七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word 版 含答案)一、选择题1.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元 2.下列计算正确的是( ) A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -= 3.无论x 取什么值,代数式的值一定是正数的是( )A .(x +2)2B .|x +2|C .x 2+2D .x 2-2 4.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个 B .2个 C .3个 D .4个5.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b - 6.下列合并同类项结果正确的是( )A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 6 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15° 8.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作. ①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是()A.13B.12C.23D.19.2020的绝对值等于()A.2020 B.-2020 C.12020D.12020-10.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为()A.0.45×108B.45×106C.4.5×107D.4.5×10611.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m12.-5的倒数是A.15B.5 C.-15D.-513.在钟表上,下列时刻的时针和分针所成的角为90°的是()A.2点25分B.3点30分C.6点45分D.9点14.下列各图中,可以是一个正方体的平面展开图的是( )A.B.C.D.15.下列说法中,正确的是()A.单项式232ab-的次数是2,系数为92-B.2341x y x-+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y -的系数是2-,次数是3 二、填空题16.2019上半年溧水实现GDP 为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP 为_________元.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________.18.若m+2n=1,则代数式3﹣m ﹣2n 的值是_____.19.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.20.0的绝对值是_____.21.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么所列方程是______.22.某市2019年参加中考的考生人数约为98500人,将98500用科学记数法表示为______.23.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.24.若线段AB =8cm ,BC =3cm ,且A 、B 、C 三点在同一条直线上,则AC =______cm .25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.解下列方程:(1)76163x x +=-;(2)253164y y ---=. 27.如图,已知BD 平分∠ABC ,点F 在AB 上,点G 在AC 上,连接FG 、FC ,FC 与BD 相交于点H ,如果∠GFH 与∠BHC 互补,那么∠1=∠2吗?请说明理由.28.如图是由6个棱长都为1cm 的小正方体搭成的几何体.(1)请在下面方格纸中分别画出它的左视图和俯视图;(2)该几何体的表面积为___________2cm ;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图 和俯视图不变,那么最多可以添加___________个小正方体.29.如图,已知点A,B 是数轴上原点O 两侧的两点,其中点A 在负半轴上,点B 在正半轴上,AO=2, OB=10.动点P 从点A 出发以每秒2个单位长度的速度向右运动,到达点B 后立即返回,速度不变;动点Q 从点O 出发以每秒1个单位长度的速度向右运动,当点Q 到达点B 时,动点P ,Q 停止运动.设P ,Q 两点同时出发,运动时间为t 秒.(1)当点P 从点A 向点B 运动时,点P 在数轴上对应的数为 当点P 从点B 返回向点O 运动时,点P 在数轴上对应的数为 (用含t 的代数式表示)(2)当t 为何值时,点P ,Q 第一次重合?(3)当t 为何值时,点P ,Q 之间的距离为3个单位?30.如图,COD ∠为平角,,2AO OE AOC DOE ⊥∠=∠,求AOC ∠的度数.31.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点 A , B 表示的数分别为 a , b ,则 A , B 两点之间的距离AB=a-b ,线段 AB 的中点M 表示的数为2a b +.如图,在数轴上,点A,B,C 表示的数分别为-8,2,20.(1)如果点A 和点C 都向点B 运动,且都用了4秒钟,那么这两点的运动速度分别是点A 每秒_______个单位长度、点C 每秒______个单位长度;(2)如果点A 以每秒1个单位长度沿数轴的正方向运动,点C 以每秒3个单位长度沿数轴的负方向运动,设运动时间为t 秒,请问当这两点与点B 距离相等的时候,t 为何值? (3)如果点A 以每秒1个单位长度沿数轴的正方向运动,点B 以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C 点时就停止不动,设运动时间为t 秒,线段AB 的中点为点P ;① t 为何值时PC=12;② t 为何值时PC=4.32.如图所示是一个几何体的表面展开图.(1)该几何体的名称是 .(2)根据图中所给信息,求该几何体的体积(结果保留π)33.先化简,再求值:()()2222 4333a b ab ab a b ---+.其中 1a =-、 2b =-.四、压轴题34.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?35.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.36.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .37.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °;②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).38.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?39.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解.①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由;(2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB PC+的值不变.40.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.41.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.42.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?43.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】不享受优惠即原价,打九折即原价×0.9,打八折即原价×0.8.因此可得200×0.9=180,200×0.8=160,160<162<180,由此可知一次性购书付款162元,可能有两种情况.即162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选C .考点:打折销售问题2.D解析:D【解析】【分析】根据合并同类项的法则进行运算依次判断.【详解】解:A.两项不是同类项不能合并,错误;B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.3.C解析:C【解析】【分析】分别求出每个选项中数的范围即可求解.【详解】A.(x+2)2≥0;B.|x+2|≥0;C.x2+2≥2;D.x2﹣2≥﹣2.故选:C.【点睛】本题考查了正数与负数、绝对值和平方数的取值范围;掌握平方数和绝对值的意义是解题的关键.4.B解析:B【解析】【分析】直接录用等式的基本性质分析得出答案.【详解】解:①如果a=b,那么a-c=b-c,正确;②如果ac=bc,那么a=b(c≠0),故此选项错误;③由2x+3=4,得2x=4-3,正确;④由7y=-8,得y=-,故此选项错误;故选:B.【点睛】此题主要考查了等式的基本性质,正确把握性质2是解题关键.5.A解析:A【解析】【分析】-,根据题意可得a的值.由展开图可知a的相对面为1【详解】-,解:因为相对面上的数都互为相反数,由展开图可知a的相对面为1所以a的值为1.故选:A【点睛】本题考查了正方体的展开图,熟练掌握展开图与立体图之间的关系是解题的关键.6.B解析:B【解析】【分析】根据合并同类项的法则,进行求解即可.【详解】解:222235a a a +=,故A 错误;B 正确;2xy xy xy -=,故C 错误;333235x x x +=,故D 错误;故选:B.【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.7.B解析:B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,8.A解析:A【解析】【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343.所以23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A.【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.9.A解析:A【解析】【分析】根据绝对值的定义直接进行计算即可.【详解】根据绝对值的概念可知:|2020|=2020.故选:A.【点睛】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.C解析:C【解析】【分析】用科学记数法表示较大数时的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:45 000 000=4.5×107,故选:C.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.11.D解析:D【解析】【分析】【详解】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.12.C解析:C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15 .故选C.13.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.14.C解析:C【解析】【分析】根据正方体的展开图特征逐一判断即可.【详解】A 不是正方体的展开图,故不符合题意;B 不是正方体的展开图, 故不符合题意;C 是正方体的展开图,故符合题意;D 不是正方体的展开图,故不符合题意;故选C .【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.15.A解析:A【解析】【分析】根据单项式与多项式的次数的定义以及多项式的项数的定义求解即可.【详解】解:A . 单项式232ab -的次数是2,系数为92-,此选项正确; B . 2341x y x -+-是三次三项式,常数项是-1,此选项错误;C . 单项式a 的系数是1,次数是1,此选项错误;D . 单项式223x y -的系数是23-,次数是3,此选项错误. 故选:A .【点睛】本题考查的知识点是单项式与多项式的有关定义,熟记各定义是解此题的关键.二、填空题16.203×1010【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解析:203×1010【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:420.3亿=42030000000=4.203×1010故答案为:4.203×1010【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.2x+8=3x-12【解析】试题解析:设共有x 位小朋友,根据两种分法的糖果数量相同可得: 2x+8=3x-12.故答案为:2x+8=3x-12.解析:2x+8=3x-12【解析】试题解析:设共有x 位小朋友,根据两种分法的糖果数量相同可得:2x+8=3x-12.故答案为:2x+8=3x-12.18.2【解析】试题解析:故答案为2.解析:2【解析】试题解析:21m n +=,()3232312m n m n .∴--=-+=-=故答案为2.19.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:52.810⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:280000=52.810⨯,故答案为:52.810【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.0【解析】【分析】根据绝对值的意义求解即可.【详解】解:根据绝对值的意义,得|0|=0.【点睛】本题考查绝对值,比较基础,应熟练掌握基础知识.解析:0【解析】【分析】根据绝对值的意义求解即可.【详解】解:根据绝对值的意义,得|0|=0.【点睛】本题考查绝对值,比较基础,应熟练掌握基础知识.21.2(x-1)+3x=13.【解析】【分析】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,根据关键语句“小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元”可得方程2(x-1)+3解析:2(x-1)+3x=13.【解析】【分析】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,根据关键语句“小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元”可得方程2(x-1)+3x=13.【详解】解:设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,由题意得:2(x-1)+3x=13,故答案为:2(x-1)+3x=13.【点睛】考查了由实际问题抽象出一元一次方程,关键是设出其中一种饮料的价格,再表示出另一种饮料的价格,根据关键语句列出方程即可.22.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:49.8510⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】98500=49.8510⨯.故答案为:49.8510⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.23.3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序解析:3【解析】【分析】将x =48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x =48代入运算程序中,得到输出结果为24,将x =24代入运算程序中,得到输出结果为12,将x =12代入运算程序中,得到输出结果为6,将x =6代入运算程序中,得到输出结果为3,将x =3代入运算程序中,得到输出结果为6.∵(2020-2)÷2=1009,∴第2020次输出结果为3.故答案为:3.【点睛】本题考查了代数式求值,弄清题中的运算程序是解答本题的关键.24.5或11.【解析】试题分析:分为两种情况:①如图1,AC=AB+BC=8+3=11;②如图2,AC=AB﹣BC=8﹣3=5;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意解析:5或11.【解析】试题分析:分为两种情况:①如图1,AC=AB+BC=8+3=11;②如图2,AC=AB﹣BC=8﹣3=5;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意分两种情况画出图形是解决此题的关键.25.30°.【解析】【分析】观察图形可得:所求∠BOC的度数恰好是三角板的两个直角的和减去∠AOD的度数,据此求解即可.【详解】解:因为∠AOB=90°,∠COD=90°,∠AOD=150°,解析:30°.【解析】【分析】观察图形可得:所求∠BOC的度数恰好是三角板的两个直角的和减去∠AOD的度数,据此【详解】解:因为∠AOB =90°,∠COD =90°,∠AOD =150°,所以∠BOC =∠AOB +∠COD -∠AOD =30°. 故答案为:30°.【点睛】本题以学生常见的三角板为载体,主要考查了角的和差关系,解答的关键是通过观察发现图形中所求角与已知各角的关系.三、解答题26.(1)x =1;(2)y =13.【解析】【分析】根据一元一次方程的解题步骤解出即可.【详解】(1)解:10x =10x =1.(2)解:122(25)3(3)y y --=--y =-13y =13.【点睛】本题考查一元一次方程的解法,关键掌握解题方法,特别是去分母.27.∠1=∠2;见解析.【解析】【分析】根据题意算出∠GFH +∠FHD =180°,利用同旁内角互补两直线平行,证明FG ∥BD,再由角平分线性质判断即可.【详解】解:12∠=∠,理由如下:∵∠BHC =∠FHD ,∠GFH +∠BHC =180°,∴∠GFH +∠FHD =180°,∴FG ∥BD ,∴∠1=∠ABD ,∵BD 平分∠ABC ,∴∠2=∠ABD ,∴∠1=∠2;【点睛】本题考查了平行线的判定与性质和角平分线的有关计算,关键在于掌握相关基础知识.28.(1)详见解析;(2)26;(3)2【解析】(1)左视图有三列,小正方形的个数分别是1,,2,1;俯视图有3列,小正方形的个数分别是3,1,1;(2)分别数出前后左右上下6个方向的正方形的个数,再乘以1个面的面积即可求解; (3)保持俯视图和左视图不变,可以在第2排的左边和中间这两个上面空余位置各放一个,即共添加2个小正方体.【详解】解:(1)如图所示:(2)(5×2+ 4×2+ 4×2)×(1×1)=26;(3)若保持这个几何体的左视图和俯视图不变,那么最多可以添加2个小正方体.【点睛】本题考查画三视图,解题关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.29.(1)2t-2,22-2t;(2)t=2;(3)t=5或193或253. 【解析】【分析】 (1)先确定点P 和点Q 的运动情况,根据题意,列出代数式即可;(2)根据题意,点P 与点Q 第一次重合,则运动的距离相等,即可得到答案;(3)根据题意,可分为三种情况进行分析,分别画出图形,求出三种情况的时间即可.【详解】解:(1)21012AB OA OB =+=+=,∴点P 从点A 向点B 运动时,有1202t ≤≤,即06t ≤≤, ∴此时点P 在数轴上对应的数为:22t -(06t ≤≤);当点P 从点B 返回向点O 运动时,总路程为:121022AB OB +=+=,∵点Q 运动到点B 所需要的时间为:10101=秒, ∴点P 从点B 返回向点O 运动时,点P 在数轴上对应的数为:222t -(610t <≤); 故答案为:22t -,222t -.(2)根据题意,第一次重合为点P 追上点Q ,则22t t -=,解得:2t =;(3)由点P ,Q 之间的距离为3个单位,可分为三种情况:①点P 追上点Q ,且超过点Q 的距离为3个单位,如图:∴223t t -=+, 解得:5t =;②点P 从B 点返回,与点Q 第二次重合前,如图:∴2223t t -=+, 解得:193t =; ③点P 与点Q 第二次重合后,相距3个单位,如图:∴2223t t -=-, 解得:253t =. ∴当5t =或193t =或253t =时,点P ,Q 之间的距离为3个单位. 【点睛】本题考查了数轴上的动点问题,数轴上两点之间的距离,一元一次方程的应用,解题的关键是掌握数轴上两点之间的距离,注意利用数形结合和分类讨论的思想进行解题. 30.60° 【解析】 【分析】根据∠COD 为平角,AO ⊥OE ,可知∠AOC+∠DOE 的度数,从而可求答案. 【详解】解:∵∠COD 为平角,AO ⊥OE ∴∠AOC+∠DOE=180°-90°=90° 又∵∠AOC=2∠DOE∴3∠DOE=90°,即∠DOE=30° ∴∠AOC=60° 【点睛】本题考查的是平角,直角和角之间的关系,能够明白角与角之间的关系是解题的关键. 31.(1)2.5;4.5;(2)t =4或7;(3)①112;②20 【解析】 【分析】(1)根据数轴上两点之间的距离公式求出AB的长和BC的长,然后根据速度=路程÷时间即可得出结论;(2)分点A和点C相遇前AB=BC、相遇时AB=BC和相遇后AB=BC三种情况,分别画出对应的图形,然后根据AB=BC列出方程求出t的即可;(3)①分点B到达点C之前和点B到达点C之后且点A到点C之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t的值;②分点B到达点C之前和点B到达点C之后且点A到点C之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t的值;【详解】解:(1)∵点A,B,C表示的数分别为-8,2,20.∴AB=2-(-8)=10,BC=20-2=18∵点A和点C都向点B运动,且都用了4秒钟,∴点A的速度为每秒:AB÷4=2.5个单位长度,点C的速度为每秒:BC÷4=4.5个单位长度,故答案为:2.5;4.5.(2)AC=20-(-8)=28∴点A和点C相遇时间为AC÷(1+3)=7s当点A和点C相遇前,AB=BC时,此时0<t<7,如下图所示此时点A运动的路程为1×t=t,点C运动的路程为3×t=3t∴此时AB=10-t,BC=18-3t∵AB=BC∴10-t=18-3t解得:t=4;当点A和点C相遇时,此时t=7,如下图所示此时点A和点C重合∴AB=BC即t=7;当点A和点C相遇后,此时t>7,如下图所示由点C的速度大于点A的速度∴此时BC>AB。
