电磁兼容性EMC的基本概念及应用解析
电磁兼容性在电气工程中的应用

电磁兼容性在电气工程中的应用引言:电磁兼容性(Electromagnetic Compatibility,简称EMC)是电子与电气工程领域中一个重要的概念。
随着电子设备的普及和电磁辐射的增加,EMC的研究和应用变得愈发重要。
本文将探讨电磁兼容性在电气工程中的应用,包括EMC的定义、原理、测试方法和在电气工程中的实际应用。
定义和原理:EMC是指不同电子设备在同一电磁环境下,能够相互协调地工作,而不会产生互相干扰的能力。
这主要包括两个方面:电磁干扰(Electromagnetic Interference,简称EMI)和电磁耐受性(Electromagnetic Susceptibility,简称EMS)。
EMI是指电子设备在工作时产生的电磁辐射,可能对周围的设备和系统造成干扰。
而EMS是指电子设备在电磁环境中能够正常工作,而不受周围电磁辐射的干扰。
EMC的原理在于控制电磁辐射和提高电磁耐受性。
通过合理的设计和工程措施,可以减少电磁辐射的发生,以及提高电子设备对电磁辐射的抵抗能力。
测试方法:为了保证电子设备的EMC性能,需要进行一系列的测试。
常见的EMC测试方法包括辐射测试和传导测试。
辐射测试主要用于测量电子设备产生的电磁辐射水平。
这种测试通常使用天线和电磁场测量仪器来进行,通过测量电磁辐射的频率、强度和辐射模式,来评估设备的辐射性能。
传导测试主要用于测量电子设备对外界电磁辐射的敏感性。
这种测试通常使用电源线、信号线等传导介质来传递电磁辐射,通过测量设备的工作状态和性能来评估其对外界干扰的抵抗能力。
应用:电磁兼容性在电气工程中有着广泛的应用。
首先,EMC的研究和应用可以帮助设计人员避免电磁干扰对设备的影响,提高设备的可靠性和稳定性。
例如,在电力系统中,EMC的应用可以减少电力设备之间的互相干扰,提高电网的运行效率。
其次,EMC的研究和应用也对电子设备的安全性和可用性有着重要的影响。
通过合理的EMC设计,可以降低电子设备对周围环境和人体的电磁辐射,减少潜在的健康风险。
EMC基本知识及要求

EMC基础知识及要求一、EMC:Electromagnetic Compatibility 电磁兼容性(包括两个方面) EMC = EMI + EMS电磁兼容定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
a)EMI:Electromagnetic Interference 电磁干扰系统产生的电磁扰动的程度低于一定的标准要求,不致妨碍其他电器装置的正常工作。
b)EMS:Electromagnetic Susceptibility 电磁敏感度(抗扰性)系统具有一定的抗电磁扰动的能力,在电磁扰动的环境下能正常工作。
二、国际、国内电磁兼容标准体系1. 国际标准——IEC/CISPR标准国际电信联盟、国际大电网工作会议、国际电工委员会(IEC)及无线电干扰特别委员会(CISPR)等单位从事电磁兼容的协调、管理和技术标准的制定。
IEC下属的TC77组织主要负责制订电磁环境标准、电磁兼容基础标准、较低频率范围和电磁脉冲的电磁兼容标准.而CISPR主要负责制订有关电磁兼容的产品标准及较高频率范围的电磁兼容标准。
2. 欧盟标准——EN标准欧洲电工标准化委员会制定EN标准。
它与IEC/CISPR关系密切,其过去颁布的标准经常是引用IEC/CISPR标准。
但现在其新制订或修订的EN标准反过来影响IEC/CISPR标准。
CE认证需采用EN标准。
3. 美国FCC法规美国联邦通信委员会FCC制订的法规FCC Rules(即联邦法典第47卷)涉及电磁兼容。
FCC主要是电磁发射方面的限制要求。
4. 中国国家标准——GB、GB/T及GB/Z标准我国的标准化工作正在积极与国际接轨,包括标准接轨、规范程序协调、承担国际义务和国际互认。
近些年我国制订或修订的电磁兼容标准一般都等同或等效于IEC/CISPR标准。
现已发布实施的EMC国家标准有三类:字头为GB的强制性标准,GB/T推荐性标准,GB/Z 专业指导性标准。
EMC电子元器件在电子设备中的应用

式中:电阻R(f)和ωL(f)感抗均为频率的函数。 ①阻抗Z的大小与频率紧密相关; ②阻抗Z值的误差范围是: ±25% ; ③样本书上标明的阻抗值是在100MHz的测量值。
2.1.5 磁珠频谱曲线图 图二
2.1.6 磁珠的等效电路及符号
L Rac Rdc
NL系列
贴片电感
LQH系列
FWI系列
HWI系列
贴片电感
SD系列
SM系列
SMRH系列
贴片电感的特点
• 工艺继承性强,体积小型化; • 可以自动贴装; • 具有较高的Q值; • 磁路有带屏蔽和不屏蔽两种,带屏的
能较好的防止辐射和交互干扰。
叠层贴片电感器
• 铁氧体电感 • 陶瓷电感
叠层电感的特点
1000
大电流线路 1608~4532 10~1000
6000
信号线用 2010~3216 30~1000
200
信号线用
2012
90
100
2.1.13 电磁干扰抑制部位
2.1.14 磁珠的应用场合
• 时钟发生电路;
• 模拟电路和数字电路之间的滤波隔离; • I/O输入/输出内部连接器(比如串口,并口,键盘,
2.1.11 EMC元器件演变历程
2.1.12 振华富磁珠系列产品
系列
RH
R6H
MLCB PB
CBA CMW
应用特点 尺寸范围 阻抗范围 额定电流 (Ω) Max (mA)
信号线 大电流线路
信号线 大电流线路
信号线用
Φ2.5×3~ Φ3.5×9
Φ6×10
25~50 350~580
电磁兼容emc概念

