九年级上册上册数学压轴题易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册上册数学压轴题易错题(Word版含答案)一、压轴题
1.如图,在平面直角坐标系中,直线1l:
1
6
2
y x
=-+分别与x轴、y轴交于点B、C,
且与直线2l:
1
2
y x
=交于点A.
(1)分别求出点A、B、C的坐标;
(2)若D是线段OA上的点,且COD
△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
2.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.
(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;
(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.
①若AD=6,BD=8,求弦CD的长为;
②若AD+BD=14,求
2
AD BD CD
2
⎛⎫
⋅+
⎪
⎪
⎝⎭
的最大值,并求出此时⊙O的半径.
3.如图,等边ABC内接于O,P是AB上任一点(点P不与点A、B重合),连接AP、BP,过点C作CM BP交PA的延长线于点M.
(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;
(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 4.数学概念
若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是
ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念
(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足
180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)
①如图①,DB DC = ②如图②,BC BD =
深入思考
(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点
Q .(不写作法,保留作图痕迹)
(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;
④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;
⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)
5.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()
5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;
()1求点C 的坐标;
()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;
()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一
时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.
6.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .
(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;
(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.
7.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF
(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.
(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明. 8.如图,B 是
O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于
点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延
长交直线l 于点F.
(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,
O 的半径是4,求FB 的长.
9.如图,抛物线2
()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==. (1)求该抛物线的函数解析式.
(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF
CDF
S
S
=::时,求点D 的坐标.
(3)如图2,点E 的坐标为(03)2
-,
,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.