七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.【答案】(1)解:设x秒点P、Q两点相遇根据题意得:2x+3x=20,解得x=4答:4秒后,点P、Q两点相遇。
(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。
2.如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=________°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<120),则n=________时,∠MON=2∠BOC.【答案】(1)100(2)解:①当0<n<60°时,∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,∴∠MON=∠MOC+∠COB+∠BON= ∠AOC+n+ ∠BOD= (120°-n)+n+ (60°-n)=100°;②当60°<n<120°时,∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,∴∠MON=∠MOC+∠COD+∠DON= (120°-n)+60°+ (n-60°)=100°.综上所述:∠MON的度数恒为100°(3)解:①当0<n<60°时,∠BOC=n,∠MON=2n,∴∠MON= (120°+n)+60°-(60°+n)=100°;解得:n=50°;②当60°<n<120°时,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,∴∠MON=360°-∠AOM-∠AOB-∠BON=360°-(240°-n)-120°-(60°+n)=140°,解得:n=70°.综上所述:n=50°或70°【解析】【解答】解:(1)∠MON= ∠AOB+ ∠COD=100°;【分析】(1)由∠AOM=∠AOC,∠AOC= ∠AOB,∠AOC=∠AOM+∠MOC得出∠MOC= ∠AOB,又∠BON=∠BOD,从而由∠MON= ∠AOB+ ∠COD即可算出答案;(2)需要分类讨论:①当0<n<60°时,根据旋转的性质得出∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,由∠MON=∠MOC+∠COB+∠BON整体替换再化简即可得出答案;②当60°<n<120°时,根据旋转的性质得出∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,由∠MON=∠MOC+∠COD+∠DON整体替换再化简即可得出答案;(3)分类讨论:①当0<n<60°时,∠BOC=n,∠MON=2n,又∠MON=∠MOB+∠BOC-∠NOC = (120°+n)+60°- (60°+n)=100°,从而列出方程,求解得出n的值;②当60°<n<120°时,∠BOC=n,∠MON=2n,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,又∠MON=360°-∠AOM-∠AOB-∠BON,从而整体整体代入化简并列出方程,求解即可。
七年级期末试卷达标检测(Word版 含解析)
七年级期末试卷达标检测(Word 版 含解析)一、选择题1.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( )A .1B .2C .1-D .2-2.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( ) A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元3.下列图形中1∠和2∠互为余角的是( )A .B .C .D . 4.下列四个数:22,3.3030030003,,0.5,3.147π--,其中是无理数有( ) A .1个B .2个C .3个D .4个 5.无论x 取什么值,代数式的值一定是正数的是( )A .(x +2)2B .|x +2|C .x 2+2D .x 2-2 6.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .197.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A .3B .2C .0D .-18.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°9.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A .高B .铁C .开D .通10.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m 11.若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >33 12.如图所示的几何体的左视图是( )A .B .C .D . 13.多项式343553m n m n -+的项数和次数分别为( )A .2,7B .3,8C .2,8D .3,7 14.如图正方体纸盒,展开后可以得到( )A .B .C .D .15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.地球的半径大约为6400000m ,用科学计数法表示地球半径为___________m .17.已知3x =是方程35x x a -=+的解,则a 的值为__________.18.点A 在数轴上表示的数是2,3AB -=,则点B 表示的数为__________.19.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.20.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__.21.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3.22.有一数值转换器,其转换原理如图所示,若开始输入x 的值是9,可发现第1次输出的结果是14,第2次输出的结果是7,第3次输出的结果是12,…,依次继续下去,第2020次输出的结果是______.23.已知76A ∠=︒,则A ∠的余角的度数是_____________.24.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”).25.按照下图程序计算:若输入的数是 -3 ,则输出的数是________三、解答题26.如图,已知点A ,B ,C ,直线l 及上一点M ,请你按着下列要求画出图形.(1)画射线BM ;(2)画线段BC 、AM ,且相交于点D ;(3)画出点A 到直线l 的垂线段AE ;(4)请在直线l 上确定一点O ,使点O 到点A 和点B 的距离之和()OA OB +最小.27.小丽早上会选择乘坐公共汽车上学,时间紧张的时候,她也会选择“滴滴打车”的方式上学.两种不同乘车方式的价格如下表所示:已知小丽12月份早晨上学乘车共计22次,乘车费共计100元,求小丽12月份早上上学乘坐公共汽车的次数和“滴滴打车”的次数各是多少? 乘车方式公共汽车 “滴滴打车” 价格(元次) 2 1028.如图,已知直线l和直线外三点A ,B ,C ,按下列要求画图:(1)画射线CB 交直线l 于点F ;(2)连接BA ;(3)在直线l 上确定点E ,使得AE+CE 最小.29.在如图所示的方格纸上作图并标上相应的字母.(1)过点P 画线段AB 的平行线a ;(2)过点P 画线段AB 的垂线,垂足为H ;(3)点A 到线段PH 的距离即线段 的长.30.求不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-+⎩<的整数解.31.计算:(1)(-23)-(+13)-|-34|-(-14) (2)-12-(1-0.5)×13×[3-(-3)2] 32.给出定义:我们用(a ,b )来表示一对有理数a ,b ,若a ,b 满足a ﹣b =ab +1,就称(a ,b )是“泰兴数”如2﹣11=233⨯+1,则(2,13)是“泰兴数”. (1)数对(﹣2,1),(5,23)中是“泰兴数”的是 . (2)若(m ,n )是“泰兴数”,求6m ﹣2(2m +mn )﹣2n 的值;(3)若(a ,b )是“泰兴数”,则(﹣a ,﹣b ) “泰兴数”(填“是”或“不是”). 33.2017年元旦期间,某商场打出促销广告,如表所示. 优惠 条件 一次性购物不超过200一次性购物超过200元,但不超过500元 一次性购物超过500元元优惠办法没有优惠全部按九折优惠其中500元仍按九折优惠,超过500元部分按八折优惠小欣妈妈两次购物分别用了134元和490元.(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。
七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word版含答案)一、选择题1.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为()A.-2 B.6 C.23-D.22.据江苏省统计局统计:2018年三季度南通市GDP总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为()A.36.1728910⨯亿元B.261.728910⨯亿元C.56.1728910⨯亿元D.46.1728910⨯亿元3.如果向北走2 m,记作+2 m,那么-5 m表示()A.向东走5 m B.向南走5 m C.向西走5 m D.向北走5 m4.下列说法不正确的是()A.对顶角相等B.两点确定一条直线C.一个角的补角一定大于这个角D.两点之间线段最短5.点P为直线L外一点,点A、B、C为直线上三点,PA=6cm,PB=8cm,PC=4cm,则点P 到直线l的距离为()A.4cm B.6cm C.小于 4cm D.不大于 4cm 6.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5 B.2或10 C.2.5或3 D.37.下列图形经过折叠不能围成棱柱的是().A.B.C.D.8.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x人到甲队,列出的方程正确的是()A.272+x=(196-x) B.(272-x)= (196-x)C.(272+x)= (196-x) D.×272+x= (196-x)9.计算233235x y y x -的正确结果是( ) A .232x y B .322x y C .322x y -D .232x y - 10.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( )A .-2B .-1C .1D .211.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .12.下列语句错误的是( ) A .两点确定一条直线 B .同角的余角相等 C .两点之间线段最短D .两点之间的距离是指连接这两点的线段 13.下列合并同类项正确的是( ) A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=014.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( ) A . 1.5(7020)x x =-+ B .70 1.5(20)x x +=+ C .70 1.5(20)x x +=- D .70 1.5(20)x x -=+15.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( )A .6个B .5个C .4个D .3个二、填空题16.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)17.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元。
七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word 版 含答案)一、选择题1.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 2.单项式24x y 3-的次数是( ) A .43- B .1 C .2 D .3 3.2019年12月15日开始投入使用的盐城铁路综合客运枢纽,建筑总面积约为324 000平方米.数据324 000用科学记数法可表示为( )A .324×103B .32.4×104C .3.24×105D .0.324×1064.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65° 5.无论x 取什么值,代数式的值一定是正数的是( )A .(x +2)2B .|x +2|C .x 2+2D .x 2-2 6.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A .63B .70C .92D .1057.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -8.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或49.下列算式中,运算结果为负数的是( )A .()3--B .()33--C .()23-D .3--10.如图正方体纸盒,展开后可以得到( )A .B .C .D .11.-5的倒数是A .15 B .5 C .-15 D .-512.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是().A .-1B .0C .3D .413.下列图形中1∠和2∠互为余角的是( )A .B .C .D .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做x 个“中国结”,可列方程( )A .9764x x --=B .96x -=74x +C .x 9x+764+=D .x 9x 764+-= 15.下列运用等式的性质,变形正确的是( )A .若x=y ,则x ﹣5=y+5B .若a=b ,则ac=bcC .若a b c c =,则2a=3bD .若x=y ,则x y a a= 二、填空题16.若∠α=40° 15′,则∠α的余角等于________°.17.如图,若输入的x 的值为正整数,输出的结果为119,则满足条件的所有x 的值为_____.18.单项式223x y π-的次数为_________________ 19.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.20.请你写出一个解为2的一元一次方程:_____________21.写出一个含a 的代数式,使a 不论取什么值,这个代数式的值总是负数__.22.已知a +2b =3,则7+6b +3a =________.23.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.24.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .25.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=_____.三、解答题26.如图,过直线AB 上点O 作AB 的垂线OE ,三角尺的一条直角边OD 从与OB 重合的位置开始,绕点O 按逆时针方向旋转至与OA 重合时停止,在旋转过程中,设BOD ∠的度数为α,作DOE ∠的平分线OF .(1)当OD 在∠BOE 的内部时,BOD ∠的余角是___________;(填写所有符合条件的角)(2)在旋转过程中,若14EOF BOF ∠=∠,求α的值; (3)在旋转过程中,作AOD ∠的平分线,OG FOG ∠的度数是否会随着α的变化而变化?若不变,直接写出FOG ∠的度数;若变化,试用含有α的式子表示FOG ∠的度数.27.如图,已知点A ,B ,C ,直线l 及上一点M ,请你按着下列要求画出图形.(1)画射线BM ;(2)画线段BC 、AM ,且相交于点D ;(3)画出点A 到直线l 的垂线段AE ;(4)请在直线l 上确定一点O ,使点O 到点A 和点B 的距离之和()OA OB +最小.28.把边长为1的10个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加 个小正方体. 29.先化简,再求值:()()2222 4333a b ab ab a b ---+.其中 1a =-、 2b =-.30.有三条长度均为a 的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C 1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C 2,请指出C 1和C 2的数量关系,并说明理由;(2)如图③,当a =11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为 .(直接填写答案,结果保留π)31.如图,A ,O ,B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)∠AOC 与∠BOD 的度数相等吗,为什么?(2)已知OM 平分∠AOC ,若射线ON 在∠COD 的内部,且满足∠AOC 与∠MON 互余; ①∠AOC =32°,求∠MON 的度数;②试探究∠AON 与∠DON 之间有怎样的数量关系,请写出结论并说明理由.32.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+- (2)当()221320b a -++=时,求上式的值.33.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.四、压轴题34.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______. ()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.35.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭ (3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 36.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.37.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =38.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).39.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.40.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?41.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.42.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点.①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ;(2)若AC =λCB (其中λ>0).①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由角平分线的定义可得,∠COM=12∠AOC ,∠NOC=12∠BOC ,再根据∠MON=∠MOC-∠NOC 解答即可.【详解】∵OM 平分AOC ,∴∠COM=12∠AOC , ∵ON 平分∠BOC ,∴∠NOC=12∠BOC , ∴∠MON=∠MOC-∠NOC=12 (∠AOC-∠BOC)=12∠AOB=45°. 故选B.【点睛】本题考查角的相关计算,解题的关键是通过角平分线的定义将所求的角转化已知角. 2.D解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】单项式43-x2y的次数是2+1=3.故选D.【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】324 000=3.24×105.故选:C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】根据方向角的定义和角平分线的定义即可得到结论.【详解】∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°.∵OB平分∠AOC,∴∠BOC12=∠AOC=65°.故选:D.【点睛】本题考查了方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.5.C解析:C【解析】【分析】分别求出每个选项中数的范围即可求解.【详解】A.(x+2)2≥0;B.|x+2|≥0;C.x2+2≥2;D.x2﹣2≥﹣2.故选:C.【点睛】本题考查了正数与负数、绝对值和平方数的取值范围;掌握平方数和绝对值的意义是解题的关键.6.C解析:C【解析】【分析】设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x+-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=92,解得:x=927,x须为正整数,∴不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C【点睛】此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.7.A解析:A【解析】【分析】由展开图可知a的相对面为1-,根据题意可得a的值.【详解】解:因为相对面上的数都互为相反数,由展开图可知a的相对面为1-,所以a的值为1.故选:A【点睛】本题考查了正方体的展开图,熟练掌握展开图与立体图之间的关系是解题的关键.8.C解析:C【解析】【分析】【详解】解:分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故选C.9.D解析:D【解析】【分析】根据有理数的运算即可依次求解判断.【详解】--=3>0,故错误;A. ()3--=27>0,故错误;B. ()33C. ()23-=9,>0,故错误;--=-3<0,故正确;D. 3故选D.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.10.D解析:D【解析】【分析】根据折叠后白色圆与蓝色圆所在的面的位置进行判断即可.【详解】解:A.两个蓝色圆所在的面折叠后是对面,不合题意;B.白色圆与一个蓝色圆所在的面折叠后是对面,不合题意;C.白色圆与一个蓝色圆所在的面折叠后是对面,不合题意;D.白色圆与两个蓝色圆所在的面折叠后是相邻的面,符合题意;故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体的展开图各个面的相对位置是解题的关键.11.C解析:C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15 .