电磁兼容emc概念电磁兼容emc概念:EMS电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。
因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
一、EMC概念介绍EMC(electromagneTIc compaTIbility)作为产品的一个特性,译为电磁兼容性;如果作为一门学科,则译为电磁兼容。
它包括两个概念:EMI和EMS。
EMI(electromagneTIcinterference)电磁干扰,指自身干扰其它电器产品的电磁干扰量。
EMS(electromagneTIcsusceptibility)电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。
因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
EMC滤波器主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到保护的设备,同时抑制和衰减设备对外界产生干扰。
而辐射干扰主要通过屏蔽的手段加以滤除。
从滤波器的功能来看,它的作用是允许某一部分频率的信号顺利的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频电路。
而我们常见的低通滤波器功能是允许信号中的低频或直流分量通过,抑制高频分量或干扰噪声。
电源噪声干扰在日常生活中很常见。
比如你正在使用电脑的时候,当手机信号出现时,电脑音响会有杂音。
比如电话或手机通话时有嗞嗞的杂声。
又比如使用电吹风烫头发时,电视机不但会产生噪音,而且屏幕会出现很大的雪花般的条纹。
这都是一些常见的噪声信号干扰,但实际上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。
这些噪声信号如果出现在自动化仪器,医疗仪器有可能带来极大的损失甚至生命安全。
EMC基础培训资料

EMC基础培训资料一、什么是 EMCEMC 即电磁兼容性(Electromagnetic Compatibility),指的是设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
简单来说,就是电子设备在运行过程中,既不会受到外部电磁环境的干扰,也不会对外界产生过多的电磁干扰。
电磁兼容性包括两个方面:一方面是设备要有一定的抗干扰能力,能够在复杂的电磁环境中稳定运行;另一方面,设备自身产生的电磁辐射要控制在一定范围内,不能影响其他设备的正常工作。
二、EMC 问题的产生电子设备在工作时,会通过电路中的电流变化产生电磁波。
当多个设备同时工作时,这些电磁波就可能相互干扰。
例如,手机在通话时会发出电磁波,如果附近的电子设备对这种电磁波过于敏感,就可能出现工作异常。
同时,外部的电磁环境,如雷电、电力系统的电磁辐射等,也可能对电子设备造成干扰。
三、EMC 标准与规范为了确保电子设备的电磁兼容性,各国和国际组织都制定了相应的标准和规范。
这些标准规定了电子设备在不同频段内允许产生和承受的电磁干扰水平。
常见的 EMC 标准包括国际电工委员会(IEC)制定的标准,以及各个国家和地区自己制定的标准,如我国的 GB 标准。
企业在生产电子设备时,必须按照相关标准进行设计和测试,以确保产品能够通过 EMC 认证,进入市场销售。
四、EMC 测试项目EMC 测试主要包括两个方面:电磁干扰(EMI)测试和电磁抗扰度(EMS)测试。
电磁干扰测试是测量电子设备向外发射的电磁能量,常见的测试项目有:1、传导干扰测试:检测设备通过电源线、信号线等导体向外传播的干扰。
2、辐射干扰测试:测量设备通过空间向外辐射的电磁波。
电磁抗扰度测试是评估电子设备在受到外部电磁干扰时的工作性能,常见的测试项目有:1、静电放电抗扰度测试:模拟人体静电放电对设备的影响。
2、射频电磁场辐射抗扰度测试:考察设备在射频电磁场中的抗干扰能力。
什么是EMC?电磁兼容性基础知识

什么是EMC:一分钟了解电磁兼容性基础知识随着无线连接设备数量的增加,EMC的重要性日益增加,定义EMC是什么并理解这些概念可以从一开始就实现电磁兼容性,电磁兼容性,EMC是使不同电子设备在没有相互干扰的情况下运行的概念- 电磁干扰,EMI - 当它们彼此靠近操作时。
所有电子电路都有可能辐射拾取不需要的电干扰,这可能损害一个或另一个电路的操作。
电磁兼容性EMC /电磁干扰EMI概念1、什么是EMC - 定义EMC定义为设备和系统在其电磁环境中运行而不损害其功能且无故障的能力,反之亦然。
电磁兼容性,EMC确保操作不会影响电磁环境,以至于其他设备和系统的功能受到不利影响。
2、人们对EMC的认识历程:在电子产品的早期,相对较少的电子设备项目正在使用中。
然而今天,日常电子产品的数量已经大幅增加。
其中一些发射信号,而其他许多是敏感接收器。
其他人可能利用可能由瞬态信号错误触发的数字电子系统。
这些更多的例子可能是EMC电子设计的关键要素。
在电子系统的早期,收音机收到的流行音乐,刘海和一般噪音被视为收听收音机的“体验”的一部分- 即使它们是由其他本地电气设备制造的,电气干扰对电子系统影响的一些主要问题来自军事应用。
第二次世界大战后,随着核武器重要性的提高,爆炸产生的电子脉冲及其对设备的影响成为一个问题。
此外,高功率雷达系统对设备的影响也是一个问题。
后来,与ESD相关的电子设备面临的风险变得明显。
这些不仅损坏了电子设备,而且还可以设置错误的触发器。
在20世纪70年代,逻辑电路的使用迅速增长,并且随之增加了切换速度。
这些电路开启了EMI的影响,并且如果这些项目在现实世界中令人满意地工作,则需要将EMC预防措施纳入设计中。
由于这种日益增长的实现,许多国家开始意识到EMC是一个日益严重的问题,一些人开始向电子设备制造商发出指令,定义设备在出售设备之前应该满足的标准。
欧洲共同体是个实施EMC要求的地方,虽然许多人初都持怀疑态度,但EMC标准的引入提高了标准,使大多数类型的设备能够在不受干扰的情况下并排运行。
EMC的基本原理

