电力电子技术在电力系统中的应用及发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术在电力系统中的应用及发展摘要:随着计算机应用技术在电力系统中的不断发展和普及化,对于电力电子技术的重视程度也越发增加。面对我国电力系统的不断建设和庞大的用电量,电力电子技术为我国当代电力生产供应系统提供了良好的技术平台,为电力系统的发电、配电、输电功能给予了支持。
关键词:电力电子技术;电力系统;应用及发展
Application and Development of Power Electronic Technology in
Power System
Abstract: With the continuous development and popularization of computer application technology in power system, the importance of power electronics technology is increasing. In the face of the continuous construction of China's power system and huge power consumption, power electronic technology for China's contemporary power production and supply system provides a good technology platform for power system power generation, distribution, transmission function to support.
Key words: power electronics technology; power system; application and development
0 前言
电力电子技术是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科[ 1]。作为一门学科, 其发展始于 1956 年贝尔实验室发明晶闸管,其后经历了上世纪六七十年代的整流器时代(工频), 七八十年代的以 0 ~ 100 Hz 的 G TR 、G TO 为主角的变频调速、高压直流输出、静止或无功补偿等中低频范围应用的逆变器、变频器时代, 至八九十年代以功率 M OSFET 和 IGBT 为代表 , 集高频、高压和大电流于一身的功率半导体复合器件的出现,表明以低频技术处理问题为主的传统电力电子技术已进入以高频技术处理问题为主的现代电力电子时代。电力电子技术是电工技术中的新技术, 是电力与电子技术(强电和弱电技术)的融合, 已在国民经济中发挥着巨大作用, 对未来输电系统性能将产生巨大影响。目前电力电子技术的应用已涉及电力系统的各个方面, 包括发电环节、输配电系统、储能系统等等[2]。
1 电力电子技术的发展进程
众所周知,晶体管的出现标志着固态电子时代的到来,可以说晶闸管的诞生意味着电子技术将奔向更高的发展轨道。近几年,随着各种高端技术不断涌现,电力电子技术得到了发展,应用范围越来越广泛。回顾电力电子技术的发展历程,可以总结出电力电子技术经历了晶闸管时代、逆变时代和变频时代三个阶段。[3]
首先是晶闸管时代,晶闸管时代也叫作晶闸管整流时代,在上世纪六十年代和七十年代中取得了较为优异的成绩。在当时主要是用过50HZ的交流发电机为工业生产提供大功率服务,而直流供电仅占一小部分。当代,我国诸多电厂为满足工业生产供电需求,急需将交流电转换成直流电,因此,大功率的晶闸管和硅整流器顺势而生,可以从根本上解决直流电的供电需求,从此便进入了晶闸管整流时代[4]。
其次是逆变时代,在上世纪七十年代后,世界范围内出现了严重的能源危机,人们对节约能源越加关注,国家为缓解能源危机,制定了节能减排的发展战略,未响应国家号召,工业生产常使用交流电机。在此背景下,自关断器件得到开发和利用,随之进入电力电子技术的逆变时代。逆变就是将直流电转换成交流电,可以有效节约能源,提高工业生产效率,其中就包括GTO、GTR以及大功率逆变晶闸管。
最后是变频器时代,在逆变时代中,虽然有效的将直流电转换成交流电,实现了电流的逆变的整流,但相对来讲,逆变的工作效率较低,无法满足工业生产的供电需求,继而在上世纪八十年代后期,为提高电力供电效率,集成电路应运而生。集成电路可以将高压大电流技术和经济加工技术完美融合,从此进入电力电子变频器时代,电力电子技术得到进一步发展。在此时期,电力电子器件所处的环境越加复杂,各器件的结构也随之越来越紧密,功能越来越强大,这也标志着电力电子技术未来应朝着高频化的方向发展。[5]
2 电力电子技术在电力系统中的应用
2.1 电力电子技术在发电环节中的应用
电力电子技术在发电环节中的应用,主要体现在发电机组的励磁控制和变频调速上。在我国范围内乃至全球范围内的各个大型电厂发电机组中,运用的最为普遍的就是静止励磁系统,电力电子技术的发展,使电子技术取代了励磁控制中的励磁机环节,使静止励磁实现了简单的控制构造和高性能低成本的运作。[6]同时由于电子技术代替了励磁机的环节,使静止励磁能够对自身进行迅速有效的调节,提高电力系统的运作效率。
其次,电子技术也普遍应用在电厂发电机组的变速恒频励磁上。由于在水力发电中,水源头的压力和单位时间内水力的流动量对水力发电的效率产生着影响,水力发电机组的运转速度也在随着水力的压力和流动量不断变化。同样的道理也发生在风力发电和活力发电当中。因此,对发电机组转动的励磁电流频率进行调整,使发电机组的电流频率同转速通过电子技术达到一致,保证发电机组实现最大功效的运作,变速恒频励磁技术就是其中的代表。
同时,电子技术也应用于电厂的风机水泵的变频调速上和太阳能发电控制机组的控制系统中。在电厂的电力生产过程中,由于发动机组等设备对于发电量的损耗相对较大,考虑电力生产中节约能源的要求。在高压电和低压电的转换过程中,使用风机水泵变频机替代原有的变频器,改变电能转换过程中耗能大效率低的问题。这一技术还在不断完善和摸索中,还需要电力研究工作者不断的努力和创新。[7]
而在太阳能发电的控制系统中,电子技术的作用尤为突出,太阳能作为21世纪被广泛