故选C.12.C解析:C【解析】【分析】观察数轴根据点B与点A之间的距离即可求得答案.【详解】观察数轴可知点A与点B之间的距离是5个单位长度,点B在点A的右侧,因为点A表示的数是-2,-2+5=3,所以点B表示的数是3,故选C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.13.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.14.D解析:D【解析】【分析】根据题意,利用人数不变列方程即可.【详解】解:由题意可知:97 64x x+-=,故选D.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.15.B解析:B【解析】分析:根据等式的基本性质对各选项进行逐一分析即可.A. 不符合等式的基本性质,故本选项错误;B. 不论c为何值,等式成立,故本选项正确;C. ∵a bc c=,∴a b=,故本选项错误;D. 当0a=时,等式不成立,故本选项错误.故选B.点睛:本题考查了等式的性质,等式的性质是:等式的两边都加上或减去同一个数(或式子),结果仍相等;等式两边乘以同一个数或除以一个不为0的数,结果仍相等.二、填空题16.75【解析】【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】∵∠α=40° 15′,∴∠a的余角=90°-40° 15′=49° 45′=49.75°.故答案为:4解析:75【解析】【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】∵∠α=40° 15′,∴∠a的余角=90°-40° 15′=49° 45′=49.75°.故答案为:49.75.【点睛】本题考查了余角的知识,属于基础题,解答本题的关键是熟记互为余角的两角之和为90°.17.24或5【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出119,可得方程5x-1=119,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解析:24或5【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出119,可得方程5x-1=119,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解:第一个数就是直接输出其结果的:5x-1=119,解得x=24,第二个数是(5x-1)×5-1=119,解得x=5,第三个数是:5[5(5x-1)-1]-1=119,解得x=65.(不符合题意,舍去)∴满足条件所有x的值是24或5.故答案为:24或5.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.18.3【解析】【分析】根据单项式次数的定义来求解,即可得到答案.【详解】解:单项式的次数为:;故答案为:3.【点睛】本题考查了单项式的次数的定义,解题的关键是熟练掌握单项式次数的定义. 解析:3【解析】【分析】根据单项式次数的定义来求解,即可得到答案.解:单项式223x y π-的次数为:213+=; 故答案为:3.【点睛】本题考查了单项式的次数的定义,解题的关键是熟练掌握单项式次数的定义. 19.两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本解析:两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.20.x-2=0.(答案不唯一)【解析】【分析】根据题意写出任一解为2的一元一次方程即可.【详解】由题意:x-2=0,满足题意;故答案为:x-2=0;【点睛】本题考查列一元一次方程,关键在解析:x -2=0.(答案不唯一)【解析】根据题意写出任一解为2的一元一次方程即可.【详解】由题意:x-2=0,满足题意;故答案为:x-2=0;【点睛】本题考查列一元一次方程,关键在于记住基础知识.21.-a2-1(答案不唯一)【解析】【分析】要求所写代数式的值恒为负数,联系平常所学知识,正数的相反数是负数及初中阶段所学三种数具有非负性:绝对值,偶次方,二次根式,不难得出结果.【详解】由题解析:-a2-1(答案不唯一)【解析】【分析】要求所写代数式的值恒为负数,联系平常所学知识,正数的相反数是负数及初中阶段所学三种数具有非负性:绝对值,偶次方,二次根式,不难得出结果.【详解】由题意,可知符合条件的代数式可以是-|a|-1,-a2-1,等,答案不唯一.【点睛】本题是开放性试题,答案不唯一.通过对此题的训练,有利于培养学生的发散思维.22.16【解析】【分析】将原式进行变形,然后整体代入求值即可.【详解】解:7+6b+3a=7+3(a+2b)当a+2b=3时,原式=7+3×3=16故答案为:16【点睛】本题考查代数值解析:16【解析】【分析】将原式进行变形,然后整体代入求值即可.【详解】解:7+6b+3a=7+3(a+2b)当a+2b=3时,原式=7+3×3=16故答案为:16【点睛】本题考查代数值求值,利用整体代入思想解题是本题的解题关键.23.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75, 17340.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56 cm,∴注水1分钟,丙的水位上升510463⨯=cm,①当甲比乙高16cm时,此时乙中水位高56cm,用时1分;②当乙比甲水位高16cm 时,乙应为76cm,757=665÷分,当丙的高度到5cm时,此时用时为5÷103=32分,因为73<52,所以75分乙比甲高16cm.③当丙高5cm时,此时乙中水高535624⨯=cm,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm,当乙的水位达到5cm时开始流向甲,此时用时为355+5243⎛⎫-÷⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm,当甲的水位高为546cm时,乙比甲高16cm,此时用时155201734146340⎛⎫+-÷=⎪⎝⎭分;综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm.【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点.24.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 25.16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,又因相对面上两个数之和为10,可得x=9,y=7,所以x+y=16.解析:16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x ”相对,面“3”与面“y ”相对,又因相对面上两个数之和为10,可得x =9,y =7,所以x +y =16.三、解答题26.(1),DOE BOC ∠∠;(2)54α=或150;(3)不变,45.【解析】【分析】(1)根据余角定义即可解答;(2)根据OF 平分DOE ∠可得EOF FOD ∠=∠,设EOF x FOD ∠==∠,可得∠BOF=4x ,再分D 在OE 右边和左边两种情况,结合图形列出方程解出x 即可解答;(3)思路同(2)分两种情况,再结合图形和根据角平分线分的两角相等、角的和差计算即可.【详解】(1)当OD 在∠BOE 的内部时,由题意可知:∠BOE 和∠COD 都是直角,即BOD ∠+DOE ∠=90°,BOD ∠+BOC ∠=90°,所以BOD ∠的余角是,DOE BOC ∠∠; (2)解:∵OF 平分DOE ∠ ,∴EOF FOD ∠=∠设EOF x FOD ∠==∠,∵14EOF BOF ∠=∠,∴∠BOF=4x, I.当D 在OE 右边时(如原题图)∠EOF+∠BOF=∠BOE即:490x x +=590x =18x =∴EOF FOD ∠=∠=18°,∠BOF=72°,∴α=BOD ∠=∠BOE-∠EOF-∠DOF=90°-18°-18°=54° ,II.当D 在OE 左边时:∵∠BOF-∠EOF=∠BOE∴490x x -=390x =30x =,即EOF FOD ∠=∠=30°,∵BOD ∠=∠BOE+∠EOF+∠DOF ∴BOD ∠=909060150x x α=++=+=答:54α=或150;(3)不变,45,理由如下: ∵OF 平分DOE ∠ ,∴EOF FOD ∠=∠=12DOE ∠ , ∵OG 平分AOD ∠,∴AOG GOD ∠=∠=12DOA ∠ , I.当D 在OE 右边时∵∠FOG=∠GOD-∠DOF ,∠AOE=∠AOD-∠DOE=90°∴1111()90452222FOG AOD EOD AOD EOD ∠=∠-∠=∠-∠=⨯= II.当D 在OE 左边时方法同(I )可得:1111()90452222FOG AOD EOD AOD EOD ∠=∠+∠=∠+∠=⨯= 故不变,45.【点睛】 本题考查角平分线定义、角的和差计算,解题关键是分类讨论和数形结合思想的应用.27.(1)见解析;(2)见解析;(3)见解析;(4)见解析【解析】【分析】(1)按要求作图,注意射线的额端点为B ;(2)按要求作图;(3)按要求作图;(4)按照两点之间,线段最短作图.【详解】解:(1)如图射线BM 即为所求;(2)如图线段BC ,AM 交于点D 即为所求;(3)如图AE 即为所求;(4)如图连接AB 交直线l 于点O,点O 即为所求.【点睛】本题考查射线,线段的基本作图,掌握射线,线段的定义,两点之间,线段最短是本题的解题关键.28.(1)见解析;(2)38;(3)4.【解析】【分析】(1)根据三视图的画法画出三视图即可;(2)分别求出前后左右上下一共有几个面,再计算它们的和即可;(3)保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,再计算放置小正方体的和即可.【详解】(1) 该几何体的主视图、左视图、俯视图如图所示:(2)该几何体表面积为6+6+6+6+7+7=38;(3) 要保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,所以可放置小正方体的个数为1+2+1=4.【点睛】本题考查组合体的三视图,解题的关键是计算出当左视图和俯视图不变时,可以在每一层上放置的小正方体数.29.223a b ab -; 2-【解析】【分析】原式去括号合并得到最简结果,将a ,b 值代入计算即可求值.【详解】解:()()2222 4333a b ab ab a b ---+2222 12439a b ab ab a b =-+-22 3a b ab =-,当 1a =-、 2b =-时,原式()()()()()()2231212=642=-⨯---⨯----=-.【点睛】本题考查了整式的加减化简求值,掌握去括号和合并同类项法则是解答此题的关键.30.(1)C 1=C 2,理由详见解析;(2)11π.【解析】【分析】(1)设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,根据圆的周长公式C d π=得到C 1=πa ,C 2=π(a 1+a 2)=πa ,从而得到C 1和C 2的相等;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,然后根据圆的周长公式得到C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=a π,即可求解.【详解】解:(1)C 1=C 2.理由如下:设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,∵C 1=πa ,C 2=πa 1+πa 2=π(a 1+a 2)=πa ,∴C 1=C 2;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,∵C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=11π.故答案为:11π.【点睛】本题主要考查圆的周长,掌握圆的周长公式是解题的关键.31.(1)∠AOC =∠BOD ,理由详见解析;(2)① 58°;②∠AON =∠DON ,理由详见解析.【解析】【分析】(1)根据补角的性质即可求解;(2)①根据余角的定义解答即可;②根据角平分线的定义以及补角与余角的定义,分别用∠AOM 的代数式表示出∠AON 与∠DON 即可解答.【详解】解:(1)∠AOC =∠BOD ,∵∠BOD 与∠BOC 互补,∴∠BOD +∠BOC =180°,∵∠AOC +∠BOC =180°,∴∠AOC =∠BOD ;(2)①∵∠AOC 与∠MON 互余,∴∠MON =90°﹣∠AOC =58°;②∠AON =∠DON ,理由如下:∵OM 平分∠AOC ,∴∠AOC =2∠AOM ,∠COM =∠AOM ,∵∠AOC 与∠MON 互余,∴∠AOC +∠MON =90°,∴∠AON =90°﹣∠AOM ,∴∠CON =90°﹣3∠AOM ,∵∠BOD 与∠BOC 互补,∴∠BOD +∠BOC =180°,∴∠CON +∠DON +2∠BOD =180°,又∵∠BOD =∠AOC =2∠AOM ,∴∠DON =180°﹣∠CON ﹣2∠BOD=180°﹣(90°﹣3∠AOM )﹣4∠AOM=90°﹣∠AOM .∴∠AON =∠DON .【点睛】本题主要考查角平分线的定义,补角、余角的求法和角的和与差,掌握角平分线的定义,补角余角的求法,找准角之间的关系是解题的关键.32.(1)2a b -1;(2)a=-2,b=12;1. 【解析】试题分析:(1)首先根据去括号的法则将括号去掉,然后再进行合并同类项化简;(2)根据非负数的性质求出a 和b 的值,然后代入化简后的式子进行计算,得出答案. 试题解析:(1)原式=22a b +22ab -22ab +1-2a b -2=2a b -1(2)根据非负数的性质可得:2b -1=0,a+2=0 解得:a=-2,b=12 ∴原式=2a b -1=4×12-1=2-1=1. 考点:(1)化简求值;(2)非负数的性质。
七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word 版 含答案)一、选择题1.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >02.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .3.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .194.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×1065.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A .高B .铁C .开D .通6.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a7.若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >338.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A .﹣5x ﹣1B .5x+1C .13x ﹣1D .6x 2+13x ﹣19.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是() A .1 B .3C .7D .910.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个11.下列叙述中正确的是( )①线段AB 可表示为线段BA; ② 射线AB 可表示为射线BA; ③ 直线AB 可表示为直线BA; ④ 射线AB 和射线BA 是同一条射线. A .①②③④B .②③C .①③D .①②③12.如图所示的几何体的左视图是( )A .B .C .D .13.下列合并同类项正确的是( ) A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=014.单项式24x y 3-的次数是( ) A .43-B .1C .2D .315.对于任何有理数a ,下列各式中一定为负数的是( ) A .(3)a --+B .2a -C .1a -+D .1a --二、填空题16.若60A ∠=︒,且A ∠与B 互补,则B ∠=_______________度.17.定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )2kn=(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n =13,则:若n =24,则第100次“F ”运算的结果是________.18.已知关于x 的方程345m x -=的解是1x =,则m 的值为______. 19.已知x =1是方程ax -5=3a +3的解,则a =_________. 20.如图,直线//,1125∠=︒a b ,则2∠=_____________度21.如图,AB ,CD 相交于点O ,EO AB ⊥,则1∠与2∠互为_______角.22.若2x =-是关于x 的方程23a x+=的解,则a 的值为_______. 23.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________.24.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .25.如图,已知直线AB 和CD 相交于点O ,射线OE 在COB ∠内部,OE OC ⊥,OF 平分AOE ∠,若40BOD ∠=,则COF ∠=__________度.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.先化简,再求值:2211312()()2323x x y x y --+-+,其中,x y 满足22(2)03x y ++-= 28.计算: (1)()20201|4|23-+-+⨯- (2)()157246812⎛⎫--+⨯- ⎪⎝⎭29.某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.请根据上述收费标准解答下列问题:(1)小明家1月份用电140度,应交电费______________元; (2)小明家2月交电费98元,则他家2月份用电多少度? 30.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯-⎪⎝⎭. 31.如图,在数轴上,点A 表示10-,点B 表示11,点C 表示18.动点P 从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q 从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t 秒.(1)当t 为何值时,P 、Q 两点相遇?相遇点M 所对应的数是多少?(2)在点Q 出发后到达点B 之前,求t 为何值时,点P 到点O 的距离与点Q 到点B 的距离相等;(3)在点P 向右运动的过程中,N 是AP 的中点,在点P 到达点C 之前,求2CN PC -的值.32.计算. (1)4×(﹣12)÷(﹣2) (2)132(36)249⎛⎫-+-⨯- ⎪⎝⎭ (3)﹣1+(1﹣0.5)÷(﹣3)×[2﹣(﹣3)2] (4)2(a 2﹣ab )+3(23a 2﹣ab )+4ab 33.计算: (1) 351(24)()8124-⨯-+ (2)22020113(1)()334---⨯-+- 四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.35.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .36.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5 t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示) 37.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.38.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).39.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.40.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板∠)的顶点与60角画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将(COD三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 41.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?42.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.43.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据图示知b <a <0,然后利用不等式的性质对以下选项进行一一分析、判断. 【详解】 解:如图:根据数轴可知,b <a <0, A 、a >b ,正确; B 、ab >0,故B 错误; C 、0b a -<,故C 错误; D 、0a b +<,故D 错误; 故选:A. 【点睛】本题考查了利用数轴比较大小,解题的关键是根据数轴得到b <a <0.2.B解析:B 【解析】 【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解. 【详解】解:A 、设最小的数是x . x+x+7+x+7+1=19∴x=43,故本选项错误; B 、设最小的数是x .x+x+6+x+7=19,∴x=2,故本选项正确.C、设最小的数是x.x+x+1+x+7=19,∴x=113,故本选项错误.D、设最小的数是x.x+x+1+x+8=19,∴x=103,故本选项错误.故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.3.D解析:D【解析】【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程即可.【详解】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…x张长方形餐桌的四周可坐4x+2人;则依题意得:4x+2=78,解得:x=19,故选:D.【点睛】此题考查图形的变化规律和由实际问题抽象出一元一次方程,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.4.