EMC的基本原理(1)什么是EMC(Electromagnetic Compatibility)EMC 即是“电磁兼容性”,它定义一台设备在电磁环境中不产生令其他电气设备不可接受的电磁干扰的情况下,有令人满意的工作能力。
因此,不同的设备不应互相影响。
(2)干扰辐射和抗干扰性EMC是由与设备/装置相关的两个特性而决定的,即干扰辐射和抗干扰性。
各类电气设备既可能是故障源(发送器),又可能是干扰接收器。
如果故障源没有反过来影响干扰接收器的正常功能,则存在电磁兼容性。
一个设备可能不但是故障源,而且也是受干扰设备,例如整流器的功率部分可以认为是故障源,而控制部分则为干扰接收器。
(3)极限值电气驱动装置受产品标准EN61800-3支配,根据该标准,对工业供电网络不需要执行所有的EMC措施,然而可以采取相应环境中特定的解决方法。
因此,对于整流器而言,增加敏感器件的抗干扰性与抑制干扰源措施相比,更加经济。
所以,这种经济有效的方法被选择使用。
SIMOREG DC Master整流器是为工业应用而设计的(工业低压供电系统,即不作为家庭使用)。
抗干扰性决定了一台装置当其受到电磁干扰时的工作状况,产品标准对在工业环境中装置工作状况的要求和评估标准做了限制,本说明中整流器应遵守有关标准。
(4)SIMOREG整流器的工业应用在工业环境中,装置必须有很高的抗干扰性,而对干扰辐射没有高的要求。
SIMOREG DC Master整流器如同接触器和开关一样,是一个电气驱动系统的部件,适当的专业技术人员必须将它们集成到驱动系统中去,至少应包括整流器、电动机电缆和电动机。
在多数情况下,需要进线电抗器和熔断器,如果这些部件以正确的方式安装,极限值才能保证。
为了将干扰的辐射限制在限幅值等级“Al”,需要合适的无线电干扰抑制滤波器和进线电抗器与整流器配合。
根据EN55011的定义,没有RI抑制滤波器,SIMOREG6RA70整流器产生的干扰辐射将超过限幅值等级A10。
EMC(电磁兼容性)结构设计基础.

2.1 电场屏蔽 a.原理--- 电场的屏蔽是在干扰源和敏感单元之 间设置良好接地的金属屏障,就可以抑制干扰源 电场对敏感单元的影响.
b. 电屏蔽的设计要点 1)屏蔽体必须良好接地---接地电阻一般应小于 2mΩ,严格的场合应小于0.5mΩ.为减小接地电 阻,可选用横截面和周长较大的导线.为减小接 地线的感抗,要尽量减少导线的长度. 2)正确选择接地点---屏蔽体的接地点应靠近被 屏蔽的低电平元件的入地点,避免低电平电路的 地线流过较大的地电流. 3)合理设计屏蔽体的形状---用全封闭的盒体最 好. 4)选择导电性能好的导体做屏蔽体,如铜、铝等。 高频时,屏蔽体表面镀银。
EMC (电磁兼容性)结构设计基础
1.EMC(电磁兼容性)概述
1.1 电子系统的电磁兼容性
EMC (电磁兼容性)技术的早期仅仅考虑对无线电通 信、广播有影响的射频干扰。随着干扰源范围的扩 大及电磁能量应用形式的增多,电磁骚扰不在局限 于辐射,还要考虑感应、耦合和传导等引起的电磁 干扰。电磁干扰除影响电子系统和设备的正常工作 外,对人体健康也会造成有害的影响。
---双层磁屏蔽 (要得到高的屏蔽效果,往往采用高磁导率材 料和增加材料厚度的办法,但是,选用高磁导 率材料和增加材料厚度都是有限度的,此时, 可以采用双层磁屏蔽结构。)
ห้องสมุดไป่ตู้
b. 高频磁场的屏蔽 1)原理---高频交变磁场指的是高频电磁场中的磁 场分量,利用电磁感应现象在屏蔽体表面产生的 涡流的反磁场来达到高频磁场屏蔽的目的,也就 是利用涡流反磁场对原干扰磁场的排斥作用,来 抑制或抵消屏蔽体外的磁场.
3)电子设备电磁兼容性设计的基本要求
电磁兼容性设计与模拟研究

电磁兼容性设计与模拟研究电磁兼容性(Electromagnetic Compatibility,EMC)设计与模拟研究是一门涉及电磁场、电路、信号传输、材料等多学科知识的复杂领域。
它的研究内容包括电磁辐射、电磁感应、电磁干扰等现象的产生和传播规律,以及如何设计和优化电子设备,使其不受电磁干扰和辐射的影响,同时也不对外界造成电磁干扰和辐射。
本文将从电磁兼容性的基本概念开始,对EMC设计与模拟的研究方法和应用进行探讨。
一、电磁兼容性的基本概念电磁兼容性(EMC)是指电子设备在规定的电磁环境下,既能正常工作,又不会对周围的电子设备和系统造成影响的能力。
电子设备在工作时会产生电磁辐射和电磁感应,这些电磁波会干扰周围的其他电子设备和系统,导致它们的功能失效或性能下降。
而外界的电磁干扰也会对电子设备和系统造成类似的影响。
因此,为了保证电子设备和系统的正常工作,必须进行电磁兼容性测试和设计。
二、电磁兼容性设计与模拟研究方法电磁兼容性设计与模拟研究主要包括以下几种方法:1. 电磁场仿真方法电磁场仿真方法是一种计算电磁场分布的数值模拟方法,它可以为电磁兼容性设计提供准确的电磁场、电磁辐射、电磁感应和电磁干扰等计算结果。
其中,有限元法(Finite Element Method,FEM)和时域有限差分法(Finite Difference Time Domain,FDTD)是两种常用的电磁场仿真方法。
有限元法可以对复杂的电磁场分布进行精确的三维计算,而时域有限差分法则主要用于处理电磁波在空间和时间上的传播过程。
2. PCB布局设计方法PCB布局设计是一种将电子元器件和电路板布局、走线的技术。
合理的PCB布局设计可以减小电路的干扰和辐射,从而提高电路的抗干扰和抗辐射性能。
具体来说,要避免高速数字信号线与模拟信号线、电源线、地线的交叉,减小信号线的长度和曲折程度,增加电源和地线的面积以降低阻抗等。
3. 电磁兼容性测试方法电磁兼容性测试是一种基于实验手段的测试方法,它可以检验电子设备和系统的电磁兼容性性能是否达到标准要求。
电磁兼容的基本概念

