磁性材料常识

合集下载

磁性材料相关知识

磁性材料相关知识

磁性材料相关知识1. 磁性材料的概述磁性材料是一类具有磁性的材料,它们可以被外界的磁场所吸引或排斥。

磁性材料在许多领域有着广泛的应用,例如电机、传感器、存储设备等。

磁性材料根据其磁性质可以分为软磁性材料和硬磁性材料两大类。

2. 磁性材料的分类2.1 软磁性材料软磁性材料是一类具有较高磁导率和低矫顽力的材料,其磁化后能迅速消失。

软磁性材料可以有效地吸收和产生磁场,广泛应用于电机、变压器等领域。

常见的软磁性材料有铁、镍、钴等。

软磁性材料的磁导率高,能有效地集中磁场线,使其传导能力较强。

2.2 硬磁性材料硬磁性材料是一类具有较高矫顽力和磁饱和度的材料,其磁化后能长时间保持。

硬磁性材料主要应用于存储设备、传感器等领域。

常见的硬磁性材料有钕铁硼、钴磁体等。

硬磁性材料的矫顽力和磁饱和度高,能够长时间保持磁化状态。

3. 磁化过程磁性材料的磁化过程是指在外加磁场的作用下,磁性材料内部的原子磁矩重新进行排列的过程。

磁化过程可以分为顺磁化和逆磁化两种情况。

3.1 顺磁化顺磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向一致的过程。

顺磁化过程中,磁性材料会被吸引到磁场较强的地方。

顺磁性材料的磁化强度与外磁场强度成正比。

3.2 逆磁化逆磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向相反的过程。

逆磁化过程中,磁性材料会被排斥出磁场较强的地方。

逆磁性材料的磁化强度与外磁场强度成负相关。

4. 磁性材料的性能参数4.1 矫顽力矫顽力是指磁性材料在外磁场作用下,从无磁化状态转变为完全磁化状态所需的外磁场强度。

矫顽力越高,磁性材料越难磁化。

矫顽力的单位是安培/米(A/m)。

4.2 磁导率磁导率是指磁性材料在外磁场作用下,单位磁场强度下的磁化强度与外磁场强度的比值。

磁导率越大,磁性材料的磁性能越好。

磁导率的单位是亨利/米(H/m)。

4.3 磁饱和度磁饱和度是指磁性材料在外磁场作用下,达到最大磁化强度时的外磁场强度。

什么是磁性材料

什么是磁性材料

什么是磁性材料磁性材料是一类具有磁性的材料,其在外加磁场作用下会产生磁化现象。

磁性材料广泛应用于电子、通信、医疗、能源等领域,是现代社会中不可或缺的重要材料之一。

本文将从磁性材料的基本特性、分类、应用以及发展趋势等方面进行介绍。

首先,磁性材料的基本特性。

磁性材料具有磁化特性,即在外加磁场作用下会产生磁化现象。

根据磁化特性的不同,磁性材料可分为铁磁材料、铁氧体材料、永磁材料和软磁材料等几类。

铁磁材料在外加磁场下会产生明显的磁化,而铁氧体材料具有较高的磁导率和电阻率,因此在高频电路中得到广泛应用。

永磁材料则具有自身较强的磁化特性,常用于制作永磁体。

软磁材料则具有较低的矫顽力和磁导率,适用于变压器、电感器等领域。

其次,磁性材料的分类。

根据磁性材料的不同特性和应用领域,可以将其分为多种类型。

例如,按照磁性材料的组成成分可分为金属磁性材料、合金磁性材料和氧化物磁性材料等;按照磁性材料的磁性能力可分为软磁材料和硬磁材料;按照磁性材料的应用领域可分为电子器件用磁性材料、电机用磁性材料和传感器用磁性材料等。

再者,磁性材料的应用。

磁性材料在各个领域都有着重要的应用价值。

在电子器件中,磁性材料被广泛应用于制作电感、变压器、磁头等元器件;在电机领域,永磁材料被应用于制作各种类型的电机,如风力发电机、电动汽车驱动电机等;在通信领域,磁性材料被应用于制作微波器件、天线等;在医疗领域,磁性材料被应用于制作医疗设备,如核磁共振成像设备等;在能源领域,磁性材料被应用于制作发电机、电池等。