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将115000用科学记数法表示为:1.15×105.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.D解析:D【解析】【分析】根据正方体的表面展开图中,相对面之间一定相隔一个正方形的特点选出答案即可.【详解】因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以“安”字的对面是是“通”字,故答案选D.【点睛】本题考查的是正方体的展开图,熟知正方体的表面展开图的特点是解题的关键.6.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D、∵从数轴可知:-3<a<-2,∴3<1 –a<4,故本选项不符合题意;故选:C.【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a<-2是解此题的关键.7.B解析:B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.8.A解析:A【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】根据题意列得:(3x2+4x−1)−(3x2+9x)=3x2+4x-1−3x2−9x=−5x−1.故选A.【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.A解析:A【解析】【详解】a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,a9=7,…不难发现此组数据为6个一循环,2018÷6=336…2,所以第2018个数是1.故选A.【点睛】本题考查了规律型——数字的变化类,此类问题关键在于找出数据循环的规律.10.A解析:A【解析】【分析】根据无理数的定义确定即可.【详解】解:在 3.14、227、 0、π、1.6这 5个数中,π为无理数,共1个.故选:A.【点睛】本题考查实数的分类,无限不循环的小数为无理数.11.C解析:C【解析】【分析】依据线段、射线以及直线的概念进行判断,即可得出正确结论.【详解】解:①线段AB可表示为线段BA,正确;②射线AB不可表示为射线BA,错误;③直线AB可表示为直线BA,正确;④射线AB和射线BA不是同一条射线,错误;故选:C.【点睛】本题主要考查了线段、射线以及直线的概念,解题时注意:射线用两个大写字母表示时,端点的字母放在前边.12.C解析:C【解析】【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看是一个矩形,矩形的中间是一条横着的线,故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.13.D解析:D【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,结合选项即可得出答案.【详解】A、2x+3x=5x,故原题计算错误;B、3a和2b不是同类项,不能合并,故原题计算错误;C、5ac﹣2ac=3ac,故原题计算错误;D、x2y﹣yx2=0,故原题计算正确;故选:D.【点睛】此题考查了同类项的合并,属于基础题,掌握同类项的合并法则是关键.14.D解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】 单项式43-x 2y 的次数是2+1=3. 故选D .【点睛】 本题考查了单项式的次数,正确把握定义是解题的关键.15.D解析:D【解析】【分析】负数一定小于0,分别将各项化简,然后再进行判断.【详解】解:A . (3)a --+=3-a ,当a 3≤时,原式不是负数,选项A 错误;B . 2a -,当a=0时,原式不是负数,选项B 错误;C . 1a -+,当a 1≠-时,原式才符合负数的要求,选项C 错误;D . 1a --10≤-<,原式一定是负数,符合要求,选项D 正确.故选:D .【点睛】本题考查的知识点是有理数的加减法以及绝对值,正确的将各项化简是解此题的关键.二、填空题16.120【解析】【分析】根据补角的定义可知∠A+∠B=180°,据此进行计算即可.【详解】∵∠A 与∠B 互补,∴∠A+∠B=180°,∴∠B=180°-∠A=180°-60°=120°,解析:120【解析】【分析】根据补角的定义可知∠A+∠B=180°,据此进行计算即可.【详解】∵∠A 与∠B 互补,∴∠A+∠B=180°,∴∠B=180°-∠A=180°-60°=120°,故答案为120.【点睛】本题考查的是补角的定义,能够知道互补的两个角相加等于180°是解题的关键. 17.4【解析】【分析】计算n=24时的情况,将结果列出来找到规律解题即可.【详解】若n=1,第一次结果为3n+1=4,第2次“F 运算”的结果是: =1;若n=24,第1次结果为:,第2次解析:4【解析】【分析】计算n =24时的情况,将结果列出来找到规律解题即可.【详解】若n=1,第一次结果为3n+1=4,第2次“F 运算”的结果是:242=1; 若n=24,第1次结果为:32432=, 第2次结果为:3×3+1=10, 第3次结果为:11052=, 第4次结果为:3×5+1=16, 第5次结果为:41612=, 第6次结果为:3×1+1=4,第7次结果为:2412=, 第8次结果为: 3×1+1=4,…可以看出,从第5次开始,结果就只是1,4两个数轮流出现,且当次数为奇数时,结果是1,次数是偶数时,结果是4,而100次是偶数,因此最后结果是4.故答案为:4.【点睛】本题为找规律的题型,关键在于列出结果找到规律.18.3【解析】【分析】方程的解满足方程,所以将代入方程可得的值.【详解】解:将代入方程得解得.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键 解析:3【解析】【分析】方程的解满足方程,所以将1x =代入方程可得m 的值.【详解】解:将1x =代入方程345m x -=得345m -=解得3m =.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键.19.-4【解析】【分析】根据一元一次方程的定义和解法,将x=1代入方程,得到关于a 的一元一次方程,然后解这个方程即可.【详解】将x=1代入ax -5=3a+3得:解得:故答案是-4.【点解析:-4【解析】【分析】根据一元一次方程的定义和解法,将x=1代入方程,得到关于a的一元一次方程,然后解这个方程即可.【详解】将x=1代入ax-5=3a+3得:a a-=+533a=-解得:4故答案是-4.【点睛】本题考查了一元一次方程中知道方程的解求特定字母的值,解决本题的关键是熟练掌握一元一次方程的定义和解法.20.55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.【详解】∵∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=1解析:55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.【详解】a b∵//∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=180°-∠3=180°-125°=55°故答案为55.【点睛】本题考查的是对顶角的性质和平行线的性质,知道两直线平行同旁内角互补是解题的关键. 21.余【解析】【分析】根据EO⊥AB,可知∠EOB=90°,然后根据平角为180°,可求得∠1+∠2=90°,即可得出∠1和∠2的关系.【详解】解:∵EO⊥AB,∴∠EOB=90°,∵∠1解析:余【解析】【分析】根据EO⊥AB,可知∠EOB=90°,然后根据平角为180°,可求得∠1+∠2=90°,即可得出∠1和∠2的关系.【详解】解:∵EO⊥AB,∴∠EOB=90°,∵∠1+∠BOE+∠2=180°,∴∠1+∠2=90°,∴∠1和∠2互余.故答案为: 余.【点睛】本题考查了邻补角及余角的概念,解题的关键是掌握互余两角之和为90°.22.-8【解析】【分析】将代入方程后解关于a 的一元一次方程即可.【详解】将代入方程得,解得:a=-8.【点睛】本题考查一元一次方程的解得概念,解题的关键是将方程的解代入方程后再解关于a 的方解析:-8【解析】【分析】将2x =-代入方程后解关于a 的一元一次方程即可.【详解】将2x =-代入方程得2-23a +=,解得:a=-8. 【点睛】本题考查一元一次方程的解得概念,解题的关键是将方程的解代入方程后再解关于a 的方程. 23.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵ ,, ,,,, ,,∴商的最小值为.故答案为:.【点睛】本题考 解析:52-【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】 解:∵1242 ,422,2255 ,5522,3 344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.24.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 25.25【解析】【分析】,得出,根据对顶角相等可得出,因此,又因为平分,,即可求出答案.【详解】解:∵,∴,∵根据对顶角相等可得出,∴,∵平分,∴,∴.故答案为:25.【点睛】解析:25【解析】【分析】OE OC ⊥,得出COE 90∠=︒,根据对顶角相等可得出BOD AOC 40∠∠==︒,因此AOE 130∠=︒,又因为OF 平分AOE ∠,AOF EOF 65∠∠==︒,即可求出答案.【详解】解:∵OE OC ⊥,∴COE 90∠=︒,∵根据对顶角相等可得出BOD AOC 40∠∠==︒,∴AOE 130∠=︒,∵OF 平分AOE ∠,∴AOF EOF 65∠∠==︒,∴COF 906525∠=︒-︒=︒.故答案为:25.【点睛】本题考查的知识点是角的和与差,找出图形中角之间的数量关系是解此类题目的关键.三、解答题26.(1)-5.5;(2)16. 【解析】【分析】根据有理数的计算法则计算即可.【详解】(1)解:原式=1 6.52--+=-5.5.(2)解:原式=111(29)23--⨯⨯- =716-+=16. 【点睛】本题考查有理数的计算,关键在于熟练掌握计算方法.27.23x y -+,589【解析】【分析】先把原代数式化简,再根据题意求出x 、y 的值代入化简后的代数式即可解答.【详解】 2211312()()2323x x y x y --+-+ 解:原式=22123122323x x y x y -+-+ 21312(2)()2233x y =--++ 23x y =-+ ∵22(2)03x y ++-= ∴x+2=0,y-23=0 解得:x=-2,y=23, 当22,3x y =-=时, 原式223(2)()3=-⨯-+469=+ 589= 【点睛】本题考查化简代数式并求值的方法,解题关键是熟练掌握去括号法则:括号前面是正号,去掉括号不变号,括号前面是负号,去掉括号变符号.28.(1)-3;(2)5【解析】【分析】(1)利用有理数的加减乘除法则运算即可;(2)利用乘法分配律计算即可.【详解】解:(1)原式1463=-+-=-(2)原式415145=+-=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.29.(1)82(2)160度;【解析】【分析】(1)根据总电价=0.5×用电度数以及总电价=100×0.5+(用电度数−100)×0.8,代入数据即可得出结论;(2)先确认小明家2月交电费98元时,用电量大于100度,根据总电价=100×0.5+(用电度数−100)×0.8即可得出关于x的一元一次方程,解之即可得出结论.【详解】:解:(1)100×0.5=50(元),100×0.5+(140−100)×0.8=82(元)故答案是:82;(2)因为当月用电量为100度时,应收费50元,而小明家2月交电费90元,所以小明家2月份用电量超过100度.设小明家2月份用电x度,根据题意,得:100×0.5+0.8×(x−100)=98,解方程,得:x=160.答:小明家2月份用电160度.【点睛】本题考查了一元一次方程的应用,根据数量关系总价=单价×数量列出一元一次方程是解题的关键.30.(1)-8;(2)60.【解析】【分析】(1)先计算乘方和乘法,再计算减法,即可得到答案;(2)利用乘法分配律进行计算,即可得到答案.【详解】(1)解:原式=4-12=-8;(2)解:原式=-30+40+50=60.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.31.(1)283;263;(2)3或173;(3)28.【解析】【分析】(1)根据题意,由相遇时P、Q两点的路程和为28列出方程求解即可;(2)由题意得,t的值大于0且小于7.分点P在点O的左边,点P在点O的右边两种情况讨论即可求解;(3)根据中点的定义得到AN=PN=12AP=t,可得CN=AC-AN=28-t,PC=28-AP=28-2t,再代入计算即可求解.【详解】解:(1)根据题意得2t+t=28,解得t=283,∴AM=563>10,∴M在O的右侧,且OM=563-10=263,∴当t=283时,P、Q两点相遇,相遇点M所对应的数是263;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10-2t=7-t,解得t=3.若点P在点O的右边,则2t-10=7-t,解得t=173.综上所述,t的值为3或173时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=12AP=t,∴CN=AC-AN=28-t,PC=28-AP=28-2t,2CN-PC=2(28-t)-(28-2t)=28.【点睛】本题考查了一元一次方程的应用,数轴.解题时,一定要“数形结合”,这样使抽象的问题变得直观化,降低了题的难度.32.(1)1;(2)﹣1;(3)16;(4)4a2﹣ab.【解析】【分析】(1)按从左往右的顺序计算即可;(2)利用乘法分配律计算乘法,再计算加减即可;(3)先算乘方,再算中括号里面的减法,然后算乘除,最后算加减即可;(4)按照去括号,合并同类项的法则去括号,合并同类项即可.【详解】解:(1)原式=﹣2÷(﹣2)=1;(2)原式=﹣12×(﹣36)+34×(﹣36)﹣29×(﹣36),=18﹣27+8,=﹣1;(3)原式=﹣1+12×(﹣13)×(2﹣9),=﹣1+12⨯(﹣13)×(﹣7),=﹣1+76,=16;(4)原式=2a2﹣2ab+2a2﹣3ab+4ab,=4a2﹣ab.【点睛】本题主要考查有理数的混合运算及整式的化简,掌握有理数混合运算的顺序和法则,去括号,合并同类项的法则是解题的关键.33.(1)-5;(2)1 612 -【解析】【分析】(1)根据乘法分配律进行展开计算即可;(2)按照有理数混合运算进行计算即可.【详解】解:(1)原式=351 (-24)-(-24)+(-24)8124⨯⨯⨯=-9+10-6 =-5(2)原式=4391()31212--⨯-+=1 91312--⨯+=19312--+=1 612 -【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算法则是解题的关键.四、压轴题34.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;(1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++; (1)1111...12233420192020++++⨯⨯⨯⨯ =111111 (22320192020)-+-++- =112020- =20192020; (2)∵|2||4|0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4, ∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++ =111124466820182020++++⨯⨯⨯⨯ =1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭ =111222020⎛⎫- ⎪⎝⎭ =10094040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.(1)3,3,1a -;(2)①42c -;②72-或152;③6 【解析】【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可. 【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=;数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -;(2)①∵电子蚂蚁在点A 的左侧,∴11AC c c =--=--,55BC c c =-=-,∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<,∵1511c c ,∴()()1511c c -+--=,解得:72c =-; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1511c c ,∴15611c c ++-=≠,故此种情况不存在;若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1511c c ,∴()()1511c c ++-=,解得:152c =; 综上,c 表示的数是72-或152; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,∴当15c -≤≤时,代数式15c c 的最小值是()516--=, 即代数式15c c 的最小值是6.故答案为:6.【点睛】。
七年级期末试卷达标训练题(Word版含答案)
七年级期末试卷达标训练题(Word版含答案)一、选择题1.同一台显微镜,采用不同的物镜和目镜组合观察同一血液涂片,出现图中甲、乙两个视野,下列说法正确的是()A.如果目镜一样,图甲的物镜比图乙的物镜短B.如果物镜一样,图乙的目镜比图甲的目镜长C.若使用相同的光照、反光镜和光圈,则乙视野更亮D.甲观察的范围比乙观察的范围小,看到的细胞多2.下列使用显微镜的说法,错误的是A.对光完成的标志是要看到明亮的圆形视野B.当光线较暗时,用反光镜的凹面来对光C.观察时,用一只眼看着目镜,另一只眼睁开目的是便于画图D.把刻有“p”的载玻片放在显微镜下观察时,视野中所看到的应当是b3.下列诗句包含生命现象的是A.竹外桃花三两枝,春江水暖鸭先知B.黄河之水天上来,奔流到海不复回C.窗含西岭千秋雪,门泊东吴船D.春江潮水连海平,海上明月共潮生4.鲸鱼需要浮出水面进行呼吸,该过程体现的生命现象是()A.生物的生长发育B.生物的遗传和变异C.生物对刺激的反应D.生物的新陈代谢5.生物既能适应环境,也能影响环境.下列能反映生物影响环境的是()A.种瓜得瓜,种豆得豆B.螳螂捕蝉,黄雀在后C.千里之堤,溃于蚁穴D.不入虎穴,焉得虎子6.谷雨是春季最后一个节气。
谚语“谷雨前后,种瓜点豆”意思是说谷雨前后适于播种。
这体现了哪些非生物因素对生物的影响?()A.阳光、温度B.土壤、水分C.水分、温度D.空气、阳光7.设洋葱根尖细胞的染色体数目为2 ,如果其中一个细胞连续3次,那么,3次后,将得到细胞的个数和细胞体内的染色体数分别为()A.3、2 B.8、2 C.3、1 D.8、18.细胞过程的正确顺序是()①细胞质分成两份,每份各含一个细胞核②在原来的细胞中央,形成新的细胞膜,植物细胞还形成新的细胞壁③细胞核一分为两个A.①②③B.②①③C.③①②D.①③②9.在某生态系统中,各种生物体内残留的某重金属含量如下表所示,则该生态系统中最可能的食物链构成是()生物体A B C D E某重金属浓度/ppm0.0570.5158560A.A→E→C→B→D B.D→B→C→E→AC.A→C→B→D→E D.E→D→B→C→A10.如图表示某生态系统的食物网简图,下列叙述正确的是( )A.该食物网中共有五条食物链B.最长的食物链是草一►食草昆虫一►青蛙一►蛇C.该食物网中的每一种生物都只位于一条食物链上D.如果蛇遭大量捕杀,则短时间内青蛙的数量会增多11.如表是三种植物的种子在见光和不见光条件下的发芽率,根据表中数据判断,下列叙述正确的是()蚕豆烟草苋菜见光条件下97.1%98.5% 1.8%不见光条件下96.8% 2.4%96.6%A.光能够抑制烟草种子的萌发B.光是种子萌发的必要条件C.光对蚕豆种子的萌发影响很大D.播种苋菜种子时应将其埋入土壤中12.如图是菜豆种子和玉米种子结构图,据图分析,找出错误的一项()A.菜豆种子的营养物质储藏在E中B.菜豆是双子叶植物,种子中[D]子叶有两片C.在玉米种子切面上滴加碘液,变蓝的是[5]D.玉米种子的胚由[2]、[3]、[4]、[6]组成13.下列有关植物的叙述,正确的是A.苔藓和蕨类植物都具有根、茎、叶的分化,体内都有输导组织B.种子萌发需要适宜的温度、充足的空气和肥沃的土壤C.导管是植物体内运输水分的管道,导管由一个细胞构成的D.裸子植物和被子植物都属于种子植物,种子中都有胚14.桫椤为我国一级保护植物。
七年级期末试卷达标检测卷(Word版 含解析)
