感 应 电机 虽然 开环 速度 跟 踪精 度 不高 ,但 依 靠转 差 运行 的感 应 电机 不存 在 失 步 的 问题 。然而 , 永磁 同步 电机 则 不 同 ,定子 电源 频 率不 能 改变 得太 快 。
由于 转子 磁场 固定 ,且 转子 机械 时 间常 数远 远 大于 电气 时 间常 数 , 因此 , 如果 定子 磁场 频 率上 升 太快 ,转 子惯 量 转速 来 不及 改变 ,使得 定 转子 磁场
之 间的相 位 差迅速 增 大 , 电磁经 转矩 增 大 ;如 果定 转 子磁 场之 间 的相 位 差 超过 永磁 同 步 电机运 行 范围 后 ,电磁 转 矩反 而 减小 ,这 样 有可 能 出现 失 步 现 象 。对 于永 磁 同步 电机 闭环 控 制系 统 ,特 别是 位置 伺 服 系统 都 需要 转子 位 置信 息 ,以避 免上述 失 步现象 发 生。
交流伺服电机驱动电路

交流伺服电机驱动电路在许多自动化系统和机械设备中,使用电动马达进行精确的位置控制是至关重要的。
交流伺服电机作为一种高性能电机,通常用于需要高精度位置控制和速度控制的应用中。
为了有效地驱动交流伺服电机,需使用专门设计的电路。
本文将介绍交流伺服电机驱动电路的基本原理和设计要点。
1. 交流伺服电机简介交流伺服电机是一种能够在宽范围内实现高精度位置和速度控制的电机。
它通常由电动机本体、编码器、控制器和驱动电路组成。
与普通交流电动机相比,交流伺服电机通常配备有更高分辨率的编码器,以便实现更精确的位置反馈。
2. 交流伺服电机驱动电路组成交流伺服电机驱动电路一般由以下几个主要组成部分构成:2.1 三相功率放大器交流伺服电机通常为三相电机,因此需要使用三相功率放大器来驱动。
功率放大器的作用是将控制信号转换为电流,通过电流驱动电机转子旋转。
2.2 位置反馈回路位置反馈回路通过编码器等装置获取电机当前位置信息,并将其反馈给控制器。
控制器可以根据位置反馈信息来调节电机的转速和位置,实现闭环控制。
2.3 控制器控制器是交流伺服系统的大脑,负责接收位置指令、位置反馈信息等,并根据反馈信息实时调节电机的输出信号,以实现精确的位置和速度控制。
2.4 电源模块电源模块为整个系统提供稳定的电源供应,并通过节能模式等功能来优化系统性能。
3. 交流伺服电机驱动电路设计要点3.1 电源系统设计在设计交流伺服电机驱动电路时,首先要考虑的是电源系统的设计。
电源系统需要提供稳定的电源输出,并能够应对电机启动、制动等瞬时大电流需求。
3.2 电流限制和过流保护在电机运行过程中可能会出现过载或短路等情况,因此需要设计电流限制和过流保护电路,以防止电机受损。
3.3 位置反馈系统设计位置反馈系统对于实现精确的位置控制至关重要。
设计时需选择高分辨率的编码器,并确保编码器与控制器之间的通信稳定可靠。
3.4 控制器设计控制器是整个系统的核心,需要具备强大的计算和响应能力。
交流伺服驱动器原理及调试资料