最后,磁性材料的发展趋势。

随着科学技术的不断进步,磁性材料的研究和应用也在不断发展。

未来,磁性材料将更加注重环保、节能、高效的特性,以适应社会对清洁能源和高效能源的需求。

同时,磁性材料的微纳米化、多功能化、智能化也将成为发展的趋势,以满足各种领域对材料性能的要求。

总之,磁性材料作为一类具有磁化特性的材料,在现代社会中具有重要的应用价值。

通过对磁性材料的基本特性、分类、应用和发展趋势的介绍,相信读者对磁性材料有了更深入的了解,也为今后的研究和应用提供了一定的参考。

磁性材料 课件

磁性材料  课件

思考探究 物理课代表李明在实验室时,把餐卡放在条形磁铁上,等他中午 去餐厅吃饭时,怎么刷卡也不成功.你知道这是为什么吗? 答案:餐卡是磁卡,磁卡背面黑色部分磁条是用作磁记录,记录卡 内存钱情况,当磁卡靠近磁铁时,磁卡内的磁性材料在磁铁强大的磁 场中破坏了原来的磁记录,所以无法使用.
典题例解 【例 2】
磁性材料
一、磁化与退磁
1.一些物体,与磁铁接触后就会显示出磁性,这种现象叫作磁化. 原来有磁性的物体,失去磁性的现象叫作退磁.
2.铁、钴、镍以及它们的合金,还有一些氧化物,磁化后的磁性比 其他物质强得多,这些物体叫作铁磁性物质,也叫强磁性物质.
3.磁性材料按磁化后去磁的难易可分为硬磁性材料和软磁性材 料.有些铁磁性材料磁化后撤去外磁场,仍具有很强的剩磁,这种材料 叫作硬磁性材料.有的铁磁性材料磁化后撤去外磁场,物体没有明显 的剩磁,这样的材料叫作软磁性材料.
普通录音机是通过一个磁头来录音的.磁头的结构如图.在一个 环形铁芯上绕一组线圈,铁芯有个缝隙,工作时,磁带就贴着缝隙移动. 录音时,磁头线圈跟微音器相连,磁带上涂有一层磁粉,磁粉能被磁化 且有剩磁.微音器的作用是把声音变化转化成电流变化,问普通录音 机的录音原理是怎样的?
答案:声音的变化经微音器转化成电流变化,变化的电流流过线 圈,在铁芯中产生变化的磁场,磁带经过磁头时磁粉被不同程度地磁 化,这样声音的变化就被记录成不同程度的磁信号,这就是录音的原 理.
A.录音机磁头线圈的铁芯为软磁性材料; B.录音、录像磁带上的磁粉为硬磁性材料; C.电脑用的磁盘为硬磁性材料,不删除一般不会自动丢失; D.电铃上的电磁铁铁芯为软磁性材料.
A.铁棒两极有感应电荷 B.铁棒对磁场有传导作用 C.铁棒内磁畴有规律地排列起来 D.铁棒内磁畴的磁化方向杂乱无章 思路点拨:小磁针运动说明其受到了磁场的作用. 解析:把条形磁铁的 N 极靠近铁棒,铁棒中的磁畴在外磁场的作 用下,有规律地排列起来,使铁棒对外表现磁性,左侧为 S 极,右侧为 N 极,从而把小磁针的 S 极吸引过来. 答案:C

磁性材料入门知识

磁性材料入门知识

磁性材料入门知识磁性材料入门知识磁性材料是指在磁场中可以产生磁性的材料,包括铁、钢、铁合金、磁性玻璃、氧化物等等。

它们具有多种应用,如电机、电磁铁、电子、通讯、医疗、军事等领域。

本文将为你介绍磁性材料的基本知识。

1. 磁化强度磁化强度是衡量磁性材料磁化程度的物理量,通常用磁化强度或磁化矢量表示。

磁化强度的单位是安培每米(A/m)或高斯(Gs)。

磁力线越接近选定的物体,磁化强度就越强。

2. 磁场强度磁场强度是衡量磁场强弱的物理量,它和磁性材料的磁化程度有关。

磁场强度的单位是特斯拉(T)或高斯(Gs)。

3. 磁性导数磁性材料的磁性导数是指材料对磁场的响应,通常用来表示磁性材料的磁化程度。

高磁性导数的材料对磁场的响应非常灵敏,可以用来制造磁传感器。

4. 磁饱和当磁性材料的磁化强度达到一定值时,它将不再对外加磁场产生响应,这个过程称为磁饱和。

磁饱和是磁性材料失去磁性的一个重要特征。

5. 磁畴磁性材料分为多个微小的磁畴,每个磁畴具有自己的磁矩方向,这个方向通过相邻的原子强引力互相保持。

每个磁畴磁矩方向相同,但与相邻磁畴的磁矩方向不同。

6. 磁滞回线当一个交变电流通过一个螺线管时,磁针的磁化方向会随着电流变化,因此在磁针上会形成一个磁滞回线。

磁滞回线经常用来描述磁性材料的饱和磁化、滞磁和磁导率等性质。

7. 磁性材料分类根据磁性材料的磁导率和饱和磁化强度,可以将磁性材料分为软磁性材料和硬磁性材料。

软磁性材料是指具有高磁导率和低磁饱和的材料,通常用作电子元器件、电机和变压器等领域。

硬磁性材料是指具有高饱和磁化和低磁导率的材料,通常用于制造永磁体、磁存储、磁头等领域。

8. 磁性材料应用磁性材料广泛应用于各个领域。

在电子行业,磁性材料用于制造电感和磁芯等元器件。

在电机和发电机中,磁性材料用于制造转子和定子,改进机器效率并降低成本。

磁性材料还用于通讯、医疗、军事和安全等领域。

总之,磁性材料具有重要的应用和理论价值。

通过深入了解磁性材料的基本知识,可以更好地理解其在科技领域中的应用和发展前景。

磁性材料的基础知识讲座剖析课件

磁性材料的基础知识讲座剖析课件
磁导率和磁阻的变化规律
随着温度和磁场强度的变化,材料的磁导率和磁阻也会产生变化, 呈现出一定的非线性特征。
磁化强度与磁感应强度
01
02
03
磁化强度
指材料内部磁矩的矢量和 ,衡量材料被磁化的程度 。
磁感应强度
指磁场中某点磁场的强弱 和方向,与磁化强度密切 相关。
两者关系
在磁性材料中,磁感应强 度和磁化强度之间存在一 定的关系,可以通过物理 公式进行描述。
化学气相沉积法制备的磁性材料具有高纯度、高密度、高性能等特点,广泛应用于 磁记录、传感器等领域。
化学气相沉积法的优点是可控制膜层的成分和厚度,且工艺温度低、可制备形状复 杂的制品。缺点是设备成本高、工艺时间长,且需要严格控制反应条件。
溅射法
溅射法是一种制备磁性材料的方法,通 过将靶材置于真空室内,利用高能粒子 轰击靶材表面,使靶材原子或分子溅射 出来并沉积在基材上形成薄膜。
元素掺杂
通过在磁性材料中掺入其他元素,以改变其磁学性质。例如,通过掺入稀土元 素,可以提高磁性材料的磁能积和剩磁。
热处理与磁场处理
热处理
通过控制加热和冷却过程,改变磁性材料的晶体结构和相变 ,从而优化其磁学性能。例如,通过控制热处理条件,可以 提高磁性材料的矫顽力和稳定性。
磁场处理
在磁场中处理磁性材料,可以改变其内部的磁畴结构和磁矩 方向,从而优化其磁学性能。例如,通过磁场处理,可以减 小磁性材料的磁损耗和提高磁导率。
磁性材料的基础知识讲座剖析课件
目录
• 磁性材料概述 • 磁性材料的物理性质 • 磁性材料的制备工艺 • 磁性材料的性能优化 • 磁性材料的发展趋势与挑战
01
磁性材料概述
定义与特性
1 2