七年级期末试卷达标检测卷(Word 版 含解析) 一、选择题1.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >0 2.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4 B .4m 2n+2mn 2=6m 2n C .2x ﹣12x =32x D .2a 2﹣a 2=2 3.有理数-53的倒数是( ) A .53 B .53- C .35 D .354.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6- 5.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .36.下列各图是正方体展开图的是( )A .B .C .D .7.下列图形中,线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .8.-5的相反数是( )A .-5B .±5C .15D .59.下列计算正确的是( )A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab += 10.在 3.14、227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个 11.如果向北走2 m ,记作+2 m ,那么-5 m 表示( )A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m 12.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( )A .44.8310⨯B .54.8310⨯C .348.310⨯D .50.48310⨯13.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A14.下列单项式中,与2a b 是同类项的是( )A .22a bB .22a bC .2abD .3ab15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.若∠α=40° 15′,则∠α的余角等于________°.17.在0,1,π,227-这些数中,无理数是___________ . 18.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.19.若221x x -+的值是4,则2245x x --的值是_________.20.一个数的平方为16,这个数是 .21.计算t 3t t --=________.22.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.23.如图,已知∠AOB =150°,∠COD =40°,∠COD 在∠AOB 的内部绕点O 任意旋转,若OE 平分∠AOC ,则2∠BOE ﹣∠BOD 的值为___°.24.若单项式42m a b 与22n ab -是同类项,则m n -=_______.25.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.三、解答题26.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.27.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距?28.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).29.如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.(1)∠AOC与∠BOD的度数相等吗,为什么?(2)已知OM平分∠AOC,若射线ON在∠COD的内部,且满足∠AOC与∠MON互余;①∠AOC=32°,求∠MON的度数;②试探究∠AON与∠DON之间有怎样的数量关系,请写出结论并说明理由.30.如图,点A,B在长方形的边上.(1)用圆规和无刻度的直尺在长方形的内部作∠ABC=∠ABO;(保留作图痕迹,不写作法)(2)在(1)的条件下,若BE是∠CBD的角平分线,探索AB与BE的位置关系,并说明理由.31.给出定义:我们用(a,b)来表示一对有理数a,b,若a,b满足a﹣b=ab+1,就称(a,b)是“泰兴数”如2﹣11=233+1,则(2,13)是“泰兴数”.(1)数对(﹣2,1),(5,23)中是“泰兴数”的是.(2)若(m,n)是“泰兴数”,求6m﹣2(2m+mn)﹣2n的值;(3)若(a,b)是“泰兴数”,则(﹣a,﹣b)“泰兴数”(填“是”或“不是”).32.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P和图形M,点B是图形M上任意一点,我们把线段PB长度的最小值叫做点P与图形M之间的距离.例如,以点M为圆心,1cm为半径画圆如图1,那么点M到该圆的距离等于1cm;若点N 是圆上一点,那么点N到该圆的距离等于0cm;连接MN,若点Q为线段MN中点,那么点Q到该圆的距离等于0.5cm,反过来,若点P到已知点M的距离等于1cm,那么满足条件的所有点P就构成了以点M为圆心,1cm为半径的圆.(初步运用)(1)如图2,若点P到已知直线m的距离等于1cm,请画出满足条件的所有点P.(深入探究)(2)如图3,若点P到已知线段的距离等于1cm,请画出满足条件的所有点P.(3)如图4,若点P到已知正方形的距离等于1cm,请画出满足条件的所有点P.33.按要求画图:如图,在同一平面内有三点A、B、C.(1)画直线AB和射线BC;(2)连接线段AC,取线段AC的中点D;(3)画出点D到直线AB的垂线段DE.四、压轴题34.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.35.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).36.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.37.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少;(2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.40.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 41.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.42.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.43.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据图示知b <a <0,然后利用不等式的性质对以下选项进行一一分析、判断.【详解】解:如图:根据数轴可知,b <a <0,A 、a >b ,正确;B 、ab >0,故B 错误;C 、0b a -<,故C 错误;D 、0a b +<,故D 错误;故选:A.【点睛】本题考查了利用数轴比较大小,解题的关键是根据数轴得到b <a <0.2.C解析:C【解析】【分析】将选项A ,C ,D 合并同类项,判断出选项B 中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A 、3a 2+4a 2=7a 2,故选项A 不符合题意;B 、4m 2n 与2mn 2不是同类项,不能合并,故选项B 不符合题意;C.、2x -12x =32x ,故选项C 符合题意; D 、2a 2-a 2=a 2,故选项D 不符合题意;故选C .【点睛】 本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.3.D解析:D【解析】【分析】根据倒数的定义,即乘积是1的两数互为倒数可得答案.【详解】解:-53的倒数是-35, 故选:D .【点睛】 本题考查了倒数的定义,熟练掌握倒数的求法是解题的关键.4.A解析:A【解析】【分析】把x =3代入方程3x ﹣a =0得到关于a 的一元一次方程,解之即可.【详解】把x =3代入方程3x ﹣a =0得:9﹣a =0,解得:a =9.故选A .【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.A解析:A【解析】【分析】根据线段中点的性质,可得MC,NC的长,根据线段的和差,可得答案.【详解】解:(1)由点M、N分别是线段AC、BC的中点,得MC=12AC=12×4=2,NC=12BC=12×6=3.由线段的和差,得:MN=MC+NC=2+3=5;故选:A.【点睛】本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键.6.B解析:B【解析】【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【详解】A.“田”字型,不是正方体的展开图,故选项错误;B.是正方体的展开图,故选项正确;C.不是正方体的展开图,故选项错误;D.不是正方体的展开图,故选项错误.故选:B.【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形. 7.D解析:D【解析】【分析】点到直线的距离是指垂线段的长度.【详解】解:线段AD的长表示点A到直线BC距离的是图D,故选:D .【点睛】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段是解题关键. 8.D解析:D【解析】【分析】根据相反数的定义直接求解即可.【详解】解:-5的相反数是5,故选D.【点睛】本题考查相反的定义,熟练掌握基础知识是解题关键.9.B解析:B【解析】【分析】根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.【详解】A 、7a +a =8a ,故本选项错误;B 、22232x y yx x y -=,故本选项正确;C 、5y−3y =2y ,故本选项错误;D 、3a +2b ,不是同类项,不能合并,故本选项错误;故选:B .【点睛】此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.10.A解析:A【解析】【分析】根据无理数的定义确定即可.【详解】解:在 3.14、 227、 0、π、1.6这 5个数中,π为无理数,共1个.故选:A.【点睛】本题考查实数的分类,无限不循环的小数为无理数.11.B解析:B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】由题意知:向北走为“+”,则向南走为“﹣”,所以﹣5m 表示向南走5m.故选:B.【点睛】本题考查了具有相反意义的量.解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.A解析:A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:448300 4.8310=⨯;故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.14.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.15.D解析:D【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共三列,左边一列1个正方体,右边一列1个正方体,中间一列有3个正方体,故选D .【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题16.75【解析】【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】∵∠α=40° 15′,∴∠a 的余角=90°-40° 15′=49° 45′=49.75°.故答案为:4解析:75【解析】【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】∵∠α=40° 15′,∴∠a的余角=90°-40° 15′=49° 45′=49.75°.故答案为:49.75.【点睛】本题考查了余角的知识,属于基础题,解答本题的关键是熟记互为余角的两角之和为90°.17.【解析】【分析】根据无理数的定义,可得答案.【详解】是无理数,故答案为:.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,0.80解析:π【解析】【分析】根据无理数的定义,可得答案.【详解】π是无理数,故答案为:π.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.18.165【解析】【分析】设书的原价为x元,根据关系式为:书的原价13=书的原价×0.8+20,列出一元一次方程,解方程即可得到答案.【详解】解:根据题意,设小宇购买这些书的原价是x元,∴,解析:165【分析】设书的原价为x 元,根据关系式为:书的原价-13=书的原价×0.8+20,列出一元一次方程,解方程即可得到答案.【详解】解:根据题意,设小宇购买这些书的原价是x 元,∴130.820x x -=+,解得:165x =;故答案为:165.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.1【解析】【分析】根据题意,得到,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵,∴,∴;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到,熟练运用整解析:1【解析】【分析】根据题意,得到223x x -=,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵2214x x -+=,∴223x x -=,∴222452(2)52351x x x x --=--=⨯-=;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到223x x -=,熟练运用整体代入法进行解题. 20.【解析】【分析】解:这个数是解析:【解析】【分析】【详解】解:2(4)16,±=∴这个数是4±21.-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键. 解析:-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:()t 31313t t t t --=--=-故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.22.【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵,,∴∠AOC=∠AOD -∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=.故答案解析:【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵135AOD ∠=︒,75COD ∠=︒,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=1302AOC ∠=︒.故答案为:30.【点睛】本题考查角度的计算,关键在于结合图形进行计算. 23.【解析】【分析】根据角平分线的意义,设,根据,,分别表示出图中的各个角,然后再计算的值即可.【详解】如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,解析:【解析】【分析】根据角平分线的意义,设DOE x ∠=,根据150AOB ∠=︒,40COD ∠=︒,分别表示出图中的各个角,然后再计算2BOE BOD ∠-∠的值即可.【详解】如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°.故答案为:110.【点睛】考查角平分线的意义,利用代数的方法解决几何的问题也是常用的方法,有时则会更简捷.24.【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【详解】由题意得:,,解得:,,∴,故答案为:.【点睛】本题考查同类项的定义,同类项解析:1-【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【详解】由题意得:1m =,42n =,解得:1m =,2n =,∴121m n -=-=-,故答案为:1-.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点.25.-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x ﹣1=2x+a 中算出a 即可.【详解】由方程4x+3=7,解得x=1;将x=-1代入5x ﹣1=2x+a,解得a解析:-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可.【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a=-4.【点睛】本题考查方程的解及相反数的概念,关键在于掌握相关知识点.三、解答题26.(1)见详解;(2)CD;(3)<,垂线段最短.【解析】【分析】(1)连接B、C两个端点即可;以A为端点,过点B画射线即可;利用方格特点可过点A画BC的平行线AM;(2)根据题意作图,依据点到线的距离即为垂线段的长可得结论;(3)依据直线外一点与直线上各点连接的所有线段中垂线段最短可得线段CD与CB的长短.【详解】解:(1)如图,线段BC,射线AB,平行线AM即为所求(2)如图由点到直线的距离即为垂线段的长可知点C到AB的距离是线段CD的长.(3)线段CD是点C到直线AB的垂线段,所以线段CD<线段CB,理由是垂线段最短.【点睛】本题考查了在网格中作线段、射线、平行线、垂线,同时涉及了点到直线的距离、垂线段的性质,灵活利用网格的特点进行作图是解题的关键.27.(1)乙车出发2小时追上甲车;(2)乙车出发、、与甲车相距【解析】【分析】(1)设乙车出发x小时追上甲车,由此时甲车走了(x+1)小时,根据两车所走的路程相等,列出方程进行求解即可;(2)分乙车没追上甲车、乙车追上甲车、乙车到达B地而甲车没到达B地三种情况分别解即可.【详解】(1)设乙车出发x小时追上甲车,由此时甲车走了(x+1)小时,由题意得60(x+1)=90x,解得:x=2,答:乙车出发2小时追上甲车;(2)①(小时),②(小时),③4小时后,甲距离地60千米,乙到达地等甲,还有可能相距50米,(小时),答:乙车出发2小时追上甲车;乙车出发、、与甲车相距.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解(1)的关键,分情况讨论是解(2)的关键.28.(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB 的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.29.(1)∠AOC=∠BOD,理由详见解析;(2)① 58°;②∠AON=∠DON,理由详见解析.【解析】【分析】(1)根据补角的性质即可求解;(2)①根据余角的定义解答即可;②根据角平分线的定义以及补角与余角的定义,分别用∠AOM的代数式表示出∠AON与∠DON即可解答.【详解】解:(1)∠AOC=∠BOD,∵∠BOD与∠BOC互补,∴∠BOD+∠BOC=180°,∵∠AOC+∠BOC=180°,∴∠AOC=∠BOD;(2)①∵∠AOC与∠MON互余,∴∠MON=90°﹣∠AOC=58°;②∠AON=∠DON,理由如下:∵OM平分∠AOC,∴∠AOC=2∠AOM,∠COM=∠AOM,∵∠AOC与∠MON互余,∴∠AOC+∠MON=90°,∴∠AON=90°﹣∠AOM,∴∠CON=90°﹣3∠AOM,∵∠BOD与∠BOC互补,∴∠BOD+∠BOC=180°,∴∠CON+∠DON+2∠BOD=180°,又∵∠BOD=∠AOC=2∠AOM,∴∠DON=180°﹣∠CON﹣2∠BOD=180°﹣(90°﹣3∠AOM)﹣4∠AOM=90°﹣∠AOM.∴∠AON=∠DON.【点睛】本题主要考查角平分线的定义,补角、余角的求法和角的和与差,掌握角平分线的定义,补角余角的求法,找准角之间的关系是解题的关键.30.(1)如图所示,∠ABC即为所求作的图形;见解析;(2)AB与BE的位置关系为垂直,理由见解析.【解析】【分析】(1)根据角平分线定义即可在长方形的内部作ABC ABO∠=∠;(2)根据(1)的条件下,BE是CBD∠的角平分线,即可探索AB与BE的位置关系.【详解】如图所示,(1)∠ABC即为所求作的图形;(2)AB与BE的位置关系为垂直,理由如下:∵∠ABC=∠ABO=12∠OBC∵BE是∠CBD的角平分线,∴∠CBE=12∠CBD∴∠ABC+∠CBE=12(∠ABC+∠CBD)=12⨯180°=90°∴AB⊥BE.所以AB与BE的位置关系为垂直.本题考查了作图-复杂作图、矩形的性质,角平分线的定义,解决本题的关键是根据角平分线的定义准确画图.31.(1)(5,23);(2)6m ﹣2(2m +mn )﹣2n 的值是2;(3)不是. 【解析】【分析】(1)根据“泰兴数”的定义,计算两个数对即可判断;(2)化简整式,计算“泰兴数”(),m n ,代入求值;(3)计算a -,b -的差和它们积与1的和,看是不是符合“泰兴数”的定义即可.【详解】(1)∵﹣2﹣1=﹣3,﹣2×1+1=﹣1, 213533-=,2135133⨯+=, 所以数对()2,1-不是“泰兴数”25,3⎛⎫ ⎪⎝⎭是“泰兴数”; 故答案为:25,3⎛⎫ ⎪⎝⎭.(2)6m ﹣2(2m +mn )﹣2n=2m ﹣2mn ﹣2n=2(m ﹣mn ﹣n )因为(m ,n )是“泰兴数”,所以m ﹣n =mn +1,即m ﹣n ﹣mn =1所以原式=2×1=2;答:6m ﹣2(2m +mn )﹣2n 的值是2.(3)∵(a ,b )是“泰兴数”,∴a ﹣b =ab +1,∵﹣a ﹣(﹣b )=b ﹣a=﹣ab ﹣1≠ab +1∴(﹣a ,﹣b )不是泰兴数.故答案为:不是【点睛】本题考查了有理数的混合运算、整式的加减及整体代入求值.解决本题的关键是理解“泰兴数”的定义.32.【初步运用】(1)见解析;【深入探究】(2)见解析;(3)见解析;【分析】(1)由题意可知:满足条件的所有的点P是平行于直线m且到直线m距离为1cm的两条直线,据此解答即可;(2)由题意可知:满足条件的所有的点P是平行于线段AB且到线段AB距离为1cm的两条线段和以点A与点B为圆心,1cm为半径的两个半圆,据此解答即可;(3)由题意可知:满足条件的所有的点P是平行于正方形其中一条边且到其中一边的距离为1cm的八条线段和以正方形的四个顶点为圆心,1cm为半径的四个四分之一圆,据此解答即可.【详解】解:【初步运用】(1)∵点P到已知直线m的距离等于1cm,∴满足条件的所有的点P是平行于直线m且到直线m距离为1cm的两条直线,如图(5)所示:【深入探究】(2)∵点P到已知线段的距离等于1cm,∴满足条件的所有的点P是平行于线段AB且到线段AB距离为1cm的两条线段和以点A与点B为圆心,1cm为半径的两个半圆,如图(6)所示,(3)∵点P到已知正方形的距离等于1cm,∴满足条件的所有的点P是平行于正方形其中一条边且到其中一边的距离为1cm的八条线段和以正方形的四个顶点为圆心,1cm为半径的四个四分之一圆,如图7所示,。
七年级期末试卷达标训练题(Word版 含答案)
(2)在旋转过程中,当∠AOB=36°时,求t的值.
(3)在旋转过程中,当ON、OA、OB三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t的值.
30.解方程
(1) ;
(2)
31.小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑 ,两人的运动手环记录时间和步数如下:
七年级期末试卷达标训练题(Word版 含答案)
一、选择题
1.已知实数a,b在数轴上的位置如图,则 ( )
A. B. C. D.
2.若关于x的方程2x﹣m=x﹣2的解为x=3,则m的值是( )
A.5B.﹣5C.7D.﹣7
3.单项式 的次数是
A. B.1C.2D.3
4.下列单项式中,与 是同类项的是()
(1)当点P从点A向点B运动时,点P在数轴上对应的数为当点P从点B返回向点O运动时,点P在数轴上对应的数为(用含t的代数式表示)
(2)当t为何值时,点P,Q第一次重合?
(3)当t为何值时,点P,Q之间的距离为3个单位?
28.工厂生产某种零件,其示意图如下(单位: )
(1)该零件的主视图如图所示,请分别画出它的左视图和俯视图
20.如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,则∠BOD=________.
21.比较大小: _________ (填“>”“<”或“=”).
22.已知关于 的一元一次方程 的解为 ,那么关于 的一元一次方程 的解为 ___________.
23.线段AB=10cm,BC=5cm,A、B、C三点在同一条直线上,则AC=______.