电磁兼容的基本概念电磁兼容性(EMC)是一个涵盖了广泛应用领域的概念,它关乎设备或系统在复杂电磁环境中的稳定运行。
简单来说,电磁兼容性(EMC)指的是设备在规定的电磁环境中,能够满足设计要求的正常工作能力,同时不会对周围设备产生无法承受的电磁干扰。
因此,EMC涉及到两个关键方面:一是设备在正常运行过程中对所在环境产生的电磁干扰应控制在一定限值内;二是设备对所在环境中已存在的电磁干扰具有一定的抗扰度,即电磁敏感性。
EMC作为一种工程技术,其重要性不言而喻。
在当今社会,电气和电子设备无处不在,它们在为人们提供便利的同时,也带来了电磁干扰问题。
为了确保各种设备在复杂的电磁环境中正常工作,满足电磁兼容性要求至关重要。
电磁兼容性不仅关乎设备自身的性能,还涉及到设备之间的相互影响。
只有当各个设备在电磁环境中相互兼顾,才能确保整个系统的稳定运行。
此外,电磁兼容性还关注设备在自然界电磁环境中的表现。
自然界中存在各种电磁现象,如雷电、无线电波等,这些现象都可能对电子系统或设备产生影响。
因此,电子系统或设备在设计时,需要考虑其在自然界电磁环境中的抗扰度,以确保在各种情况下都能按照设计要求正常工作。
进一步地,我们可以将电磁兼容性的研究范围扩展到电磁场对生态环境的影响。
电磁场对生物体的影响已成为当前研究的热点问题,比如手机辐射、基站辐射等。
在这个意义上,电磁兼容性学科内容可以被称作环境电磁学。
环境电磁学旨在研究电磁场在环境中的传播、转化和生物效应,为人类提供健康、安全的电磁环境。
电磁兼容性是一项重要的工程技术,它关乎设备在复杂电磁环境中的正常工作。
通过研究电磁兼容性,我们可以更好地理解设备之间的相互影响,提高系统的稳定性和可靠性。
同时,电磁兼容性还关注设备在自然界电磁环境中的表现,以及电磁场对生态环境的影响。
在未来,随着科技的不断发展,电磁兼容性和环境电磁学将在各个领域发挥越来越重要的作用。
浅显易懂,整体地讲清楚,什么是电磁兼容(EMC)

浅显易懂,整体地讲清楚,什么是电磁兼容(EMC)EMC概述(1)什么是电磁兼容性(EMC)?“电磁兼容性(EMC)”主要分为两种,一种是设备本身的电磁噪声对其他设备或人体带来的影响(电磁干扰,EMI:Electromagnetic Interference, Emission),另一种是设备是否会因来自外部的电磁干扰而发生误动作(电磁敏感性EMS:Electromagnetic Susceptibility, Immunity),之所称为“电磁兼容性”,是由于为了避免发生故障,这两方面都要兼顾。
以文字的形式写成“定义”是这样的,理解起来有点难是吧。
下面我将浅显易懂地、直观地解释一下。
我将以大家熟悉的半导体集成电路(LSI、IC)为主角进行解说。
首先是电磁干扰(EMI或电磁发射)。
如今,已经开发出并且在售的LSI和IC种类繁多。
为了便于说明,大致分类如下:①老式三端电源(7805和7905等)和低饱和电源(LDO)等直流电源相关产品。
这些产品要处理的信号是直流(DC)的。
②差分运算放大器(运算放大器)、电压比较器(比较器)、语音信号处理等相关的产品。
要处理的信号是基于正弦波的模拟信号和线性信号。
③微控制器、存储器、逻辑等相关的产品。
要处理的信号是数字信号。
④最近常用的开关电源和电荷泵电源等电源相关的产品;LED驱动器、LCD驱动器等显示相关的产品;PWM电机驱动器等驱动相关的产品。
这些LSI和IC是涉及到开关技术的产品。
其中①和②不产生电磁干扰(EMI),③和④产生电磁干扰(EMI)。
可以简单的理解为模拟LSI和线性LSI不会产生电磁噪声,而数字LSI和开关LSI会产生电磁噪声,这样说可能更直观更易懂。
由于直流电压本身没有基波和谐波分量,正弦波中的高次谐波分量(基波的N倍频分量)很少,因此不易产生电磁噪声。
而数字LSI 和开关LSI是处理矩形波(脉冲波)的产品,因此会产生比如在1GHz (千兆赫兹)左右的高次谐波分量(主要是奇次谐波)。
emc电磁兼容是什么_电磁炉emc起什么作用

②共用走廊内各种公用事业设备(输电线、通信、铁路、公路、石油金属管线等)相互间的影响。
③超高层建筑、输电线、铁塔等大型建筑物引起的反射问题。
④电磁环境对人类及各种生物的作用。
其中包括强电线等工频场,中、短波及微波电磁辐射的影响。
⑤核电磁脉冲的影响。
高空核爆炸产生的电磁脉冲能大面积破坏地面上的指挥、控制、通信、计算机及报系统。
⑥探谱(TEMPEST)技术。
其实质内容是针对信息设备的电磁辐射与信息泄漏问题,从信息接收和防护两方面所开展的一系列研究工作。
⑦电子设备的误动作。
为了防止误动作,必须采取措施以提高设备的抗干扰能力。
⑧频谱分配与管理。
无线电频谱是一种有限的资源,但不是消耗性的,既要科学地管理,又要充分地利用。
⑨电磁兼容与测量。
⑩自然界影响等。
人们日常生活中出现的常见EMC问题我们经常会遇到这样的情况,当我们收听广播或收看电视时,如果附近有人使用电吹风、吸尘器等,就会使声音出现噪音,图象出现雪花千扰,这就是产品的电磁兼容性有问题;当我们使用计算机时,通过电缆与其他设备热插拔连接,之后出现鼠标不能拖动,光标无法移动,计算机出现死机的情况,这里很重要的原因之一是电磁兼容性问题; 当计算机通过通讯电缆控制其他机器设备时,程序运行到某一点时计算机总是死机,这也可能是电磁兼容性问题,强电磁千扰脉冲使计算机的运行脱离了原来的程序轨道跑飞了,这种情况如果出现在网络里,可能破坏数据库或使网络瘫痪,造成重大灾难和经济损失; 正在飞行的飞机上如果有乘客违规使用强千扰信号的电子设备,很有可能导致飞机的坠毁; 在单片机控制系统的设计中如果出现电磁兼容性问题,那么既是软件编制正确,也难以使系统调试成功。
这些例子说明,我们生活的空间确实存在一种污染一电磁污染。
这些电磁千扰在不易察觉的情况下千扰人们的正常工作。
电磁炉emc起什么作用随着人们对电磁兼容的不断认知,对电磁兼容的重视程度也逐渐增加。
科学技术的不断发展使电磁兼容所涉及到的领域日益扩大,而今电磁兼容所产生的影响已不仅仅只是电子产品设备本身,由于电子产品自身内部结构发展得愈加袖珍与复杂,电磁兼容问题也就愈加重要,例如受电磁干扰,收音机无法收听广播、某些电子设备的数据在传输过程中发生丢失、一些医用电子设备工作失常、引发起爆装置使之发生爆炸、工业过程的某项控制功能完全失效等,电磁干扰或其产生的辐射还可以使生物体自身发生某些微妙的变化而产生一定的影响。
2024版年度关于电磁兼容(EMC)的基础知识解析