磁学基础知识

磁学基础知识

磁学基础知识一、磁性材料1.磁性:物体吸引铁、镍、钴等物质的性质。

2.磁体:具有磁性的物体。

3.磁极:磁体上磁性最强的部分,分为南极和北极。

4.磁性材料:具有磁性的物质,如铁、镍、钴及其合金。

5.硬磁材料:一经磁化,磁性不易消失的材料,如铁磁性材料。

6.软磁材料:磁化后,磁性容易消失的材料,如软铁、硅钢等。

7.磁场:磁体周围存在的一种特殊的物质,它影响着磁体和铁磁性物质。

8.磁场线:用来描述磁场分布的假想线条,从磁南极指向磁北极。

9.磁感线:用来表示磁场强度和方向的线条,从磁南极出发,回到磁北极。

10.磁通量:磁场穿过某一面积的总量,用Φ表示,单位为韦伯(Wb)。

11.磁通密度:单位面积上磁通量的大小,用B表示,单位为特斯拉(T)。

三、磁场强度1.磁场强度:磁场对单位长度导线所产生的力,用H表示,单位为安培/米(A/m)。

2.磁感应强度:磁场对放入其中的导线所产生的磁力,用B表示,单位为特斯拉(T)。

3.磁化强度:磁性材料内部磁畴的磁化程度,用M表示,单位为安培/米(A/m)。

4.磁化:磁性材料在外磁场作用下,内部磁畴的排列发生变化,产生磁性的过程。

5.顺磁性:磁化后,磁畴的排列与外磁场方向相同的现象。

6.抗磁性:磁化后,磁畴的排列与外磁场方向相反的现象。

7.铁磁性:磁化后,磁畴的排列在外磁场作用下,相互一致的现象。

8.磁路:磁场从磁体出发,经过空气或其他磁性材料,到达另一磁体的路径。

9.磁阻:磁场在传播过程中遇到的阻力,类似于电学中的电阻。

10.磁导率:材料对磁场的导磁能力,用μ表示,单位为亨利/米(H/m)。

11.磁芯:具有高磁导率的材料,用于集中和引导磁场。

六、磁现象的应用1.电动机:利用电流在磁场中受力的原理,将电能转化为机械能。

2.发电机:利用磁场的变化在导体中产生电流的原理,将机械能转化为电能。

3.变压器:利用电磁感应原理,改变交流电压。

4.磁记录:利用磁性材料记录和存储信息,如硬盘、磁带等。

磁性材料基础知识-ppt课件

磁性材料基础知识-ppt课件

求其轴线上一点 p 的磁感强度的方向和大小.
Idl
r
dB
B
o
R
p B
x
*
x
I
dB 0

Idl r2
解: 根据对称性分析
毕奥—萨伐尔定律的应用2
Idl
sin R
R
o
r
x
dB
*p x
r2 R
B0I

r 2 x2
sindl
l r2
dB x
dB 0

Idl r2
dB xdsBin4 π 0Isri2 n dl
0I dl
2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 (已知 n N I)
1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
2 )选 回路(顺时针圆周) .
lB d Bl 2 0π NR I B 0 NI
2π R
d
令L2πRB0NIL
内部交流报告
磁性材料基础知识
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论

磁性材料 课件

磁性材料    课件
题后反思理解磁化和退磁的实质是处理此类问题的关
键。
探究二 磁性材料与磁记录
磁性材料为什么能记录信息?录音、录像磁带上的磁性材料应该用硬 磁性材料还是软磁性材料?
提示:磁性材料在外界磁场作用下,能够被磁化,这就使我们可以利用磁 性材料记录外界磁场的信息。磁记录时,通过把声音、图像或其他信息转变 为变化的磁场,使磁带、磁卡磁条上的磁粉层磁化,这样就能在磁带或磁卡 上记录下与声音、图像或其他信息相应的磁信号;录音、录像磁带上的磁性 材料是用来作磁记录的,需要磁化后长久保持磁性,所以用硬磁性材料。
2.磁记录 (1)磁卡背面的黑条,录音机、录像机上用的磁带,电子计算机上用的磁 盘都含有磁记录用的磁性材料。依靠磁记录,我们可以保存大量的信息,并 在需要的时候读出这些信息。 (2)地磁场留下的记录:地磁场会对含有磁性材料的岩石起作用,据推测, 地磁场的强度和方向随时间的推移在不断改变,大约每过 100 万年,地磁场 南北极会完全颠倒一次。
3.磁化与退磁的实质 铁磁性材料结构与其他物质有所不同,它们本身就是由很多已经磁化 的小区域组成的,这些磁化的小区域叫作磁畴。磁化前,各个磁畴磁化方向 不同,杂乱无章地混在一起,各个磁畴的作用宏观上互相抵消,物体对外不显 磁性。磁化过程中,由于外磁场的影响,磁畴磁化方向有规律地排列起来,使 得磁场大大加强。高温下磁性材料的磁畴会被破坏;在受到剧烈震动时,磁 畴的排列也会被打乱,这些情况下材料就会产生退磁现象,如图所示为材料 磁化前和磁化后的情形。
1.磁化和退磁的概念 (1)磁化 缝衣针、螺丝刀等钢铁物体与磁铁接触后显示磁性的现象叫作磁化。 如图所示。
螺丝刀与磁铁接触后磁化
(2)退磁 原来有磁性的物体,经过高温、剧烈震动或者逐渐减弱的交变磁场的 作用,就会失去磁性,这种现象叫作退磁。