七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word 版 含答案)一、选择题1.下列图形中,线段PQ 的长度表示点P 到直线L 的距离的是( )A .B .C .D .2.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=3.下面计算正确的是( ) A .2233x x -= B .235325a a a += C .10.2504ab ab -+=D .33x x += 4.下列四个数中,最小的数是() A .5B .0C .1-D .4-5.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯6.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定7.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a8.下列关于0的说法正确的是( ) A .0是正数B .0是负数C .0是有理数D .0是无理数9.2020的绝对值等于( ) A .2020B .-2020C .12020D .12020-10.如图正方体纸盒,展开后可以得到( )A .B .C .D .11.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A .()31003xx +-=100 B .10033xx -+ =100 C .()31001003xx --= D .10031003xx --= 12.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .13.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变D .商品的销售量不变14.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A15.3-的绝对值是( ) A .3-B .13-C .3D .3±二、填空题16.若∠α=40° 15′,则∠α的余角等于________°.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________. 18.比较大小:π1-+ _________3-(填“<”或“=”或“>”).19.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.20.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____.21.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.22.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.23.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.24.观察一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成如图所示形式.记ij a 对应的数为第i 行第j 列的数,如234a =,那么97a 对应的数为___________.25.若a 、b 为实数,且()2320a b ++-=,则b a 的值是_________三、解答题26.作图题:如图,已知平面上四点,,,A B C D.(1)画直线AD;(2)画射线BC,与直线AD相交于O;(3)连结,AC BD相交于点F.27.将正整数1至2019按照一定规律排成下表:记a ij表示第i行第j个数,如a14=4表示第1行第4个数是4.(1)直接写出a35=,a54=;(2)①若a ij=2019,那么i=,j=,②用i,j表示a ij=;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能,求出这5个数中的最小数,若不能请说明理由.28.某校七年级科技兴趣小组计划制作一批飞机模型,如果每人做6个,那么比计划多做了10个,如果每人做5个,那么比计划少做了14个.该兴趣小组共有多少人?计划做多少个飞机模型?29.求不等式组()21511325131x xx x-+⎧-≤⎪⎨⎪-+⎩<的整数解.30.计算:(1)25)(277+-()-(-)-;(2)315(2)()3-⨯÷-.31.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.32.已知关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解. (1)求,m n 的值;(2)已知线段AB m =,在直线AB 上取一点P ,恰好使APm PB=,点Q 为PB 的中点,求线段AQ 的长.33.解方程:(1)3541x x +=+ (2)x 1x 212 3-+-= 四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
七年级期末试卷达标检测卷(Word版 含解析)
七年级期末试卷达标检测卷(Word 版 含解析)一、选择题1.自南京地铁四号线开通以来,最高单日线路客运量是 2017 年 12 月 7 日的 191000 人次,数字 191000 用科学计数法表示为( )A .19.1×410B .1.91×510C .19.1×510D .0.191×610 2.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab 3.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A .15°B .20°C .25°D .30°4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15° 5.已知点A 、B 、C 、D 在同一条直线上,线段8AB =,C 是AB 的中点, 1.5DB =.则线段CD 的长为( )A .2.5B .3.5C .2.5或5.5D .3.5或5.5 6.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯ 7.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A .﹣5x ﹣1B .5x+1C .13x ﹣1D .6x 2+13x ﹣1 8.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .272+x =(196-x )B .(272-x )= (196-x )C .(272+x )= (196-x )D .×272+x = (196-x )9.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或410.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角 D .EOD ∠与BOC ∠是对顶角11.画如图所示物体的主视图,正确的是( )A .B .C .D . 12.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作. ①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .113.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( )A .44.8310⨯B .54.8310⨯C .348.310⨯D .50.48310⨯14.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+= D .x x 5204204+=+- 15.下列计算中正确的是( ) A .()33a a -= B .235a b ab += C .22243a a a -=D .332a a a += 二、填空题16.如图,已知,,AB DE BAC m CDE n ∠=︒∠=︒∕∕,则ACD ∠=___________°.17.已知x =1是方程ax -5=3a +3的解,则a =_________.18.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元。
七年级期末试卷达标检测卷(Word版 含解析)
七年级期末试卷达标检测卷(Word 版 含解析)一、选择题1.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点 2.有理数-53的倒数是( ) A .53 B .53-C .35D .353.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .4.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒5.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯6.如图正方体纸盒,展开后可以得到( )A .B .C .D .7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.化简:35xy xy -的结果是( ) A .2B .2-C .2xyD .2xy -9.下列平面图形不能够围成正方体的是( ) A .B .C .D .10.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .1311.下列图形,不是柱体的是( ) A .B .C .D .12.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32 D .32-13.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( ) A .-3B .3C .13D .1614.下列计算正确的是( ) A .2334a a a += B .﹣2(a ﹣b)=﹣2a+b C .5a ﹣4a=1D .2222a b a b a b -=-15.下列各图中,可以是一个正方体的平面展开图的是( ) A .B .C .D .二、填空题16.单项式223x y π-的次数为_________________ 17.如图,将一张长方形的纸片沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,且∠BFM=12∠EFM ,则∠BFM 的度数为_______18.已知关于x 的方程4231x m x +=+与方程3265x m x +=+的解相同,则方程的解为_________.19.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.20.若221x x -+的值是4,则2245x x --的值是_________. 21.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.22.2018年12月8日2时23分,我国的探月卫星“嫦娥四号”由长征三号乙运载火箭在西昌卫星发射中心成功发射,并成功飞向距地球约384400000m 月球.384400000用科学记数法可表示为______. 23.21°17′×5=_____.24.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.25.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.三、解答题26.已知平面上点,,,A B C D .按下列要求画出图形: (1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________; (3)画出从点A 到CD 的垂线段AH ,垂足为H .27.如图,//AD EF ,12180∠+∠=. (1)求证://DG AB ;(2)若DG 是ADC ∠的角平分线,130∠=,求B 的度数.28.如图,点O 在直线AB 上,OC ⊥AB .在RtΔODE 中,∠ODE=90°,∠DOE=30°,先将ΔODE 一边OE 与OC 重合(如图1),然后将ΔODE 绕点O 按顺时针方向旋转(如图2),当OE 与OC 重合时停止旋转.(1)当∠AOD=80°时,则旋转角∠COE 的大小为____________ ; (2)当OD 在OC 与OB 之间时,求∠AOD -∠COE 的值;(3)在ΔODE 的旋转过程中,若∠AOE=4∠COD 时,求旋转角∠COE 的大小.29.我们规定,若关于x 的一元一次方程()0mx n m =≠的解为n m -,则称该方程为差解方程,例如:2554x =的解为525544x ==-,则该方程2554x =就是差解方程.请根据上边规定解答下列问题(1)若关于x 的一元一次方程31x a =+是差解方程,则a =______.(2)若关于x 的一元一次方程3x a b =+是差解方程且它的解为x a =,求代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值(提示:若1m n m ++=,移项合并同类项可以把含有m 的项抵消掉,得到关于n 的一元一次方程,求得1n =-)30.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a = ,b = ;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN =1? 31.计算:(1)243()(3)3-⨯-+-; (2)62112(3)522-+⨯--÷⨯.32.解方程(1)()3226x x +-=; (2)212134x x +--= 33.如图,点O 在直线AB 上,OC 、OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =150°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .(请用含α的代数式表示)四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word 版 含答案)一、选择题1.3-的倒数是( )A .3B .13C .13-D .3-2.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等 D .不相交的两条直线叫做平行线3.单项式24x y 3-的次数是( ) A .43-B .1C .2D .34.钟面上8:45时,时针与分针形成的角度为( ) A .7.5°B .15°C .30°D .45°5.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 6.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元 B .145元 C .150元 D .160元 7.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( ) A .+ B .- C .×D .÷8.下列关于0的说法正确的是( ) A .0是正数 B .0是负数C .0是有理数D .0是无理数9.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=10.下列语句错误的是( ) A .两点确定一条直线 B .同角的余角相等 C .两点之间线段最短D .两点之间的距离是指连接这两点的线段11.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4B .4C .﹣8D .812.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >013.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( )A .﹣2B .0C .3D .514.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( ) A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯15.2-的相反数是( ) A .2-B .2C .12D .12-二、填空题16.2019上半年溧水实现GDP 为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP 为_________元.17.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.18.如图,已知,,AB DE BAC m CDE n ∠=︒∠=︒∕∕,则ACD ∠=___________°.19.计算: x(x-2y) =______________20.已知x =1是方程ax -5=3a +3的解,则a =_________. 21.若∠1= 42°36’,则∠1 的余角等于___________°.22.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.23.如果关于x 方程ax b 0+=的解是x=0.5,那么方程bx 0a -=的解是____________.24.若代数式2434x x +-的值为 1,则代数式2314x x --的值为_________. 25.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)三、解答题26.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值. 27.先化简,再求值:2211312()()2323x x y x y --+-+ ,其中x=5,y=-3 . 28.我们规定,若关于x 的一元一次方程()0mx n m =≠的解为n m -,则称该方程为差解方程,例如:2554x =的解为525544x ==-,则该方程2554x =就是差解方程.请根据上边规定解答下列问题(1)若关于x 的一元一次方程31x a =+是差解方程,则a =______.(2)若关于x 的一元一次方程3x a b =+是差解方程且它的解为x a =,求代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值(提示:若1m n m ++=,移项合并同类项可以把含有m 的项抵消掉,得到关于n 的一元一次方程,求得1n =-)29.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a ,b ,c 各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e ==,2f =时,画出这个几何体从左面看得到的形状图. 30.先化简,在求值:221523243m mn mn m ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2m =-,12n =31.如图所示方格纸中,点,,O A B 三点均在格点(格点指网格中水平线和竖直线的交点)上,直线,OB OA 交于格点O ,点C 是直线OB 上的格点,按要求画图并回答问题.(1)过点C 画直线OB 的垂线,交直线OA 于点D ;过点C 画直线OA 的垂线,垂足为E ;在图中找一格点F ,画直线DF ,使得//DF OB(2)线段CE 的长度是点C 到直线 的距离,线段CD 的长度是点 到直线OB 的距离. 32.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离;(2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 33.我们定义:若两个角差的绝对值等于60,则称这两个角互为“正角”,其中一个角是另一个角的“正角”,如:1110∠=,250∠=,|12|60-=∠∠,则1∠和2∠互为“正角”.如图,已知120AOB ∠=,射线OC 平分AOB ∠, EOF ∠在AOB ∠的内部,若60EOF ∠=,则图中互为“正角”的共有___________对.四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
七年级期末试卷达标检测(Word版含解析)
七年级期末试卷达标检测(Word版含解析)一、选择题1.成为初中生后,我们有了新的身份、新的角色。
在日常生活中,我们的言行举止,也应有”全新”的面貌。
下列做法正确的是( )①我们自觉反思自己的言行,并一定程度上控制自己的言行②当我们遇到问题时,总是希望自己想办法解决,坚决不向老师和家长请教和求助③我们要遵守新的校规校级④有了更多的责任,也应该有更多的自觉性A.①②④B.①③④C.②③④D.①②③2.对初中生活的理解正确的是()①学习的内容多了;但生活更充实,也更有趣了②中学老师管得少了,很多事情自己想怎么做就怎么做③学习的科目多了,让我的身心不断成长,我对世界的认识不断深入④要适应新的学习方式,更有挑战性A.①②③B.②③④C.①②③④D.①③④3.“双击鼠标启窗口,信息海洋好神奇。
查资料,联友谊,赏音乐,通信息,一叶轻舟万山过,网络魅力谁能敌!有激流,有险滩,暗礁陷阱起波澜。
不良信息散迷雾,低俗之风讨人嫌。
偌大互联网,让我欢喜让我忧”。
这段快板告诉我们()①互联网拓宽了我们的交往渠道②“朋友圈”中的信息可以直接转发出去③抵制不良信息,微信交友要慎重④网络是把双刃剑A.①②③B.②③④C.①③④D.①②④4.“直播带货”作为一种线上新型消费,在新冠肺炎疫情防控大背景下,受到越来越多人的青睐。
4月15日,湖北省30个县的县长在直播间“为湖北拼个单”;山东烟台海阳市副市长发起“博士市长助力农产品”,视频播放量突破200万。
“直播带货”()①刷新了我们的消费方式②为经济发展注入了新的活力③使我们的生活更加丰富④已成为经济发展的主要方式A.①②③B.①③④C.①②④D.②③④5.“书山有路勤为径”、“学而时习之”这两句话强调学习要A.注意转变学习方式B.学习需要自己的勤奋努力C.有正确的学习方法D.学习内容要及时复习6.“工欲善其事,必先利其器。
”这启示我们在学习时要()A.磨砺坚强意志B.掌握科学方法C.培养学习兴趣D.调节不良情绪7.清朝诗人寰枚的《苔》白日不到处,青春恰自来苔花如米小也学牡丹开。
七年级期末试卷达标检测(Word版含解析)
七年级期末试卷达标检测(Word版含解析)一、选择题1.“迈向初中生活,我总有一些陌生,不知如何面对。
我该怎么办?”我们可以告诉他()①初中生活是人生最美好的时光②初中同学比小学同学更好交往③主动了解新同学扩大交往范围④努力结交新的朋友珍视新友谊A.①②B.②③C.③④D.①④2.对初中生活的理解正确的是()①学习的内容多了;但生活更充实,也更有趣了②中学老师管得少了,很多事情自己想怎么做就怎么做③学习的科目多了,让我的身心不断成长,我对世界的认识不断深入④要适应新的学习方式,更有挑战性A.①②③B.②③④C.①②③④D.①③④3.以“抖音”为代表的短视频风靡,有网友表示会在抖音上学习跳舞、烹饪等,培养了自己的生活情趣,但也有不少人,包括未成年人沉迷于“抖音”,对此正确的态度是()①善于利用“抖音”丰富我们的业余生活②网络是把双刃剑,青少年要提高自控力③“抖音”APP火爆,我们要紧跟时代潮流④“抖音”APP危害大,青少年要杜绝使用A.①②B.③④C.①③D.①④4.目前,“掌上故宫”“每日故宫”“故宫展览”“故宫社区”每天点击率超过100万次,在故宫的数字博物馆,观众可以看到,故宮收藏的1500块地毯、7.5万幅书法,每一件都可临摹,机器还可以给予打分。
这段话主要告诉我们( )A.网络为文化传播搭建新平台B.网络为经济发展注入了新的活力C.网络促进民主政治的步伐D.网络打破了传统人际交往的时空限制,促进人际交往5.“独学而无友,则孤陋而寡闻。
”《学记》中的这句名言,告诉我们要运用的学习方式是( )A.合作学习B.自主学习C.探究学习D.快乐学习6.“工欲善其事,必先利其器。
”这启示我们在学习时要()A.磨砺坚强意志B.掌握科学方法C.培养学习兴趣D.调节不良情绪7.他人评价是我们认识自己的一面镜子。
“天上的繁星数得清,自己脸上的煤烟却看不见”“要想了解自己最好问问别人”,这两句谚语共同告诉人们通过他人评价来认识自己的重要性。
七年级期末试卷达标训练题(Word版 含答案)