电磁干扰现象
电磁干扰(EMI)是指电磁骚扰引起的设备、传输通道或系统 性能的下降。常见的电磁干扰现象包括辐射干扰和传导干扰。
危害
电磁干扰可能导致设备性能下降、误动作、数据丢失等,严重 时甚至可能损坏设备或系统。此外,电磁干扰还可能对人体健 康产生不良影响,如引起头痛、失眠、心悸等症状。
5
电磁兼容研究历史与发展趋势
2024/2/2
6
2024/2/2
02
电磁兼容基本原理
7
电磁场理论基础
麦克斯韦方程组
描述电场、磁场与电荷密 度、电流密度之间关系的 基本方程,是电磁场理论
的基础。
2024/2/2
电磁场波动方程
由麦克斯韦方程组推导出 的描述电磁波在空间中传
播的方程。
电磁场边界条件
描述电磁波在不同媒质分 界面上传播时,场量应满
测试标准
2024/2/2
13
抗扰度测试方法及标准
测试方法
抗扰度测试是通过模拟设备或系统在实际 工作环境中可能遇到的电磁干扰情况,来 评估其抗干扰能力。测试时,需使用合适 的干扰源和耦合装置对设备或系统施加干 扰信号,并观察其性能变化情况。
VS
测试标准
抗扰度测试的标准主要包括IEC的相关标准, 如IEC 61000-4系列标准等,以及各国或地 区的特定标准。这些标准规定了不同设备 或系统应能承受的电磁干扰类型、干扰强 度及测试方法。同时,还规定了设备或系 统在受到干扰时应保持的性能水平或允许 的性能降级范围。
21
医疗设备EMC特殊要求及实现方法
特殊要求
医疗设备对电磁兼容性有严格要 求,以确保设备在复杂电磁环境 中正常工作,同时不对其他设备
产生干扰。
EMC_基础知识的介绍

EMC_基础知识的介绍EMC的重要性:随着现代科技的发展,电子设备在我们的日常生活中扮演着越来越重要的角色。
而电子设备之间的互相影响和电磁干扰问题也成为了一个非常关键的问题。
一方面,电磁干扰可能会导致设备的异常工作、功能失效甚至是损坏;另一方面,设备对周围环境的电磁干扰也可能干扰到其他设备的正常工作。
因此,保证电子设备的电磁兼容性,对于维护设备正常工作、保障通信网络的稳定运行以及保护人类身体健康都至关重要。
EMC的基本概念:1.电磁兼容性(EMC)是指电子设备在同一电磁环境下相互协调共存,相互不干扰的能力。
2.电磁干扰(EMI)是指电子设备互相之间和与周围环境之间发生的电磁能量的传导、辐射和耦合等干扰现象。
3.电磁感应(EMF)是指电磁场对设备内部电子器件或电路的作用。
4.电磁辐射(EMR)是指电子设备产生的电磁波通过传播介质向外辐射。
5.电磁敏感性(EMS)是指设备对电磁干扰的敏感程度,即设备能否正常工作且不受干扰。
EMC的影响因素:1.设备本身的电磁辐射:电子设备本身会发出电磁辐射。
这些辐射源可以是设备内部的电源、逻辑电路、高速时钟、天线等。
2.设备与外部环境的电磁耦合:电子设备与周围环境之间会通过导线、电磁场耦合、电磁辐射等方式相互影响。
3.设备受到外部电磁干扰:外部电磁干扰可能来自其他设备、电力线、雷电等。
这些干扰可能通过电磁辐射、电磁感应、电磁耦合等方式影响设备的正常工作。
EMC的解决方法:1.设备设计中的EMC:在电子设备的设计阶段,可以采取一些措施来减小设备的电磁辐射和提高设备的抗干扰能力。
例如,减小信号线的长度、增加电磁屏蔽、降低电源线、时钟线和信号线等的串扰。
2.屏蔽与隔离:通过在设备内部或外围添加屏蔽材料和屏蔽结构,来减小设备的电磁辐射和避免干扰。
同时,对重要设备进行隔离,使其对外界的电磁干扰不敏感。
3.地线设计:合理设计设备的地线系统,包括单点接地、分布式接地、有效屏蔽等方法,可以有效降低电磁干扰和提高设备的抗干扰性能。
电磁兼容(EMC)基础知识全面详解