磁性材料相关知识概述

磁性材料相关知识概述

磁性材料相关知识概述磁性材料是一种特殊的材料,具有磁场或磁性,这使得它在很多领域得到了广泛应用。

从制造电气设备到医疗器械,磁性材料无处不在。

在本文中,我们会概述磁性材料的相关知识,包括磁性的起源、不同类型的磁性、磁性材料的应用和未来的发展趋势。

1. 磁性的起源磁性现象早在古代就已经被人们注意到了,但对于磁力的本质却认识不足。

直到16世纪,威廉·吉尔伯特通过一系列实验和研究,发现地球本身就是一个大磁体,而任何一个物质都有可能拥有磁性。

随着科学的发展,人们逐渐确定了电和磁之间的密切联系,发展出了电磁学,使得对磁性的研究更加深入。

现代的磁性研究主要集中在电子的微观结构和自旋运动等领域。

2. 不同类型的磁性目前,磁性材料主要分为三种类型:顺磁性、抗磁性和铁磁性。

顺磁性是指一些不具备自身磁矩但是受到磁场影响而表现出磁性的物质,例如铝、锌和铜等。

抗磁性是指那些在磁场中完全不表现出磁性的物质,例如黄金、银和铂等。

铁磁性是指那些自身就具有磁矩的物质,例如铁、镍和钴等。

铁磁性物质在外磁场的作用下呈现出不同程度的磁化,也会出现磁滞现象。

3. 磁性材料的应用磁性材料在很多领域中各有所长。

磁铁是最常见的应用磁性材料的例子,用于制造电机、发电机、电子设备、制冷设备等。

磁性材料也被用于医疗器械,例如磁共振成像MRI,利用人体组织对磁场的影响来生成影像。

磁性材料也广泛应用于信息存储,例如硬盘、U盘等存储设备。

在环保领域,磁性材料可以被用于污水处理和废弃物回收等方面。

4. 未来的发展趋势随着科技的不断进步,磁性材料的应用前景将更广阔。

例如,磁特性膜的发展,可以在电动汽车、太阳能电池和燃料电池等领域中代替传统的化石燃料;超导体技术的革新,可以提高能源的转化效率,缩短数据传输时间和降低能耗等等。

总结:磁性材料的研究和应用已经成为人们关注的焦点,其广泛应用和不断创新的技术可望解决现代社会的一系列问题。

在未来的发展中,磁性材料的应用前景将更加广泛和深入。

磁性材料及其应用研究

磁性材料及其应用研究

磁性材料及其应用研究磁性材料是一种在外磁场作用下能表现出明显磁性的物质,广泛应用于电子、通信、能源、医疗、工业、航空航天等领域,被认为是现代工业的重要材料之一。

一、磁性材料的基础知识磁性材料通常是由铁、镍、钴等过渡金属制成的合金或氧化物,具有铁磁性、反铁磁性、顺磁性或抗磁性等不同的导磁性质。

其中,铁磁性是指材料在外磁场作用下具有磁化强度,如铁、镍、钴等金属;反铁磁性是指材料在外磁场作用下具有反向的磁化强度,如氧化铁、锰氧化物等;顺磁性是指材料在外磁场作用下产生自发的磁矩,并随着外磁场的变化而发生变化,如氧化钴、铁氧体等;抗磁性是指材料在外磁场作用下没有磁化强度和自发磁矩,如铜、银等金属。

除了导磁性质外,磁性材料还具有其他特殊的物理化学性质,如磁滞、磁饱和、磁阻、磁吸附等。

其中,磁滞是指材料在外磁场作用下呈现出非线性的磁化曲线,如铁磁性材料的磁滞回线;磁饱和是指材料在一定的外磁场作用下磁化强度趋于饱和,如铁磁性材料的磁饱和磁场;磁阻是指材料对磁场的强度和方向有阻碍作用,如磁电阻材料;磁吸附是指材料能在外磁场作用下吸附、分离、运输等行为,如磁性纳米颗粒、磁性流体等。

二、磁性材料的应用领域1. 电子通信领域磁性材料在电子通信领域中广泛应用于电视、电话、电脑、音响等电器设备中的电磁驱动器、电磁继电器、电磁铁、扬声器等。

例如,铁氧体材料在高频磁路器、微波器件、储能装置、磁头元件等方面具有优良的特性;永磁材料在电机、发电机、电动车、随身听、手机振动器等方面应用广泛。

2. 能源领域磁性材料在能源领域中主要应用于电能转换、传输和存储。

例如,磁电材料和磁电器件可以将机械振动等形式的能量转化为电能,应用于传感器、自发光件、显示器件、换能器等;磁性储存材料可以通过保存信息的磁场方向来存储大量电子数据,如硬盘、磁带等。

3. 医疗领域磁性材料在医疗领域中主要应用于医疗设备和磁疗器。

例如,磁共振成像(MRI)技术是利用磁性共振原理对人体进行无创检查的重要手段,需要用到强磁场,铁磁性材料可以用于制作MRI设备的磁体和线圈;磁疗器则是利用磁场对人体组织进行治疗的方法,可以应用于骨科、神经科、妇科、皮肤科等。

什么是磁性材料

什么是磁性材料

什么是磁性材料
磁性材料是指在外加磁场作用下,能够产生磁化现象并保持磁化状态的材料。

磁性材料是一类特殊的材料,其在现代工业和科学技术中具有广泛的应用。

磁性材料根据其磁性特性可以分为铁磁材料、铁氧体材料、铁氧氮材料、软磁材料和硬磁材料等不同类型。

铁磁材料是一类具有较强磁性的材料,主要包括铁、镍、钴和它们的合金。


磁材料在外加磁场下能够产生明显的磁化现象,并且在去除外加磁场后能够保持一定的磁化强度,因此在电机、变压器、传感器等领域有着重要的应用。

铁氧体材料是一类氧化铁和其他金属氧化物的复合材料,具有良好的磁导率和磁饱和感应强度,被广泛应用于电子、通讯、医疗等领域。

铁氧氮材料是一类铁氧体材料和氮化物的复合材料,具有高饱和磁感应强度和
低磁导率的特点,被广泛应用于磁记录材料、磁存储材料等领域。

软磁材料是一类在外加磁场下能够迅速磁化和退磁的材料,主要包括硅钢、镍铁合金等,具有低磁滞回线和低磁导率的特点,被广泛应用于变压器、电感器、传感器等领域。

硬磁材料是一类在外加磁场下难以磁化和退磁的材料,主要包括氧化钴、氧化镍、氧化铁等,具有高矫顽力和高剩磁感应强度的特点,被广泛应用于磁记录材料、磁存储材料、磁传感器等领域。