七年级期末试卷达标训练题(Word 版 含答案) 一、选择题 1.我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为( )A .14×106B .1.4×107C .1.4×108D .0.14×109 2.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n 3.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++B .12(10)1360x x +=+C .60101312x x +-=D .60101213x x +-= 4.如图,AB ∥CD ,∠BAP =60°-α,∠APC =50°+2α,∠PCD =30°-α.则α为( )A .10°B .15°C .20°D .30°5.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+= D .x x 5204204+=+- 6.下列各式中与a b c --的值不相等的是( ) A .()a b c -+ B .()a b c -- C .()()a b c -+-D .()()c b a --- 7.﹣3的相反数为( )A .﹣3B .﹣13C .13D .38.下列图形中,能够折叠成一个正方体的是( ) A . B . C . D .9.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .272+x =(196-x )B .(272-x )= (196-x )C .(272+x )= (196-x )D .×272+x = (196-x )10.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .11.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变 12.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上 13.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n 14.在同一平面内,下列说法中不正确的是( )A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.15.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒二、填空题16.计算:82-+-=___________.17.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.18.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)19.在数轴上到-3的距离为4个单位长度的点表示的数是___.20.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________.21.已知222x y -+的值是 5,则 22x y -的值为________. 22.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么所列方程是______.23.线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一条直线上,则AC=______.24.若a -2b =1,则3-2a +4b 的值是__.25.计算:32--=________.三、解答题26.如图,//AD EF ,12180∠+∠=.(1)求证://DG AB ;(2)若DG 是ADC ∠的角平分线,130∠=,求B 的度数.27.如图,已知点A,B 是数轴上原点O 两侧的两点,其中点A 在负半轴上,点B 在正半轴上,AO=2, OB=10.动点P 从点A 出发以每秒2个单位长度的速度向右运动,到达点B 后立即返回,速度不变;动点Q 从点O 出发以每秒1个单位长度的速度向右运动,当点Q 到达点B 时,动点P ,Q 停止运动.设P ,Q 两点同时出发,运动时间为t 秒.(1)当点P 从点A 向点B 运动时,点P 在数轴上对应的数为 当点P 从点B 返回向点O 运动时,点P 在数轴上对应的数为 (用含t 的代数式表示)(2)当t 为何值时,点P ,Q 第一次重合?(3)当t 为何值时,点P ,Q 之间的距离为3个单位?28.运动场环形跑道周长400米,小红跑步的速度是爷爷的53倍,小红在爷爷前面20米,他们沿跑道的同一方向同时出发,5min 后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?29.计算(1)157()362612+-⨯ (2)()421723-+÷-30.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程: ①59415x x -=+;②91554y y +-= (1)①中的x 表示 ;②中的y 表示 . (2)请选择其中一种方法,写出完整的解答过程.31.如图:点A 、C 、E 、B 、D 在一直线上,AB=CD ,点E 是CB 的中点,那么点E 是否为AD 中点?试说明理由.32.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.33.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 35.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭ (3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 36.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.37.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °;②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).38.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .39.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数:(2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.40.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 41.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.42.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.43.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7•化为分数形式,由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=. 同理可得310.393•==,4131.410.4199••=+=+=. 根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(类比应用)(1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程;(迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=) (拓展发现)(4)若已知50.7142857=,则2.285714= .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).14 000 000一共8位,从而14 000 000=.4×107.故选B .2.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.3.B解析:B【解析】【分析】实际生产12小时的零件比原计划13小时生产的零件多60件,根据生产总量=生产效率乘以时间即可列出方程【详解】实际生产12小时的零件数量是12(x+10)件,原计划13小时生产的零件数量是13x 件,由此得到方程12(10)1360x x +=+,故选:B.【点睛】此题考查列方程解决实际问题,正确理解原计划与实际生产的工作量之间的关系是解题的关键.4.A解析:A【解析】【分析】根据平行的性质将角度对应起来列出式子解出即可.【详解】作如图辅助线平行于AB 且平行于CD.根据两直线平行内错角相等可得:∠BAP +∠PCD =∠APC;60°-α+30°-α=50°+2α;α=10°.【点睛】本题考查平行的性质,关键在于作出辅助线将题目简化.5.D解析:D【解析】【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可.【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x +=+-5.故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.6.B解析:B【解析】【分析】根据去括号法逐一计算即可.【详解】A. a b +c a b c -=--(),正确;B. ()a b c a b c --=-+,错误;C. ()()a b c a b c -+-=--,正确;D. ()()c b a a b c ---=--,正确;故答案为:B .【点睛】本题考查了去括号法的应用,掌握去括号法逐一计算是解题的关键.7.D解析:D【解析】【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【详解】解:﹣3的相反数是3.故选:D .【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.8.B解析:B【解析】【分析】根据正方体的表面展开图的常见形式即可判断.【详解】选项A 、C 、D 经过折叠均不能围成正方体;只有B 能折成正方体.故选B.【点睛】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.9.C解析:C【解析】试题解析:解:设应该从乙队调x 人到甲队,196﹣x =(272+x ),故选C .点睛:考查了一元一次方程的应用,得到调动后的两队的人数的等量关系是解决本题的关键.10.B解析:B【解析】【分析】根据展开图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【点睛】考核知识点:几何体的三视图.11.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.12.D解析:D【解析】【分析】直接利用方向角的定义得出∠2的度数.【详解】如图所示:由题意可得:∠1=20°,∠ABC =90°,则∠2=90°-20°=70°,故超市(记作C )在蕾蕾家的南偏东70°的方向上.故选:D .【点睛】本题考查了方向角的定义,正确根据图形得出∠2的度数是解答本题的关键.13.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.14.D解析:D【解析】【分析】根据线段的概念,以及所学的基本事实,对选项一一分析,选择正确答案.【详解】解:A 、两点之间线段最短,正确;B 、过直线外一点有且只有一条直线与这条直线平行,正确;C 、过直线外一点有且只有一条直线与这条直线垂直,正确;D 、若AC BC =,则点C 是线段AB 的中点,错误;故选:D.【点睛】本题考查线段的概念以及所学的基本事实.解题的关键是熟练运用这些概念.15.C解析:C【解析】【分析】设∠B ′FE =x ,根据折叠的性质得∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,则∠BFC =x−24°,再由第2次折叠得到∠C ′FB =∠BFC =x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A ′EF =180°−∠B ′FE =112°,所以∠AEF =112°.【详解】如图,设∠B ′FE =x ,∵纸条沿EF 折叠,∴∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.二、填空题16.【解析】【分析】根据有理数的运算法则即可求解.【详解】-8+2=-6故填:-6.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.-解析:6【解析】【分析】根据有理数的运算法则即可求解.【详解】-+-=-8+2=-682故填:-6.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.17.7【解析】【分析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=AC=4,CN=BC=3,∴MN=MC+CN=4+3解析:7【解析】【分析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=12AC=4,CN=12BC=3,∴MN=MC+CN=4+3=7,故答案为:7.【点睛】本题考查了两点间的距离,解题的关键是利用中点的定义求解.18.【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故解析:a b【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故答案为:a+b.【点睛】本题考查了两点间的距离,列代数式,关键是根据图形得到AD+BC=AB+CD.19.1或【解析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单解析:1或7-【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单位长度的点表示数是1和−7.故答案为1和−7.【点睛】本题主要考查了数轴的特征和应用,以及分类讨论思想的应用,要熟练掌握.20.【解析】【分析】可以看出x=y-1,由此将数代入计算即可.【详解】由上述两个方程可以得出:x=y-1,将代入,解得y=5.故答案为:5.【点睛】本题考查一元一次方程与解的关系,关解析:【解析】【分析】可以看出x=y-1,由此将数代入计算即可.【详解】x a x+=+2020342019-+=-+y a y2020(1)34(1)2019x=代入,解得y=5.由上述两个方程可以得出:x=y-1,将4故答案为:5.【点睛】本题考查一元一次方程与解的关系,关键在于由题意看出x与y的关系.21.3【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,,∴.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键.解析:3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,2225x y -+=,∴223x y -=.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键. 22.2(x-1)+3x=13.【解析】【分析】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,根据关键语句“小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元”可得方程2(x-1)+3解析:2(x-1)+3x=13.【解析】【分析】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,根据关键语句“小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元”可得方程2(x-1)+3x=13.【详解】解:设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,由题意得:2(x-1)+3x=13,故答案为:2(x-1)+3x=13.【点睛】考查了由实际问题抽象出一元一次方程,关键是设出其中一种饮料的价格,再表示出另一种饮料的价格,根据关键语句列出方程即可.23.cm 或15 cm【解析】【分析】【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1,=②当点C 在线段AB 的延长线上时,如图2,=故答案为:5 cm 或15 cm【点睛】解析:cm 或15 cm【解析】【分析】【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1,AC AB BC =-=1055;cm -=②当点C 在线段AB 的延长线上时,如图2,AC AB BC =+=10515.cm +=故答案为:5 cm 或15 cm【点睛】本题考查线段的和与差,注意分类讨论是本题的解题关键.24.1【解析】【分析】先把代数式3﹣2a+4b 化为3﹣2(a ﹣2b),再把已知条件整体代入计算即可.【详解】根据题意可得:3﹣2a+4b=3﹣2(a ﹣2b)=3﹣2=1.故答案为:1.【点解析:1【解析】【分析】先把代数式3﹣2a+4b化为3﹣2(a﹣2b),再把已知条件整体代入计算即可.【详解】根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.故答案为:1.【点睛】本题考查了代数式求值.注意此题要用整体思想.25.1【解析】【分析】根据绝对值的代数意义和有理数的减法法则进行计算即可.【详解】原式=3-2=1.故答案为:1.【点睛】根据绝对值的代数式意义:一个负数的绝对值是它本身的相反数得到是解解析:1【解析】【分析】根据绝对值的代数意义和有理数的减法法则进行计算即可.【详解】原式=3-2=1.故答案为:1.【点睛】-=是解答本题的根据绝对值的代数式意义:一个负数的绝对值是它本身的相反数得到33关键.三、解答题26.(1)证明见解析;(2)30°.【解析】【分析】(1)根据平行线的性质可得∠2+∠BAD=180°,根据补角的性质可得∠1=∠BAD,再根据平行线的判定即可证得结论;(2)由角平分线的定义可得∠GDC的度数,然后根据平行线的性质即得结果.【详解】(1)证明:∵AD∥EF,∴∠2+∠BAD=180°,∵∠1+∠2=180°,∴∠1=∠BAD,∴DG ∥AB ;(2)解:∵DG 是∠ADC 的角平分线,∴∠GDC =∠1=30°,∵DG ∥AB ,∴∠B =∠GDC =30°.【点睛】本题考查了平行线的判定和性质、补角的性质和角平分线的定义,属于基本题型,熟练掌握平行线的判定和性质是解题的关键.27.(1)2t-2,22-2t;(2)t=2;(3)t=5或193或253. 【解析】【分析】(1)先确定点P 和点Q 的运动情况,根据题意,列出代数式即可;(2)根据题意,点P 与点Q 第一次重合,则运动的距离相等,即可得到答案;(3)根据题意,可分为三种情况进行分析,分别画出图形,求出三种情况的时间即可.【详解】解:(1)21012AB OA OB =+=+=,∴点P 从点A 向点B 运动时,有1202t ≤≤,即06t ≤≤, ∴此时点P 在数轴上对应的数为:22t -(06t ≤≤);当点P 从点B 返回向点O 运动时,总路程为:121022AB OB +=+=,∵点Q 运动到点B 所需要的时间为:10101=秒, ∴点P 从点B 返回向点O 运动时,点P 在数轴上对应的数为:222t -(610t <≤); 故答案为:22t -,222t -.(2)根据题意,第一次重合为点P 追上点Q ,则22t t -=,解得:2t =;(3)由点P ,Q 之间的距离为3个单位,可分为三种情况:①点P 追上点Q ,且超过点Q 的距离为3个单位,如图:∴223t t -=+,解得:5t =;②点P 从B 点返回,与点Q 第二次重合前,如图:∴2223t t -=+,解得:193t =; ③点P 与点Q 第二次重合后,相距3个单位,如图:∴2223t t -=-, 解得:253t =. ∴当5t =或193t =或253t =时,点P ,Q 之间的距离为3个单位. 【点睛】本题考查了数轴上的动点问题,数轴上两点之间的距离,一元一次方程的应用,解题的关键是掌握数轴上两点之间的距离,注意利用数形结合和分类讨论的思想进行解题.28.小红速度为190 米/分,爷爷速度为114米/分.【解析】【分析】由题意得第一次与爷爷相遇,必定小红比爷爷多跑一圈,所以小红的路程=爷爷的路程+400-20,由该等式列成方程解出即可.【详解】解:设爷爷的速度为x 米/分,小红的速度为53x 米/分. 5·53x =5x +400-20 251538033x x -=103803x = x =11453x =190 米/分. 答: 小红速度为190 米/分,爷爷速度为114米/分.【点睛】本题考查一元一次方程的应用,关键在于读题列出方程.29.(1)27;(2)-2.【解析】【分析】(1)原式利用乘法分配律计算即可得;(2)原式先计算乘方运算,再计算乘除,最后算加减即可得.【详解】解:157()362612+-⨯ 157=3636362612⨯+⨯-⨯ =183021+-=27;(2)()421723-+÷- ()=1729-+÷-()=177-+÷-()=11-+-=2-.【点睛】本题考查了有理数的混合运算,掌握运算法则和运算步骤,选用合理的运算律是解答此题的关键.30.(1)x 表示小组人数,y 表示计划做“中国结”数;(2)小组共有24人,计划做111个“中国结”.【解析】【分析】(1)根据①所列方程分析出x 表示小组人数;根据②所列方程分析出y 表示“中国结”的总个数;(2)根据解应用题的步骤,设,列,解,答步骤写出完整的解答过程.【详解】解:(1)x 表示小组人数,y 表示计划做“中国结”数(2)方法①设小组共有x 人根据题意得:59415x x -=+解得:24x =∴59111x -=个答:小组共有24人,计划做111个“中国结”;方法②计划做y 个“中国结”, 根据题意得:91554y y +-= 解得:y=111 ∴111+9=245人 答:小组共有24人,计划做111个“中国结”.【点睛】本题考查一元一次方程的应用,由实际问题抽象出一元一次方程,根据解应用题的步骤解答问题是关键.31.点E是AD的中点,理由见解析.【解析】【分析】从线段和差入手,抓住题目中的中点,完成证明即可.【详解】解:点E是AD的中点,理由如下:∵AB=CD,AC+CB=CB+DB,∴AC=BD.又∵点E为BC的中点,∴CE=EB,∴AC+CE=EB+DB,即AE=ED.又∵A,E,D在一条直线上,∴点E是AD的中点.【点睛】考查了两点间的距离及中点的定义,利用中点的定义找出AE=ED是解题的关键.32.(1)见解析;(2)26;(3)2.【解析】【分析】(1)依据画几何体三视图的原理画出视图;(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,根据(1)中的三视图即可求解.(3)利用左视图的俯视图不变,得出可以添加的位置.【详解】(1)三视图如图:(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,所以该几何体的表面积为 2×(4+3+5)=24cm2(3)∵添加后左视图和俯视图不变,∴最多可以在第二行的第一列和第二列各添加一个小正方体,∴最多可以再添加2个小正方体.【点睛】本题考查了画三视图以及几何体的表面积,正确得出三视图是解答此题的关键.33.分配10人生产甲种零部件,12人乙种零部件【解析】【分析】设应分配x 人生产甲种零件,(22-x)人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套,根据每人每天平均能生产甲种零件12个或乙种零件15个,可列方程求解.【详解】设分配x 人生产甲种零部件根据题意,得()312x 21522x ⨯=⨯-解之得:x 10=22x 12-=答:分配10人生产甲种零部件,12人乙种零部件.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据题意列出方程.四、压轴题34.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y -=+⎧⎨-=-⎩, 解得:1264x y =⎧⎨=⎩,答:奶奶今年64岁;(3)由题意可得PQ=(12+3t)﹣(﹣3﹣t)=15+4t,B'A=5+2t,∵3PQ﹣kB′A=3(15+4t)﹣k(5+2t)=45﹣5k+(12﹣2k)t,且3PQ﹣kB′A的值与它们的运动时间无关,∴12﹣2k=0,∴k=6∴3PQ﹣kB′A=45﹣30=15【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.35.(1)①7+21;②10.82-;③22.83.23+-;(2)9;(3)10012004.【解析】【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可;(3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可.【详解】解:(1)①|7+21|=21+7;故答案为:21+7;②110.80.822 -+=-;故答案为:1 0.82-;③23.2 2.83--=22.83.23+-故答案为:22.83.23+-;(2)原式=1111 9242 33202033 -++-=9(3)原式 =11111111... 23344520032004 -+-+-++-=11 22004 -=1001 2004【点睛】。
七年级期末试卷达标检测(Word版 含解析)
七年级期末试卷达标检测(Word 版 含解析)一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( ) A .两点之间,线段最短 B .过一点有无数条直线 C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离2.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5B .﹣5C .7D .﹣73.如图,图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE=18°,则图2中∠AEF 的度数为( )A .120°B .108°C .126°D .114°4.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay = C .若x y =,则x y a a= D .若a bc c=(c ≠0),则a b = 5.倒数是-2的数是( ) A .-2B .12-C .12D .26.下列几何体三视图相同的是( ) A .圆柱 B .圆锥 C .三棱柱 D .球体 7.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab8.下列图形中,线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .9.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( ) A .100.30千克 B .99.51千克C .99.80千克D .100.70千克10.方程1502x --=的解为( ) A .4- B .6- C .8- D .10- 11.下列关于0的说法正确的是( ) A .0是正数 B .0是负数C .0是有理数D .0是无理数12.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=213.下列合并同类项正确的是( ) A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=014.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65°15.-5的相反数是( ) A .15B .±5C .5D .-15二、填空题16.3615︒'的补角等于___________︒___________′. 17.计算:82-+-=___________.18.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.19.(0.33)--________13--.(用“>”“<”或“=”填空) 20.多项式32ab b +的次数是______.21.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.22.已知数轴上点A ,B 分别对应数a ,b .若线段AB 的中点M 对应着数15,则a +b 的值为_____.23.已知∠α=28°,则∠α的余角等于___.24.如图,已知直线AB 和CD 相交于点O ,射线OE 在COB ∠内部,OE OC ⊥,OF 平分AOE ∠,若40BOD ∠=,则COF ∠=__________度.25.某地2月5日最高温度是3℃,最低温度是-2℃,则最高温度比最低温度高________.三、解答题26.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-、 27.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .28.如图,直线 l 上有 A 、B 两点,AB=12cm ,点 O 是线段 AB 上的一点,OA=2OB .(1)OA=_______cm,OB=________cm;(2)若点 C 是线段AB的中点,求线段 CO 的长;(3)若动点 P、Q分别从 A、B同时出发,向右运动,点P的速度为2 厘米/秒,点Q的速度为1厘米/秒,设运动时间为x秒,当 x=_____秒时,PQ=4cm;(4)有两条射线 OC、OD 均从射线 OA 同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD 同时停止旋转,设旋转时间为 t 秒,当t为何值时,射线OC⊥OD29.