电磁兼容(EMC)基础知识全⾯详解⼀、电磁兼容概念电磁兼容EMC(Electromagnetic compatibility) 对于设备或系统的性能指标来说,直译为“电磁兼容性” ;但作为⼀门学科来说,应该译为“电磁兼容”。
国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常⼯作且不对该环境中任何事物构成不能承受的电磁骚扰的能⼒。
” 简单的说,就是抗⼲扰的能⼒和对外骚扰的程度。
电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种⽤电设备(分系统、系统;⼴义的还包括⽣物体)可以共存并不致引起降级的⼀门科学。
⼆、基本概念Electromagnetic compatibility(EMC)电磁相容—电⼦产品能够在⼀电磁环境中⼯作⽽不会降低功能或损害之能⼒;Electromagnetic interference(EMI)电磁⼲扰—电⼦产品之电磁能量经由传导或辐射之⽅式传播出去的过程;由⼲扰源、耦合通道及被⼲扰接收机三要素组成。
Radio frequency(RF)⽆线电频率,射頻—通訊所⽤的频率范围,⼤约是10kHz 到100GHz。
这些能量可以是有意产⽣的,如⽆限电传发射器,或者是被电⼦产品⽆意产⽣的;RF能量经由两种模式传播: Radiated emissions(RE)—此种RF 能量的电磁场经由媒介⽽传输;RF 能量⼀般在⾃由空间(free space)內传播,然⽽,其他种类也有可能发⽣。
Conducted emissions(CE)—此种RF 能量的电磁场经由道题媒介⽽传播,⼀般是经由电线或内部连接电缆;Line Conducted interference(LCI)指的是在电源线上的RF 能量。
Susceptibility 容忍度,耐受性—相对的测量产品暴露在EMI环境中混乱或损害的程度。
Immunity 免疫⼒—⼀相对的测量产品承受EMI的能⼒;Electrical overstress(EOS)电⼦过度⾼压—当遇到⾼压突波产品承受到的损坏或只是功能丧失;EOS包括雷击以及静电放电的事件。
电磁兼容详细讲解

电磁兼容(Electromagnetic Compatibility,EMC)是指在电磁环境中,电子设备能够在不产生或受到有害电磁干扰的情况下,正常工作、与其他设备共存的能力。
它包括两个方面:电磁干扰(EMI,Electromagnetic Interference)和抗干扰性能(EMS,Electromagnetic Susceptibility)。
1. 电磁干扰(EMI):定义: 指电子设备的工作可能对周围的电子设备或电磁环境造成的有害影响。
来源: 来自各种电磁辐射、电磁感应和传导的电磁波。
防范措施: 使用屏蔽、滤波、绕线等技术来减小设备的辐射和提高其抗干扰能力。
2. 抗干扰性能(EMS):定义: 指电子设备在电磁环境中正常工作的能力,即设备不受到外界电磁干扰的影响。
测试: 通过将设备置于模拟或真实的电磁干扰环境中,检测设备的性能是否受到干扰。
提高抗干扰性能的方法:(1)使用合格的电磁屏蔽材料。
(2)优化电路布局,减小电磁敏感部件的面积。
(3)使用抑制电磁噪声的滤波器。
(4)使用合适的接地和屏蔽手段。
3. 国际电工委员会(IEC)的标准:IEC 61000系列标准为电磁兼容提供了一系列规范,包括测量方法、限值等内容。
4. 电磁兼容的重要性:保障电子设备在复杂的电磁环境中稳定可靠地工作。
避免设备之间互相干扰,保持通信的稳定性。
符合国际和国内的法规要求,确保产品上市和销售的合规性。
5. 应用领域:电子通信设备、计算机设备、医疗设备、汽车电子等。
综合而言,电磁兼容是电子设备设计和制造中的一个重要考虑因素,它涉及到电磁干扰的防范和设备抗干扰性能的提升。
通过遵循相关的标准和规范,制造商可以确保其产品在各种电磁环境中都能够安全、可靠地运行。
电磁兼容性分析与设计

电磁兼容性分析与设计电磁兼容性(EMC)是一种能够保证电子设备在不同环境下正常工作,不对周围其他电子设备和设施造成干扰的技术。
它是整个电子设备研发过程中不可缺少的一个环节,随着电子设备的广泛应用,EMC也越来越重要。
本文将从EMC的基本概念入手,分别从分析和设计两个方面进行阐述。
一、EMC的基本概念EMC的基本定义是指电子设备在一定时间内在某种电磁环境中,能够正常工作,并且不对其他设备或系统造成干扰。
在实际应用中,EMC不仅指正确地设计具有相同功能的电子产品,更重要的是指设备在电磁环境下网络工作和沟通的能力。
EMC设计的理念有两个核心,“设计稳定”和“设计坚韧”。
也就是说,EMC设计要以稳定性和韧性为目标,确保设备在任何环境下正常工作,并且可以在可能的变异条件下仍然能够正常运行。
稳定性与韧性都是EMC设计中非常重要的因素。
只有转变典型的设计思路,将EMC设计作为一种综合性工程来看待,才能够实现电子产品的质量提高和技术进步。
二、EMC分析EMC分析是指采用分析方法对电子产品在电磁场中的传导及辐射问题进行分析和研究的过程。
EMC分析的主要目的是为了解决电磁干扰(EMI)和电磁噪声(EMS)所带来的问题。
EMI指电子设备在正常工作过程中,引起电磁辐射或传导,对周围其他电子设备造成不良的影响。
EMS是指电磁场产生的噪声影响,它不仅会干扰其他设备的正常工作,还会对人类的健康产生负面影响。
因此,在EMC分析中,必须充分考虑这些问题,采取有效的措施进行干扰抑制。
EMC分析的方法包括模型分析、电路分析、辐射分析和传导分析等。
在实践中,EMC分析不仅需要掌握必备的分析技能,还需要具备一定的电传导和电磁学等专业知识。
三、EMC设计EMC设计是指在EMC分析的基础上,针对特定需求设计出解决电磁干扰问题的方案的过程。
EMC设计的主要任务是设计出稳定的、高效的电路和设备,在各种复杂环境下保证正常工作。
EMC设计需要考虑的因素非常多,其中包括器件选择、电路布局、线路布线、屏蔽技术、环境识别和因果分析等。
什么是电磁兼容性

什么是电磁兼容性(EMC)?
电磁兼容性(Electromagnetic Compatibility,EMC)是指电子设备、系统或系统中的部件在电磁环境中共存并相互操作时,能够不产生不可接受的干扰,也不会受到来自外部电磁干扰的影响,以保证设备的正常工作和性能稳定。
EMC主要涉及两个方面的问题:
电磁干扰(Electromagnetic Interference,EMI):指电子设备在
工作时产生的电磁辐射或传导的能量,可能对周围的其他设备或系统产生不良影响,导致它们的正常工作受到干扰或受损。
抗干扰能力:指电子设备对来自外部环境的电磁干扰的抵抗能力,即设备在外部电磁干扰条件下能够保持正常工作,不受到干扰或影响。
为了实现良好的电磁兼容性,需要采取一系列的措施:
电磁干扰源控制:减少电子设备本身产生的电磁干扰,采用滤波器、屏蔽罩等技术措施减少辐射和传导的干扰。
电磁抗干扰设计:通过合理的电路设计、布线设计、地线设计等手段提高设备的抗干扰能力,减少对外部电磁干扰的敏感度。
屏蔽技术:对电子设备进行屏蔽处理,阻止外部电磁干扰对设备内部电路的影响,提高设备的抗干扰能力。
电磁兼容性测试与认证:通过电磁兼容性测试,评估设备的电磁兼容性水平,确保设备符合相关的电磁兼容性标准和法规要求。
EMC技术的应用范围广泛,涉及到电子设备、通信设备、汽车电子、航空航天设备等多个领域,对保障设备的正常工作和信息传输具有重要意义。
电磁兼容 emc 技术及应用实例详解