总的来说,磁性材料在现代工业和科学技术中具有重要的地位和作用,其种类
繁多,性能各异,广泛应用于电机、变压器、传感器、电子、通讯、医疗、磁记录材料、磁存储材料等领域。

随着科学技术的不断发展,磁性材料的应用领域将会更加广泛,性能将会更加优越,为人类社会的发展进步做出更大的贡献。

磁性材料常识

磁性材料常识
2003年其推出的PC95则属于宽温低功耗功率铁氧体新材料,起始磁导率 为3300±25﹪;25℃时饱和磁通量密度为540mT,100℃时为430mT; 25℃~120℃内功率损耗均小于350 Kw/m3(B=200mT,f=100KHz),在 25℃和120℃时,功耗均为350 Kw/m3,80℃时为280 Kw/m3。这种材料 是目前性能最为优良的功率铁氧体材料。
磁性材质介召:材质发展
日本TDK公司铁氧体材料性能表(功率铁氧体)
材料型号
PC33 PC40 PC44 PC45 PC46 PC47 PC50 PC90 PC95
初始磁导率 (μi)
1400±25﹪ 2300±25﹪ 2400±25﹪ 2500±25﹪ 3200±25﹪ 2500±25﹪ 1400±25﹪ 2200±25﹪ 3300±25﹪
ab段是上升段
a H
0 起始磁化曲线
起始磁化 曲线反映 了什么?
oa段是线性段
起始磁化曲线的ab段反映了铁磁材料的 高导磁性;c点以后说明铁磁材料具有 磁饱和性。
磁学常识:磁化曲线3
高导磁性 磁导率可达102~104,由软磁材料组成的 磁路磁阻很小,在线圈中通入较小的电流即可获得较 大的磁通。
磁饱和性: B不会随H的增强而无限增强,H增大到 一定值时,B不能继续增强。
A)锰锌系 ➢ 组成约为:Fe2O3 71%, MnO 20%, 其他为:ZnO ➢ 电阻率高(10 ohm-cm) ➢ 磁心损耗低 ➢ 居里温度高 ➢ 形状:EE,EI,ER,PQ,RM,POT等型式。 ➢ 用途:功率变压器、EMI共模滤波器、储能电感等
磁学常识:磁性材料分类
B)镍锌系 ➢ 组成约为:Fe2O3 50%, NiO 24%, 其他为:ZnO ➢ 电阻率很高(107 ohm-cm) ➢ 工作频率高 ➢ 铁心损耗较锰锌系高 ➢ 居里温度高 ➢ 型式:DR,R,环形等。 ➢ 用途:常模滤波器、储能电感等

磁性材料有哪些

磁性材料有哪些

磁性材料有哪些
磁性材料是指具有磁性能力的物质。

根据磁性能力的不同,可以将磁性材料分为软磁性材料和硬磁性材料两类。

软磁性材料是指在外加磁场作用下很容易磁化,但在磁场消失后,能够迅速消磁的材料。

常见的软磁性材料有:
1. 铁:纯铁是一种具有很好的软磁特性的材料,但其抗腐蚀性较差,容易生锈,所以常常需要进行镀层处理,如镀锌等。

2. 钠:钠是一种具有较高磁导率和低磁阻的软磁性材料,常用于电感器等电子器件中。

3. 镍铁合金:镍铁合金是一种具有较高软磁导率和磁阻的材料,广泛用于电感器、变压器等电子元器件中。

4. 钴铁合金:钴铁合金具有较高的饱和磁感应强度和软磁导率,常用于制造磁头、电动机等设备。

硬磁性材料是指在外加磁场作用下很难磁化,且在磁场消失后,能够保持一定的磁化程度的材料。

常见的硬磁性材料有:
1. 钕铁硼磁体:钕铁硼磁体是一种强磁性材料,具有较高的饱和磁感应强度和矫顽力,广泛用于制造电动机、磁盘驱动器、手持电动工具等设备。

2. 钴磁体:钴磁体是一种具有较高矫顽力和耐磨性的硬磁性材料,常用于制造磁头、传感器等设备。

3. 铬钭磁体:铬钭磁体是一种具有较高饱和磁感应强度和矫顽力的硬磁性材料,常用于制造磁头、电机等设备。

4. 铁氧体:铁氧体是一种具有良好磁性能和电性能的硬磁性材料,常用于制造电感器、变压器等设备。

总结起来,磁性材料的种类繁多,从软磁性材料到硬磁性材料,具有不同的磁性能力和应用领域。

这些材料在电子器件、电动机、磁头等设备中起着重要的作用。

磁性材料的基础知识讲座课件

磁性材料的基础知识讲座课件

磁性材料的分类
总结词
磁性材料可以根据其磁化强度的不同分为硬磁材料和 软磁材料两类。
详细描述
硬磁材料是指那些具有高剩磁、高矫顽力和高磁能积 的材料,如铁氧体、稀土永磁材料等。这些材料具有 较高的磁能积和矫顽力,因此能够保持较强的剩磁状 态,常用于制造永磁体。软磁材料则是指那些具有低 矫顽力和低剩磁的材料,如硅钢片、纯铁、低碳钢等 。这些材料在磁场中被磁化后容易退磁,因此常用于 制造变压器、电机等需要频繁改变磁场方向的电器设 备。
低成本化与环保化生产
01
02
03
资源勤俭
优化生产工艺,降低生产 成本,提高磁性材料的资 源利用率。
环保材料
研发可降解或可回收的磁 性材料,减少对环境的污 染和破坏。
节能减排
降低生产过程中的能耗和 排放,推广绿色生产技术 。
新应用领域的拓展与开发
新能源领域
利用磁性材料在新能源领域如风 能、太阳能等领域的应用,推动
磁性材料在核磁共振成像 中的应用
核磁共振成像是一种重要的医学检测手段, 而磁性材料在其中扮演着关键角色。超导磁 体是核磁共振成像系统的核心部件,其性能 直接影响到成像质量。随着技术的不断发展 ,对超导磁体的性能要求也越来越高,研究 和开发具有更高磁场强度和稳定性的磁性材
料是未来的重要研究方向。
THANK YOU
感谢各位观看
02
磁性材料的物理性质
磁化曲线与磁滞回线
磁化曲线
描述了材料在磁场变化时磁化强 度与磁场强度的关系。
磁滞回线
表示磁场强度与磁感应强度的关 系,反应了磁性材料在周期性变 化磁场中的磁化过程。
磁导率与矫顽力
磁导率
描述了材料在磁场中的导磁能力,是 衡量材料磁性能的重要参数。

