浅谈人工智能中六大关键技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈人工智能中六大关键技术

当前,人工智能可谓是科技领域炙手可热的话题了,很多公司完善人工智能技术,研发人工智能产品。从Siri语音到智能家居,从无人驾驶到人工智能机器人,人工智能正在一步步改变我们的生活方式,我们还在憧憬着,人工智能还能带给我们些什么。现如今,人工智能已经逐渐发展成一门庞大的技术体系,在人工智能领域,它普遍包含了机器学习、深度学习、人机交互、自然语言、机器视觉等多个领域的技术,下面进行这些人工智能中这些关键技术的介绍。

机器学习

机器学习是一门多领域交叉学科,涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域。通过研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。通过知识结构的不断完善与更新来提升机器自身的性能,这属于人工智能的核心领域。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。阿尔法Go就这项技术一个很成功的体现。

根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。根据学习方法可以将机器学习分为传统机器学习和深度学习。

深度学习技术

深度学习的概念由Hinton等人于2006年提出。深度学习可以有人监督(需要人工干预来培训基本模型的演进),也可以无人监督(通过自我评估自动改进模型)。深度学习目前广泛运用于各类场合,在财资管理领域,如可以通过深度学习来进行现金流预测和头寸智能化管理。

深度学习则是是机器学习各项技术中发展最旺盛也是最成功的一个分支。我们常说的人工神经网络是机器学习中的一种算法。机器学习的其他算法包括聚类算法、贝叶斯算法等。在量化交易、智能投资和智能风控中,往往会应用机器学习技术。

人机交互

相关文档
最新文档