把边长为1的10个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加个小正方体.30.如图,在方格纸中,A、B、C为 3 个格点,点C在直线AB外.(1)仅用直尺,过点C画AB的垂线m和平行线n;(2)请直接写出(1)中直线m、n的位置关系.31.如图1,已知数轴上A,B两点表示的数分别为-9和7.(1)AB(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC 的长度为3个单位,线段BD 的长度为6个单位,线段AC 以每秒4个单位的速度向右运动,同时线段BD 以每秒2个单位的速度向左运动,设运动时间为t 秒①t 为何值时,点B 恰好在线段AC 的中点M 处.②t 为何值时,AC 的中点M 与BD 的中点N 距离2个单位.32.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S (x ). 例如,a =13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S (13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S (43)= ; (2)若一个“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10,求相异数y ;(3)小慧同学发现若S (x )=5,则“相异数”x 的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例. 33.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 .四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.37.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数 40.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 41.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 42.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级期末试卷达标训练题(Word 版 含答案)一、选择题1.2018年10月26日,南通市城市轨道交通2号线一期工程开工仪式在园林路站举行.南通市城市轨道交通2号线一期工程线路总长约为21000m ,将21000用科学记数法表示为( ) A .2.1×104B .2.1×105C .0.21×104D .0.21×1052.下列比较大小正确的是( ) A .12-<13- B .4π-<2-C .()32--﹤0D .2-﹤5-3.点P 为直线L 外一点,点A 、B 、C 为直线上三点,PA=6cm ,PB=8cm ,PC=4cm ,则点P 到直线l 的距离为( ) A .4cmB .6cmC .小于 4cmD .不大于 4cm4.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .45.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D6.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个7.下列叙述中正确的是( ) A .相等的两个角是对顶角B .若∠1+∠2+∠3 =180º,则∠1,∠2,∠3互为补角C .和等于90 º的两个角互为余角D .一个角的补角一定大于这个角 8.一5的绝对值是( ) A .5B .15C .15-D .-59.二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是( ) A .2,﹣3,﹣1B .2,3,1C .2,3,﹣1D .2,﹣3,110.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A.ab>0 B.|b|<|a| C.b<0<a D.a+b>0 11.3-的倒数是()A.3B.13C.13-D.3-12.如图所示的几何体的左视图是()A.B.C.D.13.如图是一个正方体的展开图,折好以后与“学”相对面上的字是()A.祝B.同C.快D.乐14.2020的相反数是()A.2020 B.﹣2020 C.12020D.﹣1202015.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为()A.0.85×104亿元B.8.5×103亿元C.8.5×104亿元D.85×102亿元二、填空题16.如图,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)17.若代数式2a-b的值是4,则多项式2-a+12b的值是_______________ .18.单项式-4x2y的次数是__.19.若∠α=70°,则它的补角是.20.某同学在电脑中打出如下排列的若干个2、0: 202202220222202222202222220,若将上面一组数字依此规律连续复制得到一系列数字,那么前2020个数字中共有__________个0.21.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)22.线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一条直线上,则AC=______. 23.比较大小:-12____23-(填“>”,“<”或“=”) 24.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.25.写出一个关于三棱柱的正确结论________.三、解答题26.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .27.已知线段AB =12cm ,C 为线段AB 上一点,BC =5cm ,点D 为AC 的中点,求DB 的长度.28.列方程解应用题:《弟子规》的初中读本的主页共计96页。
张同学第一周看了4小时,第二周看了6小时,正好把全书主页看完,若第二周平均每小时看的页数比第一周平均每小时多看1页.请问张同学第二周平均每小时看多少页?29.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成。
如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成? 30.某校办工厂生产一批新产品,现有两种销售方案。
方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的成本(生产该批产品支出的总费用)和已获利30000元进行再投资,到这学期结束时,再投资又可获利4.8%;方案二:这学期结束时售出该批产品,可获利35940元,但要付成本的0.2%作保管费。
(1)设该批产品的成本为x 元,方案一的获利为y 1元,方案二的获利为y 2元,分别求出y 1,y 2与x 的关系式.(2)当该批产品的成本是多少元时,方案一与方案二的获利是一样的? 31.计算:(1)()360.655---+-+ (2)()()202031113122⎛⎫---÷⨯-- ⎪⎝⎭32.有三条长度均为a 的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C 1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C 2,请指出C 1和C 2的数量关系,并说明理由;(2)如图③,当a =11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为 .(直接填写答案,结果保留π)33.画图题:已知平面上点A B C D 、、、,用刻度尺按下列要求画出图形:(保留画图痕迹,不要求写画法)(1)画直线BD ,射线 C B(2)连结AD 并延长线段AD 至点 F ,使得DF AD =.四、压轴题34.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”. (1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭35.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 36.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 37.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.38.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.39.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n条射线OA、OB、OC…共形成个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?40.点O为直线AB上一点,在直线AB同侧任作射线OC、OD,使得∠COD=90°(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数41.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC是∠AOB的“奇分线”,如图2,∠MPN=42°:(1)过点P作射线PQ,若射线PQ是∠MPN的“奇分线”,求∠MPQ;(2)若射线PE绕点P从PN位置开始,以每秒8°的速度顺时针旋转,当∠EPN首次等于180°时停止旋转,设旋转的时间为t(秒).当t为何值时,射线PN是∠EPM的“奇分线”?42.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.43.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据科学记数法的定义判断即可. 【详解】根据科学记数法表示方法:21000=2.1×104. 故选A. 【点睛】本题考查科学记数法的表示方法,熟记科学记数法的定义是解题关键.2.A解析:A 【解析】 试题分析:A.∵12>13∴12-<13-,故A 正确;π-<2-;此选项错误;B.4--=--=>0,故此选项错误;C.()32(8)8D.∵2<5∴-2>-5,故此选项错误.故选A.考点:有理数的大小比较.3.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离4cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于4cm,综上所述:点P到直线l的距离不大于4cm.故答案选:D.【点睛】本题考查了点到直线的距离的相关知识,解题的关键是根据题意判断出点到直线的距离. 4.C解析:C【解析】【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.5.A解析:A【解析】【分析】A、B、C、D四个点,哪个点离原点最远,则哪个点所对应的数的绝对值最大,据此判断即可.【详解】∵A、B、C、D四个点,点A离原点最远,∴点A所对应的数的绝对值最大;故答案为A.【点睛】本题考查绝对值的意义,绝对值表示数轴上的点到原点的距离,理解绝对值的意义是解题的关键.6.C解析:C【解析】【分析】根据线段的中点,即可找到线段之间的数量关系.【详解】∵点C是AB的中点,点D是BC的中点,∴AC=BC,CD=BD,∵CD=CB-BD=AC-BD,∴①正确,∵AD-BC=AC+CD-BC=CD,∴②正确,∵2AD-AB=2AC+2CD-AB=2CD=2BD BD,∴③错误,∵CD=12BC, BC=12AB,即CD=14AB,∴④错误,综上只有两个是正确的,故选C.【点睛】本题考查了线段中点的性质,属于简单题,灵活利用相等的线段等量代换是解题关键. 7.C解析:C【解析】【分析】根据余角、补角、对顶角的定义进行判断即可.【详解】解:A、两个对顶角相等,但相等的两个角不一定是对顶角;故A错误;B、补角是两个角的关系,故B错误;C、如果两个角的和是一个直角,那么这两个角互为余角;故C正确;D、锐角的补角都大于这个角,而直角和钝角不符合这样的条件,故D错误.故选:C.【点睛】此题考查对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.8.A解析:A【解析】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣5到原点的距离是5,所以﹣5的绝对值是5,故选A.9.A解析:A【解析】【分析】根据单项式的系数定义和多项式项的概念得出即可.【详解】二次三项式2x2﹣3x﹣1的二次项系数,一次项系数,常数项分别是2,﹣3,﹣1,故选A.【点睛】本题考查了多项式的有关概念,能熟记多项式的项和单项式的次数和系数定义的内容是解此题的关键.10.C解析:C【解析】【分析】根据a与b在数轴上的位置即可判断.【详解】解:由数轴可知:b<-1<0<a<1,且|a|<1<|b|;∴A、 ab<0.故本选项错误;B、|b|>|a|. 故本选项错误;C、b<0<a . 故本选项正确;D、a+b<0 . 故本选项错误;故选:C.【点睛】此题考查了数轴的有关知识,利用数形结合思想是解题关键.11.C解析:C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C12.C解析:C【解析】【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看是一个矩形,矩形的中间是一条横着的线,故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.13.D解析:D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“快”是相对面,“们”与“同”是相对面,“乐”与“学”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.15.B解析:B【解析】【分析】科学记数法的一般形式为:a×10n,在本题中a应为8.5,10的指数为4-1=3.【详解】解:8 500亿元= 8.5×103亿元故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题16.北偏东【解析】【分析】根据平行线的性质与方位角的定义即可求解.【详解】如图,依题意得∠CBD=50°,∴∠CBE=80°-50°=30°,故此时的航行方向为:北偏东故答案为:北偏东.解析:北偏东30【解析】【分析】根据平行线的性质与方位角的定义即可求解.【详解】如图,依题意得∠CBD=50°,∴∠CBE=80°-50°=30°,故此时的航行方向为:北偏东30故答案为:北偏东30.【点睛】此题主要考查方位角,解题的关键是熟知方位角的定义及平行线的性质.17.0【解析】【分析】根据题意,有,则,然后利用整体代入法进行求解,即可得到答案.【详解】解:根据题意,有,∴,∴;故答案为:0.【点睛】本题考查了求代数式的值,解题的关键是得到,熟解析:0【解析】【分析】根据题意,有24a b -=,则122a b -=,然后利用整体代入法进行求解,即可得到答案. 【详解】解:根据题意,有24a b -=,∴122a b -=, ∴1122()22022a b a b -+=--=-=; 故答案为:0.【点睛】 本题考查了求代数式的值,解题的关键是得到122a b -=,熟练运用整体代入法进行解题. 18.3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x2y的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解析:3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x2y的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解题的关键. 19.110°.【解析】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.解析:110°.【解析】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.20.62【解析】【分析】首先根据题意,可得每两个0之间2的个数依次多一个,进而即可解题.【详解】解:由题可知每两个0之间2的个数依次多一个,即2的个数分别是1,2,3,4,5..... 然后根解析:62【解析】【分析】首先根据题意,可得每两个0之间2的个数依次多一个,进而即可解题.【详解】解:由题可知每两个0之间2的个数依次多一个,即2的个数分别是1,2,3,4,5.....然后根据20,220,2220,22220....的数字个数分别是2,3,4,5,6....∴前n组总个数为(12)1(3)22n nn n++=+,∵162(623)20152⨯⨯+=,163(633)20792⨯⨯+=,2015<2020<2079∴前2020个数字中共有62个0.【点睛】此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.21.6【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“3”相解析:6【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“3”相对的面上的数字是“6”.故答案为:6.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.22.cm或15 cm【解析】【分析】【详解】解:根据题意画出图形:①当点C在线段AB上时,如图1,=②当点C 在线段AB 的延长线上时,如图2,=故答案为:5 cm 或15 cm【点睛】解析:cm 或15 cm【解析】【分析】【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1,AC AB BC =-=1055;cm -=②当点C 在线段AB 的延长线上时,如图2,AC AB BC =+=10515.cm +=故答案为:5 cm 或15 cm【点睛】本题考查线段的和与差,注意分类讨论是本题的解题关键.23.>.【解析】【分析】比较的方法是:两个负数,绝对值大的其值反而小.【详解】∵||,||,而,∴.故答案为:>.【点睛】本题考查了有理数的大小比较,解题时注意:正数都大于0,负数都小 解析:>.【解析】【分析】比较的方法是:两个负数,绝对值大的其值反而小.【详解】∵|12-|12=,|23-|23=,而1223<,∴12 23 ->-.故答案为:>.【点睛】本题考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.24.2或6.【解析】【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要解析:2或6.【解析】【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故填2或6.考点:两点间的距离;数轴.25.三棱柱有5个面(答案不唯一)【解析】【分析】根据三棱柱的特点,例如,三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱等写出一个即可.【详解】解:∵三棱柱的性质有:三棱柱有5个面,三棱柱有6解析:三棱柱有5个面(答案不唯一)【解析】【分析】根据三棱柱的特点,例如,三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱等写出一个即可.【详解】解:∵三棱柱的性质有:三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱,三棱柱的底面形状为三角形等等,∴关于三棱柱的正确结论是:三棱柱有5个面(答案不唯一)故答案为:三棱柱有5个面(答案不唯一)【点睛】本题考查了三棱柱的特点,具有空间想象能力,掌握了三棱柱的顶点、棱、面的性质是解答此题的关键.三、解答题26.(1)经过30s ,P 、Q 两点相遇(2)答案不唯一,具体见解析(3)10【解析】【分析】(1)设经过t 秒时间P 、Q 两点相遇,根据OP+CQ=OA+AB+AC 列出方程即可解决问题; (2)分两种情形求解即可;(3)用t 表示AP 、EF 的长,代入化简即可解决问题;【详解】(1)设运动时间为t ,则290t t +=,30t =;所以经过30s ,P 、Q 两点相遇 (2)当点P 在线段AB 上时,如下图,AP+PB=60,∴AP=40,OP=50,∴P 用时50s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为56/cm s ;当点P 在线段AB 的延长线上时,如下图,AP=2PB,∴AP=120,OP=140,∴P 用时140s,∵Q 是OB 中点,∴CQ=50, 点Q 的运动速度为514/cm s ;(3)如下图,由题可知,OC=90,AP=x-20,EF=OF-OE=OF-12OP=50-12x, ∴2OC AP EF --=90-(x-20)-2(50-12x)=10 【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,找到等量关系,注意分类讨论是解题关键.27.DB 的长度为8.5cm.【解析】【分析】先根据题意求出AC 的长,再根据点D 为AC 的中点这一条件,求出DC 的长,然后用BC+DC 求出DB 的长度.【详解】 ∵AB =12cm ,BC =5cm∴AC =AB ̶B C =7cm∵D 为AC 中点∴DC =12AC =3.5cm ∴DB =BC +DC =3.5+5=8.5cm 答:DB 的长度为8.5cm.【点睛】 本题考查了两点间的距离,解决本题的关键是理清各线段间的数量关系.28.张同学第二周平均每小时看10页.【解析】【分析】设张同学第二周平均每小时看x 页,根据题意即可列出一元一次方程进行求解.【详解】解:设张同学第二周平均每小时看x 页.根据题意,得()41696x x -+=解这个方程,得10x =答:张同学第二周平均每小时看10页.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系列出方程求解.29.还需10天完成【解析】【分析】由乙队单独施工,设还需x 天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x +2)天完成的工作量=1,依此列出方程,解方程即可.【详解】由乙队单独施工,设还需x 天完成,根据题意得2211015x ++=, 解得x =10.答:由乙队单独施工,还需10天完成.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.30.(1)y 1=30000+(x+30000)×4.8%,y 2=35940-0.2%x ; (2)当该批产品的成本是90000元时,方案一与方案二的获利是一样的.【解析】【分析】(1)通过所获利润等于投资成本×利润率,可直接写出y 1、y 2与x 的关系式;(2)令y 1=y 2得关于x 的一元一次方程,解方程求出x .【详解】(1)由题意得:y 1=30000+(x+30000)×4.8%,y 2=35940-0.2%x ;(2)令y 1=y 2,得30000+(x+30000)×4.8%=35940-0.2%x .解方程得x=90000.所以当该批产品的成本是90000元时,方案一与方案二的获利是一样的.【点睛】此题考查了一元一次方程的应用,理解所获利润等于投资成本×利润率,根据题意正确列出等量关系是本题的关键.31.(1)-11;(2)12-【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)原式60.650.6=---+11=-.(2)原式()1111823=-⨯-- 312=- 12=-. 【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.32.(1)C 1=C 2,理由详见解析;(2)11π.【解析】【分析】(1)设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,根据圆的周长公式C d π=得到C 1=πa ,C 2=π(a 1+a 2)=πa ,从而得到C 1和C 2的相等;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,然后根据圆的周长公式得到C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=a π,即可求解.【详解】解:(1)C 1=C 2.理由如下:设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,∵C 1=πa ,C 2=πa 1+πa 2=π(a 1+a 2)=πa ,∴C 1=C 2;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,∵C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=11π.故答案为:11π.【点睛】本题主要考查圆的周长,掌握圆的周长公式是解题的关键.33.(1)图见解析;(2)图见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)根据题意,画图即可.【详解】解:(1)根据直线和射线的定义:作直线BD和射线C B,如图所示:直线BD和射线C B即为所求;(2)连结AD并延长线段AD至点F,使得DF AD=,如下图所示,AD和DF即为所求.【点睛】此题考查的是画直线、射线和线段,掌握直线、射线和线段的定义及画法是解决此题的关键.四、压轴题34.(1)2,14;(2)B;(3)21()3-,45;(4)21()na-;(5)29-【解析】【分析】(1)利用题中的新定义计算即可求出值;(2)利用题中的新定义计算即可求出值;(3)将原式变形即可得到结果;(4)根据题意确定出所求即可;(5)原式变形后,计算即可求出值.【详解】(1)3111111222222⎛⎫=÷÷=÷=⎪⎝⎭,()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=,故答案为:2,14;(2)A.任何非零数的2次商都等于1,说法正确,符合题意;B.对于任何正整数n,当n为奇数时,()111n--=-;当n为偶数时,()111n--=,原说法错误,不符合题意;C.除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D.负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意.故选:B;(3)()()()()()433333-=-÷-÷-÷-。