磁性材料基础知识

磁性材料基础知识
最大磁能积(BH)max 退磁曲线上每点所对应的磁感应强度B和磁化场强度H的乘积称磁能 积。其中的最大者叫最大磁能积(BH)max
永磁材料各项性能参数的单位换算


剩磁Br
法定计量单位为特斯拉(T)。以前常用高斯(G s)为计量单位。 它们之间的换算为: 1T=10000Gs ;1mT=10Gs
二、磁性材料的分类

磁性材料按性质分为金属和非金属两类,前者主要有电工 钢、镍基合金和稀土合金等,后者主要是铁氧体材料。 按使用又分为软磁材料、永磁材料和功能磁性材料。 按生产手段的不同,又分为烧结磁性材料和粘接磁性材料。 按成型时是否外加成型磁场,永磁材料还有各向同性和各 向异性之别。 永磁材料铁氧体材料按压制方式的不同还有干压和湿压之 分。
永磁材料在应用中应注意的问题
(1)永磁材料的应用环境 永磁铁氧体的应用环境包括:温度、湿度、盐雾、辐射、冲击 等等,所以使用人员在设计时应充分考虑永磁材料在应用环境 中的失效,正确选用永磁材料。失效主要表现为:退磁、腐蚀、 性能变坏且不可恢复、不稳定等等。 (2)高温使用时,应选用工作温度高和温度系数小的材料,并尽量 设计靠近最大磁能积点。 (3)材料的磁性能的均匀性和一致性对器件的性能有很大的影响。 导致材料磁性能不均匀不一致的主要原因有:成型磁场的均匀 性,磁粉的流动性、烧结温度的均匀性。加工公差及加工方向, 磁化磁场的均匀性等因素。 (4)选择内禀矫顽力大且矩形度好的永磁体 (5)使用前最好进行高于使用温度50℃的老化处理 (6)使用时充磁一定要充饱和。一般铁氧体永磁充饱和需要外加磁 场为800KA/m以上。


矫顽力Hc
法定计量单位为:安每米(A/m)。以前常用奥斯特(Oe)为计量 单位 两个单位之间的换算为:1 (Oe)=79.6 (A/m);为方便起见, 常取整数80进行换算。1(kOe)=80 ( kA/m)

