用对偶单纯形法求解线性规划问题

合集下载

管理运筹学多选 简答

管理运筹学多选 简答

管理运筹学多选 简答多选:3.对取值无约束的变量x j 通常令x j =x j ′- x j 〞,其中x j ′≥0,x j 〞≥0,在用单纯形法求得的最优解中,不可能出现的是最后的情形。

4.线性规划问题maxZ=X 1+CX 2其中4≤c≤6,一1≤a≤3,10≤b≤12,则当c=6 a=-1 b=10和c=4 a=3 b=12时,该问题的最优目标函数值分别达到上界或下界。

9.下列数学模型,只有B 为非线性规划模型(模型中a .b .c 为常数;θ为可取某一常数值的参变量,x ,Y 为变量),因为它所表达的列变量是不够的。

10.下列模型中,不属于线性规划问题的标准形式的是前三个模型,只有最后一个才是标准的。

4.在下图中,根据(a ) 生成的支撑树有三个b 、c 、d ,如下:7.在下图各边中,平行边有e 1 、 e 2、 e 5 、 e 6, e 1等边则是非平行边。

下列知识点可出简答题1. 简答:运筹学的数学模型有哪些优点?答:(1)通过模型可以为所要考虑的问题提供一个参考轮廓,指出不能直接看出的结果。

(2)节省时间和费用。

(3)模型使人们可以根据过去和现在的信息进行预测,可用于教育训练,训练人们看到他们决策的结果,而不必作出实际的决策。

( 4)数学模型有能力揭示一个问题的抽象概念,从而能更简明地揭示出问题的本质。

(5)数学模型便于利用计算机处理一个模型的主要变量和因素,并易于了解一个变量对其他变量的影响。

这些都是使得运筹学能够快速发展的有利条件。

2. 简答:运筹学的系统特征是什么?答:运筹学的系统特征可以概括为以下四点:(1)用系统的观点研究功能关系(2)应用各学科交叉的方法(3)采用计划方法(4)为进一步研究揭露新问题。

新发现的问题,可能要求用修正过去的模型、输入新的数据以及调整以前类似项目的解,获得解决。

6.简答:根据已知条件建立线性规划数学模型某工厂生产A 、B 、C 三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。

管理运筹学多选 简答

管理运筹学多选 简答

管理运筹学多选 简答多选:3.对取值无约束的变量x j 通常令x j =x j ′- x j 〞,其中x j ′≥0,x j 〞≥0,在用单纯形法求得的最优解中,不可能出现的是最后的情形。

4.线性规划问题maxZ=X 1+CX 2其中4≤c≤6,一1≤a≤3,10≤b≤12,则当c=6 a=-1 b=10和c=4 a=3 b=12时,该问题的最优目标函数值分别达到上界或下界。

9.下列数学模型,只有B 为非线性规划模型(模型中a .b .c 为常数;θ为可取某一常数值的参变量,x ,Y 为变量),因为它所表达的列变量是不够的。

10.下列模型中,不属于线性规划问题的标准形式的是前三个模型,只有最后一个才是标准的。

4.在下图中,根据(a ) 生成的支撑树有三个b 、c 、d ,如下:7.在下图各边中,平行边有e 1 、 e 2、 e 5 、 e 6, e 1等边则是非平行边。

下列知识点可出简答题1. 简答:运筹学的数学模型有哪些优点?答:(1)通过模型可以为所要考虑的问题提供一个参考轮廓,指出不能直接看出的结果。

(2)节省时间和费用。

(3)模型使人们可以根据过去和现在的信息进行预测,可用于教育训练,训练人们看到他们决策的结果,而不必作出实际的决策。

( 4)数学模型有能力揭示一个问题的抽象概念,从而能更简明地揭示出问题的本质。

(5)数学模型便于利用计算机处理一个模型的主要变量和因素,并易于了解一个变量对其他变量的影响。

这些都是使得运筹学能够快速发展的有利条件。

2. 简答:运筹学的系统特征是什么?答:运筹学的系统特征可以概括为以下四点:(1)用系统的观点研究功能关系(2)应用各学科交叉的方法(3)采用计划方法(4)为进一步研究揭露新问题。

新发现的问题,可能要求用修正过去的模型、输入新的数据以及调整以前类似项目的解,获得解决。

6.简答:根据已知条件建立线性规划数学模型某工厂生产A 、B 、C 三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。