5. 低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚
至半小时内1.5倍以上的过载能力,在短时间 内可以过载4~6倍而不损坏。
6. 可靠性高 要求数控机床的进给驱动系统可靠性高、
工作稳定性好,具有较强的温度、湿度、振 动等环境适应能力和很强的抗干扰的能力。
对电机的要求
1、从最低速到最高速电机都能平稳运转,转矩波动要 小,尤其在低速如0.1r/min或更低速时,仍有平稳的 速度而无爬行现象。
④ 反馈值与给定值相比较,如果有偏 差通过电流环输出控制电流使用其 差值改为零
17
1.3.1 伺服放大器控制回路
伺服放大器三种控制方式
1 转矩控制: 通过外部模拟量的输入或直接的地址的赋值来设定电机 轴对外的输出转矩的大小,主要应用于需要严格控制转 矩的场合。 ——电流环控制
2 速度控制: 通过模拟量的输入或脉冲的频率对转动速度的控制。 ——速度环控制
3 位置控制: 伺服中最常用的控制,位置控制模式一般是通过外部输入 的脉冲的频率来确定转动速度的大小,通过脉冲的个数来 确定转动的角度,所以一般应用于定位装置 。 ——三环控制
思考:三环中哪个环的响应性最快?
18
2.2 伺服的作用
按照定位指令装置输出的脉冲串,对工件进行定位控制。
伺服电机锁定功能
2、电机应具有大的较长时间的过载能力,以满足低速 大转矩的要求。一般直流伺服电机要求在数分钟内 过载4~6倍而不损坏。
3、为了满足快速响应的要求,电机应有较小的转动惯 量和大的堵转转矩,并具有尽可能小的时间常数和 启动电压。
4、电机应能承受频繁启、制动和反转。
三、 伺服驱动器的电气控制原理
1.外部控制电路结构 2.内部电路结构
直流(DC)与交流(AC)伺服电机及驱动

目录直流(DC)与交流(AC)伺服电机及驱动 (1)1.直流(DC)伺服电机及其驱动 (1)(1)直流伺服电机的特性及选用 (1)(2)直流伺服电机与驱动 (2)(3)PWM直流调速驱动系统原理 (3)2.交流(AC)伺服电机及其驱动 (4)直流(DC)与交流(AC)伺服电机及驱动1.直流(DC)伺服电机及其驱动(1)直流伺服电机的特性及选用直流伺服电机通过电刷和换向器产生的整流作用,使磁场磁动势和电枢电流磁动势正交,从而产生转矩。
其电枢大多为永久磁铁。
直流伺服电机具有较高的响应速度、精度和频率,优良的控制特性等优点。
但由于使用电刷和换向器,故寿命较低,需要定期维修。
20世纪60年代研制出了小惯量直流伺服电机,其电枢无槽,绕组直接粘接固定在电枢铁心上,因而转动惯量小、反应灵敏、动态特性好,适用于高速且负载惯量较小的场合,否则需根据其具体的惯量比设置精密齿轮副才能与负载惯量匹配,增加了成本。
直流印刷电枢电动机是一种盘形伺服电机,电枢由导电板的切口成形,导体的线圈端部起换向器作用,这种空心式高性能伺服电机大多用于工业机器人、小型NC机床及线切割机床上。
宽调速直流伺服电机的结构特点是励磁便于调整,易于安排补偿绕组和换向极,电动机的换向性能得到改善,成本低,可以在较宽的速度范围内得到恒转速特性。
永久磁铁的宽调速直流伺服电机的结构如下图所示。
有不带制动器a和带制动器b两种结构。
电动机定子(磁钢)1采用矫顽力高、不易去磁的永磁材料(如铁氧体永久磁铁)、转子(电枢)2直径大并且有槽,因而热容量大,结构上又采用了通常凸极式和隐极式永磁电动机磁路的组合,提高了电动机气隙磁通密度。
同时,在电动机尾部装有高精密低纹波的测速发电机,并可加装光电编码器或旋转变压器及制动器,为速度环提供了较高的增量,能获得优良的低速刚度和动态性能。
日本发那科(FANUC)公司生产的用于工业机器人、CNC机床、加工中心(MC)的L系列(低惯量系列)、M系列(中惯量系列)和H系列(大惯量系列直流伺服电机)。
伺服电机驱动方案