磁性元件知识要点

磁性元件知识要点

磁性元件知识要点磁性元件是一种具有特殊磁性特性的器件,常用于电磁传感器、磁扫描器、磁存储器、磁传输装置等应用中。

磁性元件主要包括磁铁、磁芯、电磁线圈等。

1.磁铁:磁铁是磁性元件中最常见的一种,它具有磁性并能产生磁场。

常用的磁铁有永磁磁铁和电磁铁两种。

(1)永磁磁铁具有恒定的磁性,不需要外界电流就能产生磁场。

常见的永磁材料有铁氧体、钕铁硼等,常用于磁扫描器、电机等。

(2)电磁铁需要外界电流的激励才能产生磁场。

通常由线圈和铁芯构成,电磁铁的磁性大小和方向可以通过调节电流大小和方向来控制。

常用于电磁传感器、电磁继电器等。

2.磁芯:磁芯是一种将磁场集中和导引的元件,常用于电感器、变压器、电源滤波器等。

磁芯材料的选择和设计对于磁性元件的性能具有重要影响。

(1)硅钢片是一种常用的磁芯材料,具有低磁导率和低磁滞损耗,适用于高频应用。

(2)铁氧体是一种具有高磁导率和高磁饱和感应强度的磁芯材料,适用于高频电感器和变压器。

(3)氧化铁磁芯具有高磁导率和低损耗,适用于高频应用。

(4)纳米晶磁芯具有高饱和磁感应强度和低磁滞损耗,适用于高频应用。

3.电磁线圈:电磁线圈是一种通过电流激励产生磁场的元件,常用于电磁传感器、电磁继电器、电磁阀等。

电磁线圈的性能主要由线圈参数和材料特性决定。

(1)线圈参数包括匝数、截面积、导线电阻等。

匝数越多,产生的磁场强度越大;截面积越大,导线的电流容量越大;导线电阻越小,导线的功耗越少。

(2)线圈材料应具有良好的导电性、机械强度和耐腐蚀性。

常用的线圈材料有铜、铝等。

4.磁电效应:磁电效应是指在磁性元件中,由于外界施加电场或磁场的作用,导致材料内部产生的磁场或电场发生变化。

常见的磁电效应有磁阻效应、磁电效应和电磁效应。

(1)磁阻效应是指材料的电阻随着磁场的变化而变化,用于磁阻传感器和磁存储器。

(2)磁电效应是指材料的极化电荷和应变随着磁场的变化而变化,用于磁电传感器和磁存储器。

(3)电磁效应是指材料的极化电荷和应变随着电场的变化而变化,用于电磁传感器和电磁继电器。

磁材基础知识简介

磁材基础知识简介

1.磁性材料简介磁性材料是指由过渡金属元素铁、钴、镍及其合金等组成的能够直接或间接产生磁性的物质。

根据物质在外磁场中表现出的特性,物质的磁性可分为五类:顺磁性、抗磁性、铁磁性、亚铁磁性、反铁磁性。

我们把顺磁性和抗磁性物质称为弱磁性物质,把铁磁性和亚铁磁性物质称为强磁性物质。

通常所说的磁性材料是指强磁性物质。

磁性材料按磁化后去磁的难易可分为软磁材料和硬磁材料。

磁化后容易去掉磁性的物质叫软磁材料,不容易去磁的物质叫硬磁材料,也称为永磁材料。

软硬磁材料最明显的区别就是矫顽力,一般来讲软磁材料的矫顽力较小,硬磁材料的矫顽力较大。

通常软磁材料的矫顽力小于80 A/m,而永磁材料的矫顽力则大于4000 A/m。

磁性材料按使用又可分为软磁材料、永磁材料和功能磁性材料。

功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料、旋磁材料以及磁性薄膜材料等。

磁性材料的磁化过程可通过磁滞回线来表示。

图1和1’分别为软磁材料和永磁材料的磁滞回线。

其中Bs表示饱和磁感应强度,Br表示剩磁,Hc表示矫顽力。

图中可以看出,软磁材料和硬磁材料最明显的区别就在于,硬磁材料的矫顽力远大于软磁材料。

图1 磁性材料的磁滞回线1:软磁材料的磁滞回线,1’:硬磁材料的磁滞回线;Hc、Hc’:矫顽力;Bs、Bs’:饱和磁感应强度;Br、Br’:剩磁。

1.1 磁性材料各性能参数(1)饱和磁感应强度Bs:是指磁体被磁化至饱和状态时的磁感应强度,其大小取决于材料的成分,与其他外在条件无关。

它所对应的物理状态是材料内部的磁化矢量整齐排列。

(2)剩余磁感应强度Br:磁性材料经磁化至技术饱和,去掉外磁场后所保留的表面场Br, 称为剩余磁感应强度。

简称剩磁,用Br表示,单位为特斯拉(T)或高斯(Gs),换算关系为1 T=10000 Gs。

(3)矫顽力Hc:磁性材料在饱和磁化后,当外磁场退回到零时其磁感应强度B 并不退到零,只有在原磁化场相反方向加上一定大小的磁场才能使磁感应强度退回到零,该磁场称为矫顽磁场,又称矫顽力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
Tc
SPINEL
磁性参数与测量:其它参数
电阻率ρ 单位截面积和单位长度的磁性材料的电阻;和磁芯 的涡流损耗有关系。 密度d 单位体积材料的重量d=W/V 式中:W为磁性材料的重量, V为磁性材料的体积。 磁芯的密度对Bs、μi等特性有一定影响。 电感系数AL 定义为具有一定形状和尺寸的磁芯上每一匝线圈 产生的自感量。 AL=L/N2 式中:L为装有磁芯线圈的自感量(H),N为匝 数。
SPINEL
磁性材质介召:材质发展
以日本TDK公司的产品为代表,现代功率铁氧体经历了 四代: 70年代初开发的HC35材料 80年代初的H7C1(PC30)材料 80年代的H7C4(PC40)材料 90年代中的H7F(PC50)材料
最高20KHz 最高100KHz
最高300KHz
500KHz 中心
PC90
PC95
2200±25﹪
3300±25﹪
680
350
320
290
540
530
320
410
注:磁芯损耗的测试条件为:B=200 mT f=100KHz; 饱和磁通量密度测试条件为: H=1194A/m SPINEL ﹡ 500KHz 50mT
磁性材质介召:材质发展
SPINEL铁氧体材料性能表(功率铁氧体)
磁芯
SPINEL
磁学常识:磁性材料分类
A)锰锌系
组成约为:Fe2O3 71%, MnO 20%, 其他为:ZnO
电阻率高(10 ohm-cm) 磁心损耗低 居里温度高 形状:EE,EI,ER,PQ,RM,POT等型式。
用途:功率变压器、EMI共模滤波器、储能电感等
SPINEL
磁性参数与测量:磁损耗 (2)
1 损耗因子tanδ
气隙对损耗因子的影响 磁芯开制气隙后,可以增加磁场和温度的稳定性,损耗因 子有所下降 (tanδ)gap = tanδ·μe/μi 比损耗因子 ,与材料几何尺寸无关,表示小信号下材料 的损耗特性;
SPINEL
磁性参数与测量:磁损耗 (3)
2 品质因素 Q
磁学常识:磁性材料分类
B)镍锌系 组成约为:Fe2O3 50%, NiO 24%, 其他为:ZnO 电阻率很高(107 ohm-cm)
工作频率高
铁心损耗较锰锌系高 居里温度高 型式:DR,R,环形等。 用途:常模滤波器、储能电感等
SPINEL
磁学常识:磁性来源1
铁磁材料之所以具有高导磁 性,是因为在它们的内部具有一 种特殊的物质结构—磁畴。