对偶单纯形法例题详细步骤

对偶单纯形法例题详细步骤

对偶单纯形法例题详细步骤
对偶单纯形法是一种常用的解除线性规划问题的数学方法,由美国数学家鲍门士(George B. Dantzig)在1950年提出,早期更多用于研究管理科学问题,现在广泛用于线性规划问题的求解。

先来回顾一下线性规划的定义:给定线性约束条件和目标函数,要求寻找这样一组变量使目标函数极值化,称为线性规划问题,其中的线性约束条件主要可以分为等于约束和不等于约束,可以分为最大化型和最小化型。

由于线性规划问题本身涉及到多个变量约束严格,可能由于几何等原因不容易采取直接解决,而且有可能会涉及到多目标求解,因此对偶单纯形法是一种更为合理的求解方法。

该方法的目标是建立一个对偶问题,该问题只有一个变量,可以用单纯形法解决。

通过构建相应的对偶问题,将多个目标变量整合为一个,用一个变量来表示即可,这样只需解决一个线性规划问题,就可以根据对偶变量的极值情况,求出原始变量的最优解。

具体到此例来说,我们的目标就是要找出最优解。

我们先要把问题抽象为一个线性规划问题,它包括等式约束条件和不等式约束。

接下来我们可以根据问题性质来分析模型,确定问题的类型,然后找出原始最优解,剩余的就是利用对偶单纯形法求解,方法往往是把原始的规划问题转换为对偶的单纯形问题,求出对偶变量的最优解,再把它转换成原始问题的最优解。

总之,对偶单纯形法是一种非常灵活有效的求解线性规划问题的数学方法,其安全可靠性被广泛应用于解决众多线性规划问题。

运筹学作业-王程130404026

运筹学作业-王程130404026

运筹学作业王程信管1302130404026目录运筹学作业 (1)第一章线性规划及单纯形法 (3)第二章线性规划的对偶理论与灵敏度分析 (24)第三章运输问题 (53)第四章目标规划 (63)第五章整数规划 (73)第六章非线性规划 (85)第七章动态规划 (94)第八章图与网络分析 (97)第九章网络计划 (99)第一章 线性规划及单纯形法1.1分别用图解法和单纯形法求下列线性规划问题,⑴指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解;⑵当具有限最优解时,指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。

121212121min 23466 s.t.324,0z x x x x x x x x =++≥⎧⎪+≥⎨⎪≥⎩() 1212121,22max 3222s.t.34120z x x x x x x x x =++≤⎧⎪+≥⎨⎪≥⎩()121212123max 105349 s.t.528 ,0z x x x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩() 121212124max 5622 s.t.232,0z x x x x x x x x =+-≥⎧⎪-+≤⎨⎪≥⎩()解:⑴图解法:当212133x x z =-经过点6155(,)时,z 最小,且有无穷多个最优解。

⑵图解法:1x该问题无可行解。

⑶图解法:当21125x x z =-+经过点312(,)时,z 取得唯一最优解。

单纯形法:在上述问题的约束条件中分别加入松弛变量34,x x , 化为标准型:12341231241234max 10+500349s.t.528,,,0z x x x x x x x x x x x x x x =++++=⎧⎪++=⎨⎪≥⎩由线性规划问题的标准型可列出单纯初始形表逐步迭代,计算结果如下表所示:**33(,1,0,0),10512022(0,0,9,8)821(,0,,0)553(1,,0,0)2T T T T X Z X O X C X B ==⨯+⨯====(0)(1)(2)单纯形表的计算结果表明:单纯形表迭代的第一步得,表示图中原点(0,0)单纯形表迭代的第二步得,表示图中点单纯形表迭代的第三步得,表示图中点⑷图解法:当215166x x z =-经过点2,2()时,z 取得唯一最优解。

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性规划问题对偶单纯形法是一种常用于求解线性规划问题的方法。