伺服电机驱动方案伺服电机驱动方案是控制伺服电机运动的一种技术方案。
伺服电机作为一种高性能的电机控制设备,广泛应用于各个领域,如工业机械、机器人、自动化设备等。
在实际应用中,为了实现准确、稳定和高效的运动控制,需要采用合适的伺服电机驱动方案。
一、伺服电机的基本原理伺服电机是一种具有位置、速度和力矩控制功能的电机。
它通过对电机的驱动信号进行控制,使电机能够按照要求实现精确的运动。
伺服电机的基本原理是通过对电机的转子位置进行反馈检测,并根据反馈信号进行相应的调整,使电机的转子位置能够准确地跟踪给定的目标位置。
二、伺服电机驱动方案的选择在选择伺服电机驱动方案时,需要考虑以下几个方面:1. 控制性能:驱动方案的控制性能直接影响到伺服电机的运动精度和稳定性。
常见的控制性能指标包括响应时间、位置精度、速度精度等。
根据实际需求,选择具备适当控制性能的驱动方案。
2. 功率匹配:驱动方案的功率需要匹配伺服电机的功率。
过大或过小的功率都会影响到伺服电机的正常运行。
因此,在选择驱动方案时,需要根据伺服电机的功率要求来确定合适的驱动方案。
3. 信号接口:驱动方案的信号接口要与伺服电机的控制信号相匹配。
常见的信号接口有脉冲信号、模拟信号和数字信号等。
根据伺服电机的控制要求,选择合适的信号接口。
4. 编码器反馈:编码器反馈可以提供更准确的位置反馈信号,提高伺服电机的控制精度。
在选择驱动方案时,需要考虑是否需要编码器反馈,并选择支持编码器反馈的驱动方案。
5. 通信接口:通信接口可以实现伺服电机与上位机的数据通信,方便进行参数设置和状态监测。
在选择驱动方案时,需要考虑是否需要通信接口,并选择支持相应通信协议的驱动方案。
三、常见的伺服电机驱动方案1. 脉宽调制驱动(PWM):脉宽调制驱动是一种常见的伺服电机驱动方案。
它通过改变驱动信号的脉冲宽度,控制伺服电机的转子位置。
脉宽调制驱动具有响应速度快、控制精度高等优点,适用于对控制性能要求较高的应用。
东能交流伺服驱动器基础技术手册

第五章 监控与操作 ................................................................................... 40 5.1 面板操作 .......................................................................................... 40 5.2 监视方式(DISP) ............................................................................... 41 5.3 参数设置(SET-P).............................................................................. 44 5.4 参数管理(EEPOP)............................................................................ 44 5.5 速度试运行 ...................................................................................... 46
交流伺服电机驱动器说明书

交流伺服电机驱动器说明书一、产品概述交流伺服电机驱动器是一种用于控制、驱动交流伺服电机的设备,通过精确的控制电流和速度,实现对电机的准确控制。
本说明书将详细介绍交流伺服电机驱动器的功能、特点以及使用方法。
二、产品特点1.高精度控制:交流伺服电机驱动器采用先进的控制算法,能够实现高精度的电流和速度控制,确保电机运行稳定。
2.广泛适用:该驱动器适用于各种交流伺服电机,可满足不同应用场景的需求。
3.简便易用:提供简洁明了的操作界面,用户可以通过参数设置实现快速调整,使用方便。
4.稳定可靠:采用高品质元器件和先进技术制造,具有良好的稳定性和可靠性,长期运行不易出现故障。
5.保护功能:内置多种保护功能,如过流保护、过压保护、过热保护等,有效保护电机和驱动器的安全运行。
三、使用方法1.安装接线:将交流伺服电机驱动器按照说明书要求正确接线,确保连接牢固可靠。
2.参数设置:根据实际需求,在界面上进行参数设置,包括电流、速度、加减速度等参数调整。
3.运行测试:完成参数设置后,进行运行测试,观察电机运行情况,调整参数以达到理想效果。
4.使用注意事项:在使用过程中注意电压、电流等参数的范围,避免超载运行,确保电机和驱动器的安全性。
四、维护保养1.定期检查:定期检查驱动器的连接线、散热器等部件,确保无松动、损坏现象,及时进行维修。
2.清洁:定期清洁驱动器表面和散热器,防止灰尘积累影响散热效果,保持通风良好。
3.防水防尘:避免水汽、灰尘等进入驱动器内部,防止损坏元器件,影响使用寿命。
4.保持干燥:存放时保持环境干燥通风,避免潮湿影响驱动器性能。
本文介绍了交流伺服电机驱动器的概述、特点、使用方法和维护保养等内容,希望能够帮助用户更好地了解和使用这一产品。
如有任何疑问或需要进一步信息,请查阅详细的产品说明书或与生产厂家联系。
交流伺服电机的工作原理是什么样的