电磁兼容emc 技术及应用实例详解电磁兼容(EMC)是指不同电子设备在同一电磁环境中共存并保持正常工作的能力。
在现代社会中,电子设备的数量和种类越来越多,它们之间的互相干扰和互不干扰的问题也成为了人们关注的焦点。
EMC技术就是解决这个问题的一种方案。
EMC技术可以分为两个方面,即抗扰度和抗干扰。
抗扰度是指设备自身的能力,即抵抗外界干扰的能力;而抗干扰是指设备对其他设备干扰的抵抗能力。
EMC技术的应用广泛,包括消费电子、通信设备、医疗设备、工业设备等各个领域。
以下是一些EMC技术应用的实例:1. 汽车电子系统:现代汽车装备了大量的电子设备,如发动机控制单元(ECU)、车载导航系统、车载娱乐系统等。
这些设备之间需要保持相互兼容,以确保汽车的正常运行。
同时,汽车内部的电子设备也需要抵抗外界干扰,以避免对驾驶员和乘客的安全产生影响。
2. 医疗设备:医疗设备的EMC要求非常严格,因为它们与人类的生命和健康直接相关。
例如,电子血压计、心电图仪、医用电刀等设备都需要抗扰度和抗干扰能力,以确保准确的测量和治疗结果。
3. 无线通信:无线通信系统的干扰问题是非常关键的。
例如,手机和基站之间的互相干扰可能导致通信质量下降或通话中断。
通过使用EMC技术,可以降低设备对未经授权的频谱的干扰,提高通信质量和可靠性。
4. 工业自动化:工业设备通常集成了大量的电子控制器和传感器,用于监测和控制各种工艺。
这些设备之间需要保持相互兼容,以确保工业过程的正常运行。
此外,工业环境中存在大量的电磁噪声,工业设备需要具备一定的抗干扰能力。
以上只是一些典型的EMC技术应用实例,实际上,EMC技术几乎涵盖了所有电子设备的相关领域。
通过正确地应用EMC技术,可以避免电子设备之间的干扰问题,提高设备的稳定性和可靠性,保障人们的生命和财产安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁兼容性EMC的基本概念及应用解析EMS电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。
因此,电磁兼容性EMC 一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
一、EMC概念介绍EMC(Electromagnetic Compatibility)作为产品的一个特性,译为电磁兼容性;如果作为一门学科,则译为电磁兼容。
它包括两个概念:EMI 和EMS。
EMI(Electromagnetic Interference)电磁干扰,指自身干扰其它电器产品的电磁干扰量。
EMS(Electromagnetic Susceptibility)电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。
因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
EMC滤波器主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到保护的设备,同时抑制和衰减设备对外界产生干扰。
而辐射干扰主要通过屏蔽的手段加以滤除。
从滤波器的功能来看,它的作用是允许某一部分频率的信号顺利的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频电路。
而我们常见的低通滤波器功能是允许信号中的低频或直流分量通过,抑制高频分量或干扰噪声。
电源噪声干扰在日常生活中很常见。
比如你正在使用电脑的时候,当手机信号出现时,电脑音响会有杂音。
比如电话或手机通话时有嗞嗞的杂声。
又比如使用电吹风烫头发时,电视机不但会产生噪音,而且屏幕会出现很大的雪花般的条纹。
这都是一些常见的噪声信号干扰,但实际上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。
这些噪声信号如果出现在自动化仪器,医疗仪器有可能带来极大的损失甚至生命安全。
比如,会造成自动化仪器误动作,造成医疗仪器失控等等。
我们常说的噪声干扰,是指对有用信号以外的一切电子信号的一个总称,也可以理解为电磁干扰。
最初,人们把造成收音机之音响设备所发出噪声的那些电子信号,称为噪声。
但是,一些非有用电子信号对电子电路造成的后果并非都和声音有关,因此,后来人们逐步扩大了噪声概念。
如:某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的有用信号,而对于另一频率的接收机它就是一种无用信号,即是噪声。
噪声按传播路径来分可分为传导噪声干扰和空间噪声干扰。
其传导干扰主要通过导体传播,通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络,其频谱主要为30MHz以下。
而空间噪声干扰源通过空间把其信号耦合(干扰)到另一个电网络,其频率范围比传导噪声频率宽很多,30Hz-30GHz。
传导噪声干扰可以通过设计滤波电路或追加滤波器的方法来进行抑制和衰减,而空间辐射干扰主要通过主要应用密封屏蔽技术,在结构上实行电磁封闭。
目前为减少重量大都采用铝合金外壳,但铝合金导磁性能差,因而外壳需要镀一层镍或喷涂导电漆,内壁贴覆高导磁率的屏蔽材料。
上面我们提到传导噪声干扰,又分为差模干扰与共模干扰两种。
差模干扰是两条电源线之间(简称线对线)的噪声,主要通过选择合适的电容(X 电容),差模线圈来进行抑制和衰减。
共模干扰则是两条电源线对大地(简称线对地)的噪声,主要通过选择合适的电容(Y电容),和共模线圈来进行抑制和衰减。
我们常见的低通滤波器一般同时具有抑制共模和差模干扰的功能。
二、感应干扰(近场)常见的电场如两个金属板两端加电压。
常见的磁场如两个磁铁之间的磁场。
电磁波的速度在空气中接近于光速。
波长=c/f=3x108/f = 300/F (MHz)如,F=10MHz 波长=30米 r =波长/2*3.14=4.77米。
频率为10MHz的电磁波发射源,在离发射源大于4,77米时,为远场,小于4,77米时,为近场。
三、辐射干扰(远场)3.1.原理及产生原因根据麦克斯韦方程,变化电场产生变化磁场,变化磁场产生变化的电场。
设备内每个电路都可能是天线,外壳和电缆都可能是天线的一部分。
我的理解是静电场和静磁场只对近距离的设备产生干扰。