它通过对原始线性规划问题进行对偶化,将原问题转化为对偶问题,并通过迭代的方式逐步优化,最终得到最优解。

本文将详细介绍对偶单纯形法的基本原理和步骤,并通过一个实例来演示其具体应用。

对偶单纯形法的基本原理是基于线性规划的对偶性理论。

根据对偶性理论,对于原始线性规划问题的最优解,一定存在一个对偶问题,其最优解与原问题的最优解相等。

因此,我们可以通过求解对偶问题来得到原问题的最优解。

对偶问题的形式如下:最大化 W = b'y约束条件为:A'y ≤ c其中,A是原始线性规划问题的约束矩阵,b是原始问题的目标函数系数矩阵,c是原始问题的约束条件矩阵,y是对偶问题的变量向量。

对偶单纯形法的步骤如下:步骤1: 初始化将原始线性规划问题转化为标准型,并初始化基变量和非基变量的初始解。

步骤2: 计算对偶变量值根据对偶问题的约束条件,计算对偶变量的初始值。

步骤3: 计算对偶目标函数值根据对偶问题的目标函数,计算初始的对偶目标函数值。

步骤4: 检验最优性判断当前解是否为最优解。

如果是,则终止算法;否则,进入下一步。

步骤5: 选择入基变量和出基变量根据当前解,选择一个入基变量和一个出基变量。

步骤6: 更新解通过列生成法或其他方法,更新当前解。

步骤7: 更新对偶变量和对偶目标函数值根据更新后的解,更新对偶变量和对偶目标函数值。

步骤8: 转至Step 4重复步骤4至步骤7,直到找到最优解。

下面以一个具体的线性规划问题为例来演示对偶单纯形法的应用。

假设有以下线性规划问题:最大化 Z = 3x1 + 5x2约束条件为:2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0首先,将原始问题转化为标准型:最大化 Z = 3x1 + 5x2约束条件为:2x1 + x2 + s1 = 10x1 + 3x2 + s2 = 15x1, x2, s1, s2 ≥ 0初始化基变量和非基变量的初始解为:x1 = 0, x2 = 0, s1 = 10, s2 = 15根据对偶问题的约束条件,计算对偶变量的初始值:y1 = 0, y2 = 0根据对偶问题的目标函数,计算初始的对偶目标函数值:W = 0检验最优性,发现当前解不是最优解,需要进入下一步。

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。

引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。

现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。

但假如现在我们不⽣产产品,⽽是要把原料都卖掉。

设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。

对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。

第二章 线性规划习题(附答案)

第二章 线性规划习题(附答案)
z
x1
x2
x3
x4
x5
x6
RHS
z
1
0
2
0
1/5
3/5
-1/5
27
x1
3
1
-1/3
0
1/3
-1/3
2
5
x3
4
0
1
1
-1/5
2/5
-4/5
3
由于增加决策变量 后求得的最优单纯形表为:
z
x1
x2
x3
x4
x5
x6
RHS
z
1
1/10
89/30
0
7/30
17/30
0
55/2
x6
3
1/2
-1/6
0
1/6
-1/6
习题
2-1判断下列说法是否正确:
(1)任何线性规划问题存在并具有惟一的对偶问题;
(2)对偶问题的对偶问题一定是原问题;
(3)根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;
(4)若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解;
(8)已知yi为线性规划的对偶问题的最优解,若yi>0,说明在最优生产计划中第i种资源已经完全耗尽;若yi=0,说明在最优生产计划中的第i种资源一定有剩余。
2-2将下述线性规划问题化成标准形式。
解:(1)令 ,增加松弛变量 ,剩余变量 ,则该问题的标准形式如下所示:
(2)令 , , ,增加松弛变量 ,则该问题的标准形式如下所示:
则可知,最优解变为 ,最优值变为27。
(3)先将原问题最优解变量值代入,因有