交流伺服电机的工作原理
交流伺服电机是一种能够精确控制位置、速度和加速度的电机,广泛应用于工
业机械、机器人、医疗设备等领域。
其工作原理基于反馈控制系统,通过不断调整电机的输入电压和电流,使电机输出的角度或位置达到预定值,实现精准的运动控制。
1. 传感器反馈
交流伺服电机通常配备了编码器或其他传感器,用于实时监测电机的转动角度
或位置。
传感器将实际位置信息反馈给控制系统,通过与目标位置的差异来调整电机的输出,实现闭环控制。
2. 控制器
控制器是交流伺服电机的核心部件,负责接收传感器反馈的位置信息,并根据
预设的运动规划算法计算电机的输出控制信号。
常见的控制器包括PID控制器和
模糊控制器,它们能够根据误差信号快速调整电机的运动状态,实现高精度的位置控制。
3. 电机驱动器
电机驱动器是将控制器输出的信号转化为电机所需的电压和电流的设备,负责
提供给电机所需的功率。
电机驱动器可以根据不同的应用需求选择不同的控制模式,如矢量控制、直接转矩控制等,以实现更加精准的电机控制。
4. 工作过程
当控制系统接收到运动指令后,控制器计算出电机输出的控制信号,并传输给
电机驱动器。
电机驱动器根据控制信号提供给电机适当的电压和电流,驱动电机开始运动。
同时,传感器不断监测电机的位置信息,传递给控制器进行比较和调整,直到电机达到预定位置或速度。
交流伺服电机通过以上闭环控制系统,能够实现高精度、稳定的运动控制,满
足各种工业自动化和机器人应用的需求。
其工作原理的精准性和快速性使其成为现代自动化领域不可或缺的关键技术之一。
交流伺服电机驱动器说明书H3N技术应用手册第1版-140507

重要提醒在您准备使用、调试产品之前,请务必阅读下面几项提醒!1、 H3N系列驱动器为三相交流220V供电,严禁将三相380V市电直接接入驱动器。
否则将直接损耗驱动器,甚至可能造成人身伤害。
2、请参照说明书,设置正确的电机型号参数PA1,以使驱动器与电机相匹配。
3、 H3N-ED的电机型号代码与其它5款的型号代码不同。
详细请见第7章。
4、当电机高速起停很频繁时,驱动器需要外加制动电阻。
请参照说明书或者联系我们的技术支持,接入合适的外加制动电阻。
5、请正确设置电子齿轮比参数PA12,PA13。
6、请正确设置脉冲指令输入方式参数PA14。
7、参数PA1,PA14,PA35的修改,是断电重新上电后生效。
8、当客户自己制作编码线时,请用双绞屏蔽线,而且编码线的总长度不要超过15m。
9、当客户自己制作控制线(连接CN2)时,需要用屏蔽线,且线长不要超过10m,否则可能发生脉冲丢失现象。
I本应用技术手册提供H3N系列伺服驱动器的相关信息和参考资料。
内容主要包括:伺服驱动器的安装环境和方法及安全检查伺服驱动器所有参数的说明伺服驱动器的控制功能介绍伺服驱动器的试运行操作说明应用过程中出现的异常及排除方法本手册可适用使用者如下:安装及配线人员系统试运行调机人员检查和维护人员在您未阅读本手册之前,请遵循以下几点:应用环境无水气、腐蚀性气体及易燃气体应用环境接地措施良好接线时严禁将三相动力电与伺服驱动器U、V、W直接相连,否则将损坏驱动器通电运行时,请勿接触旋转设备、移动或拆除电缆、拆除驱动器非常感谢您对本产品的支持,请在使用前认真阅读本手册以保证您使用上的正确。
如果您在使用方面依然有问题,请咨询经销商或本公司的客服。
IIIII安全注意事项使用环境◆禁止将本系列产品暴露在有水气、腐蚀性气体、可燃性气体等物质的场合使用,否则会导致触电或火灾。
◆禁止将本产品应用于有阳光直射、粉尘、盐粉及金属粉末较多的场合。
◆禁止将本系列产品应用于有油及药品附着或者滴落的场合。
交流伺服驱动ppt课件