2003年其推出的PC95则属于宽温低功耗功率铁氧体新材料,起始磁导率 为3300±25﹪;25℃时饱和磁通量密度为540mT,100℃时为430mT; 25℃~120℃内功率损耗均小于350 Kw/m3(B=200mT,f=100KHz),在 25℃和120℃时,功耗均为350 Kw/m3,80℃时为280 Kw/m3。这种材料 是目前性能最为优良的功率铁氧体材料。
SPINEL
磁性材质介召:材质发展
在PC50后,TDK相继推 出超低功耗材料PC44,PC45, PC46,PC47,其功率损耗较 PC40降低了约1/4~1/3, 主要差别就在于功耗最低点温 度不同,PC45为60-80℃, PC46为40-50℃,PC47则是 100℃,它们有一个明显的缺 点,一旦偏离了功耗最低点, 损耗值急剧上升。
(a)无外磁场情况 铁磁材料内部的 磁畴排列杂乱无章, 磁性相互抵消,因此 对外不显示磁性。
磁畴是怎么 形成的?
(b)有外磁场情况
磁畴因受外磁 场作用而顺着外磁 场的方向发生归顺 性重新排列,在内 部形成一个很强的 附加磁场。
铁磁材料内部往往有相邻的几百个分子 电流圈流向一致,因此在这些极小的区域内 就形成了一个个天然的磁性区域—磁畴。
SPINEL
磁性参数与测量:截止频率fr
截止频率fr 由于软磁材料畴壁共振和自然共振的影响, 随着频率提高,使软磁材料的μ值下降为起始 值的一半且μ″值达到峰值时的频率,称为截 止频率。
SPINEL
磁性参数与测量:居里温度Tc
居里温度Tc
μ
i
μ
i
80%
μ
i
20%
μ
i
居里温度是磁性材料 从铁磁性到顺磁性的转 变温度,在这个温度磁 性材料的磁性将变得很 小或消失,它的表示方 式有很多,我们一般按 下图进行测量,即随着 温度升高,磁导率下降 到最大值的80%及20% 时,两点的联线,延长 到与温度轴的交点即为 居里温度。
SPINEL
磁性材质介召:材质发展
SPINEL
磁性参数与测量:磁滞回线 (2)
1 饱和磁感应强度Bs、剩余磁感应强度Br、 矫顽力Hc
由于软磁材料在交变磁场中存在不 可逆磁化而形成磁滞回线。 如左图: Bs为磁化到饱和状态下的磁通密度; Br为从磁饱和状态去除磁场后,剩 余的磁通密度; Hc为从磁饱和状态去除磁场后,磁 芯继续被反向的磁场磁化,直至磁通密 度减小到零,此时的磁场强度称为矫顽 力。
铁氧体软磁材料介绍无锡斯贝尔:常彪源自内容
磁学常识:磁性材料分类 磁学常识:磁性来源 磁学常识:磁化曲线 磁性参数与测量 磁性材料应用 磁性材质介召
SPINEL
磁学常识:磁性材料分类
锰锌系材* 铁氧体磁芯 镍锌系材 镁锌系材 硅(矽)钢材 铁粉芯 合金类磁芯 铁硅铝合金 铁镍合金 钼坡莫合金 非晶、微晶合金
表示小信号下材料的损耗特性,由于磁 芯损耗引起信号相移; tanδ= Rs/ωLs Rs 磁芯及线圈损耗的等效电阻; Ls 装有磁芯的线圈的自感量;
tanδ称损耗因子,表示损耗功率与无 功功率的比值,其磁芯损耗包括磁滞损耗、涡流损 耗、剩余损耗即: tanδ= tanδn + tanδe + tanδr
磁性参数与测量:磁导率μ (1)
1 起始磁导率μ
i
μ i是材料在弱场磁化过程中的一个宏观特性表示量。 是磁性材料的磁导率(B/H)在磁化曲线始端的极限值, 1 lim B μ i= B式中:
μ0
H→0
H
μ0为真空磁导率(4π×10-7H/m); H为交流磁场强度(A/m); B为交流磁通密度(T)(测试时应小于0.25mT)。
饱和磁感应强度Bs是把足够大的磁 场Hs加到磁性体后的自发磁化,即是饱 和磁化强度Ms有以下的关系: Bs=Ms+μ0Hs 式中μ0表示真空磁导率, μ0=4π×10-7H/m。 大部分的软磁铁氧体的Ms处于200500mT范围之间,而且在103-104A/m 的磁场内饱和。因此,μ0Hs的值为110mT可忽视,饱和磁感应强度可看作 与饱和磁化强度几乎相等。
SPINEL
磁学常识:磁性来源2
B B
H
(A) (B)
H
B
B
H
(C)
SPINEL
H
(D)
磁学常识:磁化曲线1
磁路部分
B
Br
Bs
φ
u
Hc
I
H
电路部分
H 磁场强度 B磁感应强度 Bs饱和磁感应强度 Br剩磁 μ导磁率
SPINEL
H=NI/Le B=μH Φ=BAe
Le有效磁路长度 μ导磁率
Hc矫顽力
SPINEL
磁性参数与测量:磁导率温度稳定性
磁导率温度稳定性α μ
定义为:由于温度的改变而引起的被测量的相对变化 与温度变化之比。例:磁导率的温度系数为:
α μ =
μ 2-μ 1 μ 1(T2-T1)
式中:μ 1是T1温度时的磁导率,μ 2是T2温度时的磁导率 。因对于同一种软磁材料,其磁芯的α μ /μ i值是一个常 数。故常用α μ /μ i来表示温度特性。
SPINEL
磁性材质介召:材质发展
日本TDK公司铁氧体材料性能表(功率铁氧体)
材料型号 初始磁导率 (μ i) 1400±25﹪ 2300±25﹪ 2400±25﹪ 2500±25﹪ 3200±25﹪ 2500±25﹪ 1400±25﹪ 磁芯损耗 (Pcv) Kw/m3 25℃ 60℃ 100℃ PC33 PC40 PC44 PC45 PC46 PC47 PC50 1100 600 600 570 350 600 130﹡ 800 450 400 250 250 400 80﹡ 600 410 300 460 660 250 80﹡ 饱和磁通量密 (Bs)mT 25℃ 60℃ 100℃ 520 510 510 530 530 530 470 440 450 450 440 390 390 420 410 420 380 居里温度 (Tc) ℃ ≥290 ≥215 ≥215 ≥240 ≥230 ≥230 ≥230
磁性器件作滤波器的电感时,通常用品质因素Q来表示 它的质量; Q = 1/ tanδ Q与频率和绕组参数有关;
SPINEL
磁性参数与测量:磁损耗 (4)
3 大信号下的功率损耗Pc
P = Ph + Pe + Pr (Ph、Pe、Pr表示磁滞、涡流、剩余损耗) 磁性材料在高磁通密度下的单位体积损耗。该磁通密 度通常表示为: Bm =E/4.44fNAe ×106(mT) 式中: Bm为磁通密度的峰值(mT) E为线圈两端的电压(V) f为频率(KHz),N为匝数 Ae为磁芯的有效面积(m2)
饱和磁化强度
90 110 410 mW/ mW/g g
390
Bs mT
磁场(11941/ m) 温度(100℃)
390
410
400
居里温度 Tc

>215 >215 >216 >230 >215
4.8× 3 4.8× 3 4.8× 10 10 104 4.8× 4.8×103 10
相关文档
最新文档