对偶单纯形法

对偶单纯形法

y1, y2 0
Min w 2 y1 3y2
解:
先将原问题化为下列形式
s.t.
2 y1 y1
y1 y2 y3 4 3y2 y4 6 y2 y5 3
y1, y2 , y3, y4 , y5 0
对偶单纯形法举例(例2-2) 则第一个基为B1=(P3,P4,P5)=I 基变量为y3,y4,y5 第一个对偶可行基对应的单纯形表如下
5
-w 8 -15 0 -1 -4 0
对偶单纯形法举例(例1-4)
T(B2) XB b Y1 Y2 Y3 Y4 Y5 Y2 1/3 0 1 1/6 -1/6 0
Y -1/3 -5 0
5
-w 8 -15 0
-2/3 -1/3 1 -1 -4 0
T(B3)
Y2 1/4 -5/4 1 Y3 1/2 15/2 0 -w 17/2 -15/2 0
5
w 0 -2 -3 0 0 0
Y3 -2 -5/3 0 Y2 2 1/3 1 Y5 -1 -2/3 0
1 -1/3 -1/3 0 -1/3 -1/3 0 -1/3 2/3
w 6 -1 0 0 -1 -1
对偶单纯形法举例(例3-1)
例3:用对偶单纯形法解下列线性规划
Min w x1 x2
3x1 x2 x3 1
s.t.
x1 x2 2x1 2x2
x4 2 x5 4
x j 0 j 1,2,3,4,5
解: 取B1=(P3,P4,P5)=I
为对偶可行基
因此其对应的单纯形表如下
对偶单纯形法举例(例3-2)
T(B1)
x1 x2 x3 x4
x5
x3 -1 3 -1 1 0 0
x4 -2 -1 1 0 1

运筹学作业2(清华版第二章部分习题)答案

运筹学作业2(清华版第二章部分习题)答案

运筹学作业2(第二章部分习题)答案2.1 题 (P . 77) 写出下列线性规划问题的对偶问题:(1)123123123123123m ax 224..34223343500,z x x x s t x x x x x x x x x x x x =++⎧⎪++≥⎪⎪++≤⎨⎪++≤⎪≥≥⎪⎩无约束,;解:根据原—对偶关系表,可得原问题的对偶规划问题为:123123123123123m ax 235..223424334,0,0w y y y s t y y y y y y y y y y y y =++⎧⎪++≤⎪⎪++≤⎨⎪++=⎪≥≤≤⎪⎩(2)1111m in ,1,,,1,,0,1,,;1,,m n ij ij i j n ij ij i j nij ij j j ij z c x c x a i m c x b j nx i m j n====⎧=⎪⎪⎪==⎪⎨⎪⎪==⎪⎪≥==⎪⎩∑∑∑∑ 解:根据原—对偶关系表,可得原问题的对偶规划问题为:11m ax 1,,;1,,m n i i j ji j i j ij i w a u b v u v c i m j n u ==⎧=+⎪⎪⎪+≤⎨⎪==⎪⎪⎩∑∑ j 无约束,v 无约束2.2判断下列说法是否正确,为什么?(1) 如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; 答:错。

因为:若线性规划的原问题存在可行解,且其对偶问题有可行解,则原问题和可行问题都将有最优解。

但,现实中肯定有一些问题是无最优解的,故本题说法不对。

例如原问题1212212m ax 31..30,0z x x x x s t x x x =++≥⎧⎪≤⎨⎪≥≥⎩有可行解,但其对偶问题1211212m in 33..10,0w y y y s t y y y y =+≥⎧⎪+≥⎨⎪≤≥⎩无可行解。

(2) 如果线性规划的对偶问题无可行解,则原问题也一定无可行解;答:错,如(1)中的例子。

运筹学

运筹学

运筹学[填空题]1用改进单纯形法求解以下线性规划问题。

[填空题]2已知某线性规划问题,用单纯形法计算得到的中间某两步的加算表见表,试将空白处数字填上。

参考答案:[填空题]3判断下列说法是否正确,并说明为什么?(1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。

(2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。

(3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

参考答案:(1)错误,原问题有可行解,对偶问题可能存在可行解,也可能不存在;(2)错误,对偶问题没有可行解,原问题可能有可行解也可能有无界解;(3)错误,原问题和对偶问题都有可行解,则可能有有限最优解也可能有无界解;[填空题]4设线性规划问题1是:又设线性规划问题2是:参考答案:把原问题用矩阵表示:原问题和对偶问题的最优函数值相等,所以不等式成立,证毕。

[填空题]5已知线性规划问题 用单纯形法求解,得到最终单纯形表如表所示,要求: (1)求a 11,a 12,a 13,a 21,a 22,a 23,b 1,b 2的值; (2)c 1,c 2,c 3的值;参考答案:初始单纯形表的增广矩阵是:最终单纯形表的增广矩阵为C 2是C 1作初等变换得来的,将C 2作初等变换,使得C 2的第四列和第五列的矩阵成为C 2的单位矩阵。