HSV系列伺服有六种输出信号:
①伺服使能
②报警清除 ③偏差计数器清零
④指令脉冲禁止 ⑤CCW驱动禁止 ⑥CW驱动禁止
集电极开路输出;
低电平有效。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
动
力 电
S
源T
整 流 器
控 AC220V
制 电
AC220V
开关电源
源
指 令 信 号
直流 P
制动 N
控制平台
交流
逆
U
变 器
V
电
W
机
PG
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
交流伺服驱动器系统电气原理结构图
伺服连接-位置控制方式
脉冲输入接口的两种驱动方式比较:
差分驱动方式的抗干扰能力强于单端驱动方式,推荐 使用,尤其是在信号电缆较长时;
采用单端驱动方式,会使动作频率降低。
根据脉冲量输入电路,驱动电流10~15mA,限定外部
电源最大电压25V的条件,确定电阻R的数值。
经验数据:VCC=24V,R=1.3~2k; VCC=12V,R=510~820Ω; VCC=5V, R=82~120Ω 。
HSV系列伺服产品的发展
模拟、数字混合型 交流伺服驱动
HSV-9型伺服
(三相220V输入)
全数字型交流伺服、主轴驱动器系列
HSV-16型伺服 (三相220V输入, 集成开关电源)
交流伺服控制电机伺服电机控制原理

交流伺服控制电机伺服电机控制原理“伺服”一词源于希腊语“奴隶”的意思。
“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。
伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。
伺服电机分为交流伺服和直流伺服两大类交流伺服电机的基本构造与交流感应电动机(异步电机)相似。
在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。
交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。
直流伺服电机基本构造与一般直流电动机相似。
电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。
直流伺服电动机具有良好的线性调节特性及快速的时间响应。
直流伺服电机的优点和缺点优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。
缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜)交流伺服电机的优点和缺点优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可实现恒力矩,惯量低,低噪音,无电刷磨损,免维护(适用于无尘、易爆环境)缺点:控制较复杂,驱动器参数需要现场调整PID参数确定,需要更多的连线。
直流伺服电机分为有刷和无刷电机。
交流伺服驱动器工作原理

交流伺服驱动器工作原理
伺服驱动器是一种用于控制伺服电机运动的装置。
它通过接收控制信号,控制电机的速度、位置和力矩,并实现精确运动控制。
伺服驱动器的工作原理如下:
1. 信号处理:伺服驱动器接收来自控制器的指令信号。
这些信号可以是模拟信号,例如电压或电流;也可以是数字信号,例如脉冲信号或通信协议。
2. 反馈系统:伺服驱动器通常包含一个反馈系统,用于检测电机的实际运动状态。
这可以通过安装在电机轴上的编码器或传感器来实现。
反馈系统将实际运动状态与控制信号进行比较,以便调整电机的运动。
3. 控制算法:伺服驱动器使用内部的控制算法来计算控制信号以驱动电机。
这些算法通常采用闭环控制技术,即根据反馈系统的信号和目标状态来调整控制信号。
控制算法可以根据应用的需求进行调整,以实现不同的运动控制方式,如速度控制、位置控制或力矩控制。
4. 功率放大器:伺服驱动器还包含一个功率放大器,用于将控制信号转换为足够大的电流或电压,以供应给电机。
功率放大器的设计取决于电机的类型和规格。
总的来说,伺服驱动器通过接收控制信号、使用反馈系统和控制算法,以及通过功率放大器来驱动电机,实现精确的位置、速度和力矩控制。
这使得伺服驱动器在自动化系统、机器人、数控机床等领域中得以广泛应用。
交流永磁同步伺服电机及其驱动技术pmsm