交变的电场和交变的磁场不光对近距离设备产生干扰,还对很远处的设备产生干扰。
不论是电场干扰还是磁场干扰远距离传播以后,都是以交变的电磁场形式传播。
电磁场解释电磁场有内在联系、相互依存的电场和磁场的统一体和总称。
随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。
电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。
电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。
电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
3.2.如何影响设备敏感设备受空间干扰其中f为频率B为磁感应强度A为面积E为电场强度3.3.如何滤除辐射干扰如在源及敏感设备外围加屏蔽,隔断辐射路径;以及在敏感设备各端口增加滤波电路,阻止已耦合到端口上噪声进入设备内。
3.4.如何减少辐射干扰方法1:采用同轴电缆双绞线绞合电缆。
如MR6;IDM11的电缆线就是绞合电缆方法2:应尽量减小有用信号的高次谐波成分(频率越高,辐射越强)方法3:采取屏蔽方法通气口,尽量用小圆孔,避免用长条形通气孔。
普通滤波器原理图如图1,3为差模电容,2为共模电感,4为共模电容。
一般滤波器不单独使用差模线圈,因为共模电感两边绕线不一致等原因,电感必定不会相同,因此能起到一定的差模电感的作用。
如果差模干扰比较严重,就要追加差模线圈。
四、差模干扰4.1 差模干扰:简单的说就是线对线的干扰。
如图,我们可以看到差模的原理图。
UDM就是差模电压,IDM就是差模电流。
IDM大小相同,方向相反。
4.2 差模干扰产生的原因差模干扰中的干扰是起源在同一电源线路之中(直接注入)。
如同一线路中工作的电机,开关电源,可控硅等,他们在电源线上所产生的干扰就是差模干扰。
4.3如何影响设备差模干扰直接作用在设备两端的,直接影响设备工作,甚至破坏设备。
(表现为尖峰电压,电压跌落及中断。
)4.4.如何滤除差模干扰主要采用差模电感和差模电容。
4.4-1差模电感工作原理:可以看到,当电流流过差模线圈之后,线圈里面的磁通是增强的,相当于两个磁通之和。
线圈特性低频率低阻抗高频率高阻抗决定了在高频时利用它的高阻抗衰减差模信号。
(如图下图所示):当频率为50Hz时,线圈阻抗接近于0,相当于一根导线,不起任何衰减作用。
当频率为500kHz时,阻抗达到5k欧,而理想状态下,此时负载阻抗一般考虑为50欧,根据上面公式,此时差模线圈分得了99%的差模干扰电压,而负载只分得了1%的差模干扰电压。
同时,电流也有很大衰减。
(可以算出此时线圈的差模插入损耗)4.4-2差模电容工作原理可以看到,电容特性低频率高阻抗高频率低阻抗。
滤波器利用电容在高频时它的低阻抗短路掉差模干扰。
(如图下图所示:)当频率为50Hz时,电容阻抗趋近于无穷大,相当于短路,不起任何衰减作用。
当频率为500kHz时,电容阻抗很小,根据上式可以看到差模负载的电流衰减为趋近于0如当频率为500kHz时负载50欧容抗0.05欧此时电容分得了99.9%的差模干扰电流,而负载只分得了0.1%的差模干扰电流。
也就是说500kHz时,电容使得差模干扰下降了30dB.五、共模干扰5.1.共模就是共同对地的干扰:如图,我们可以看到共模的原理图。
UPQ就是共模电压,ICM1ICM2就是共模电流。
ICM1ICM2大小不一定相同,方向相同。
5.2.共模干扰产生的原因很多主要原因有以下几点:1.电网串入共模干扰电压2.辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰。
(原理是交变的磁场产生交变的电流,由于地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同)3.接地电压不一样。
也就是说地电位差异引入共模干扰。
4.也包括设备内部电线对电源线的影响。
5.3.如何影响设备共模电压有时较大,特别是采用隔离性能差的配电供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。
共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏,这种共模干扰可为直流、亦可为交流。
如图5.4.如何滤除共模干扰(共模线圈共模电容)5.4-1共模线圈共模线圈和差模线圈原理比较类似,都是利用线圈高频时的高阻抗来衰减干扰信号。
共模线圈和差模线圈绕线方法刚好相反(如图)。
因为差模线圈在滤除干扰的同时,还会一定程度的增加阻抗,而共模线圈对方向相反的电流基本不起作用,所以我们在能够满足特性的前提下,一般很少使用差模线圈。
文献一:这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。
文献二:我们了解电流定律,也知道电流产生磁通后,而且知道相同大小,相同圈数,不同方向的电流产生的磁通是会互相抵消,導致整个共模线圈对不同方向的电流不起作用,而仅仅让其通过;但对相同方向的电流所产生的磁通,因為磁通方向相同,磁通沒有抵消,故些共模线圈起着阻抗器的作用,压制了同方向的杂讯电流,达成抗电磁干扰的目的。
5.4-2共模电容工作原理共模电容的工作原理和差模电容的工作原理是一致的,都是利用电容的高频低阻抗,使高频干扰信号短路,而低频时电路不受任何影响。
只是差模电容是两极之间短路。
而共模电容是线对地短路。
3300pF1.6mm引脚共模电容谐振频率点为19.3MHz(下面仅为个人观念,仅供参考。
我觉得,共模电容不是单独工作的。
它是和共模电感共同工作组成一个谐振回路共同起作用。
如下图,因为我对此没有100%把握。
)我觉得,共模电容不是单独工作的。
它是和共模电感共同工作组成一个谐振回路共同起作用☺如下图,因为我对此没有100%把握。
等我弄明白再一起讨论吧)穿心电容在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。
对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。
普通电容之所以不能有效地滤除高频噪声,是因为两个原因,一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果,如图下所示。