有:[填空题]6试用对偶单纯形法求解下列线性规划问题。

参考答案:(1)取w=-z,标准形式:最优解:X=(21/13,10/13,0,0)T目标函数最优值为31/13。

(2)令:w=-z,转化为标准形式:原问题最优解:X=(3,0,0,0,6,7,0)T目标函数最优值为9。

[填空题]7现有线性规划问题先用单纯形法求出最优解,然后分析在下列各种条件下,最优解分别有什么变化?(1)约束条件1的右端常数20变为30;(2)约束条件2的右端常数90变为70;(3)目标函数中x3的系数变为8;(4)x1的系数向量变为;(5)增加一个约束条件2x1+3x2+5x3≤50;(6)将约束条件2变为10x1+5x2+10x3≤100。

对偶单纯形法

对偶单纯形法
min f c j x j
j1 n
c
j
0
n i 1, 2, , m a ij x j bi j1 x 0, j 1, 2, , n j
在引入松弛变量化为标准型之后,约束等 式两侧同乘-1,能够立即得到检验数全部非正 的原规划基本解,可以直接建立初始对偶单纯 形表进行求解,非常方便。
对偶单纯形法求解线性规划问题过程:
1.建立初始单纯形表,检查b列中的各分量,若都为非 负,且检验数均非正,则已得到最优解,若b列中至 少有一个负分量,检验数非正,则转2; 2.确定换出变量
min
(bi 0)
确定对应的基变量xi为出基变量,转3 3.在单纯形表中检查xi所在行的各系数,若所有 aij≥0,则原问题无可行解,停止;否则,若有aij<0 则选 =min{j/aij┃ aij<0}=k/aik 那么xk为进基变量,转4; 4.以aik为主元,进行迭代运算,得到新的单纯形表; 5.重复上述步骤,直到求得最优解。
(2) 影子价格表明资源增加对总效益产生 的影响。根据推论“设x0和y0分别为原规划(P) 和对偶规划(D)的可行解,当cx0=y0b时,x0、 y0 分别是两个问题的最优解”可知,在最优解 的情况下,有关系
Z w b y b2 y bm y
* * * 1 1 * 2
* m
因此,可以将z*看作是bi,i=1,2,… ,m的函数, 对bi求偏导数可得到
影子价格y2 0的经济意义:原料 的供应量b2增加 个单位 B 1 时,最大利润将不变化 .
影子价格y3 50的经济意义:原料 的供应量b2增加 个单位 C 1 时,最大利润将增加 个单位. 50
(3)设该厂将A, B, C三种原料的价格分别定 y1, y2 , y3 , 为

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性规划问题

例4-7用对偶单纯形法求解线性计划问题.Min z =5x1x1 + 63x14Xj≥0(j=1,2)解:将问题转化为Max z = -5x1s.t. 2x13= -6-3x14≥-4Xj≥0(j=1,2,3,4)个中,x3,x4为松懈变量,可以作为初始基变量,单纯形表见表4-17.表4-17 例4-7单纯形表在表4-17中,b=-16<0,而y≥0,故该问题无可行解.留意: 对偶单纯形法仍是求解原问题,它是实用于当原问题无可行基,且所有磨练数均为负的情形.若原问题既无可行基,而磨练数中又有小于0的情形.只能用人工变量法求解.在盘算机求解时,只有人工变量法,没有对偶单纯形法.由对偶理论可知,在原问题和对偶问题的最优解之间消失着亲密的关系,可以依据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1)设原问题(p)为Min z=CX则尺度型(LP)为Max z=CX其对偶线性计划(D)为Max z=b T Y用对偶单纯形法求解(LP),得最优基B和最优单纯形表T(B).对于(LP)来说,当j=n+i时,有Pj=-e i,c j=0从而,在最优单纯形表T(B)中,对于磨练数,有(σn+1,σn+2…σn+m)=(c n+1,c n+2…,c n+m)-C B B-1(Pn+1,Pn+2…,Pn+m)=-C B B-1(-I)于是,Y*=(σn+1,σn+2…σn+m)T .可见,在(LP)的最优单纯形表中,残剩变量对应的磨练数就是对偶问题的最优解.同时,在最优单纯形表T(B)中,因为残剩变量对应的系数所以B-1 =(-y n+1,-y n+2…-y n+m)例4-8求下列线性计划问题的对偶问题的最优解.Min z =6x1s.t.x1 + 203x150Xj≥0(j=1,2)解:将问题转化为Max z =-6x1s.t.-x1—3=20-3x14 =50Xj≥0(j=1,2,3,4)用对偶单纯形法求解如表表4-18 例4-8单纯形表在引入松懈变量化为尺度型之后,束缚等式两侧同乘-1,可以或许立刻得到磨练数全体非正的原计划根本解,可以直接树立初始对偶单纯形表进行求解,异常便利.对于有些线性计划模子,假如在开端求解时不克不及很快使所有磨练数非正,最好照样采取单纯形法求解.因为,如许可以免除为使磨练数全体非正而作的很多工作.从这个意义上看,可以说,对偶单纯形法是单纯形法的一个填补.除此之外,在对线性计划进行敏锐度剖析中有时也要用到对偶单纯形办法,可以简化盘算.例4-9:求解线性计划问题:Min f = 2x1 + 3x2 + 4x3S.t. x1 + 2x2 + x3 ≥ 32x1 - x2 + x3 ≥ 4x1 , x2 , x3 ≥ 0尺度化:Max z = - 2x1 - 3x2 - 4x3s.t. -x1-2x2-x3+x4= -3-2x1+x2-3x3+x5= -4x1,x2,x3,x4,x5 ≥ 0表格对偶单纯形法。