形成旋转磁场。
第15页/共83页
定义了合成定子电流矢量后,则 定子绕组的总磁势矢量为
Fs Nis N (ia aib a2ic )
N—定子绕组线圈总匝数
要注意合成定子电流仅仅是为了 描述方便引入的虚拟量。
β
b
is ia aib a2ic
a cos120 j sin120 1 j 3 22
a2 cos 240 j sin 240 1 j 3 22
11
33
is ia 2 ib 2 ic j( 2 ib 2 ic )
c
第22页/共83页
is
a
is
ia
1 2
ib
1 2
同步电机 和 感应电机 永磁同步电机 (Permanent Magnet Synchronous Motor 简称PMSM)
第1页/共83页
1、结构 和工作原理
第2页/共83页
主要由定子、转子及测量转子位置的传感器构成。 定子和一般的三相感应电机类似,采用三相对称
绕组结构,它们的轴线在空间彼此相差120度。 转子上贴有磁性体,一般有两对以上的磁极。 位置传感器一般为光电编码器或旋转变压器 。
SL RL
C1
uapwM ubpwM ucpwM
T1
T3
T5
Z
L1 L2 L3
o
uS
a
b
c /uapwM /ubpwM /ucpwM
ZZ
n
C2
T2
T4
T6
PMSM
第33页/共83页
IGBT (Insulated-gate Bipolar Transistor ) 由MOSFET和GTR复合而成,结合二者的优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流伺服电机的驱动技术标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-
交流伺服电机的驱动技术
The amplifier for AC three-phase motors includes a pulse-width modulation circuit for voltage, current, and frequency control. Figure 11-81 shows an example of this type of amplifier. From the diagram you can see that this circuit is designed specifically for a three-phase trapezoidal motor. The transistors in the amplifier are connected in an H-bridge configuration. The motor windings are connected as a three-phase wye with no external wires connected to the wye point. This type of motor is also called a star connection when it is used with brushless AC servomotors.
The drive logic and PWM switching controller is shown in the diagram as a block that is identified as a logic and PWM circuit. This block shows six arrows pointing away from it and pointing to the transistors. These arrows represent the six circuits for the base of each of the six transistors. The block below the PWM circuit represents the current-sensing part of the amplifier. This section of the amplifier uses a recirculating chopper system to control the current in a manner that is similar to the chopper circuit in the DC amplifier. The signals for this section of the amplifier come from the voltage that is developed across the series resistors connected between the transistor section and the motors. As you know, the amount of current flowing to the motor will determine the amount of voltage drop across these resistors.
This amplifier has a velocity amplifier that receives the original command signal for the amplifier and the velocity feedback. The op amp provides an output that represents the difference (error) between the command signal and the feedback signal. The output of the velocity amp is sent to the torque amp, where it is combined with the feedback from the current-sensing block. The output from this op amp is sent to the logic and PWM circuit block where it acts as the command signal. The position encoder provides the feedback signal for this block. This means that the velocity and position amplifiers are actually a closed-loop system within a closed-loop system. The gain for each of these amplifiers must be tuned so that the system has the best torque response and smooth acceleration and deceleration.
FIGURE 11-81 An AC servo drive amplifier specifically designed to operate with an AC trapezoidal brushless servomotor.
The feedback mechanism is generally a brushless DC tach generator, or an AC generator. Each of these feedback mechanisms provides smooth feedback voltages. If an encoder is used, its binary (digital) signal must be converted to an analog signal through a D/A converter or a frequency-to-analog F/A type converter if the signal is produced as a frequency.。