对偶单纯形法

对偶单纯形法

3x2 2x2
x4 x5
x7 3
6
用单纯形 法求解
x1, x2 , x3 , x4 , x5 0
对偶单纯形法的优点:
1、不需要人工变量;
2、当变量多于约束时,用对偶单 纯形法可减少迭代次数;
3、在灵敏度分析中,有时需要用对 偶单纯形法处理简化。
注意:对偶单纯形法仅限于初始基B对应
X(0)为基本可行 解的X(条0)件为?最优解的 条件?
B-1b≥0 C CBB1 A 0
原问题最优解条件
令Y=CBB-1,代入原问题最优解条件,→YA≥C
min Yb
YA C Y无符号限制
取基本解X1 B1b,0
保证对偶问题的可行性,逐
步改进原问题的可行性,求
x1 x3 2
s.t

x2
2x3
5
x1,x2,x3 0
若取初始基B1 P4,P5
则关于B1的标准型为
max Z 4x1 3x2 8x3
不s可.t 行 x1x2
x3 2x3

x4
2 x5 5
x1,x2,x3 , x4 , x5 0
且由对偶理论知,Y0 CB B 1为(D)的最优解
对偶单纯形法步骤:
1. 列出初始单纯形表,检查b 列的数字若都为非负, 则已得到最优解,停止计算,若b列的数字中至少 有一个负分量,转第二步。
2. 确定出基变量
按 min B1b i B1b i 0 B1b l ,对应的基变量法: 求max Z x6 Mx9

2x2 x3 x4 x5
x9 1

华南理工大学-运筹学-第3章-线性规划的对偶理论(简)-工商管理学院

华南理工大学-运筹学-第3章-线性规划的对偶理论(简)-工商管理学院
微量的变化时为最优总利润带来的边际贡献。
5-最优生产计划中某种资源未充分利用时,其影子价格必
然为0。这意味着增加该资源的供应量不会为企业带来利
润或产出的增加。
17
对偶单纯形法

对偶单纯形法并不是求解原问题的(线性规划问题的)对
偶问题的单纯形法,而是应用对偶原理和单纯形法来求解
原问题的一种方法。
18
【注】企业卖出相同数量关系的原材料,收益应不低于用
其生产出最终产品而获得的利润。
4
引例
5
引例
6
基本概念


1-原问题的目标函数系数(行)向量对应于对偶问题约束条
件的右端常数(列)向量。
同理,原问题约束条件的右端常数(列)向量对应于对偶问
题的目标函数系数(行)向量。
7
基本概念

2-原问题与对偶问题约束不等式的不等号方向相反。
素从而影响原最优基的可行性,进而使最优解发生变化。
因为b的变化不会直接影响非基变量的检验数,那么只要b
的变化没有造成最优基的变化,则资源的影子价格保持不
变,此时可直接用影子价格乘以新增/减少的资源数量得
出最优利润的变化。
49
灵敏度分析示例1

在本例中,只要1落在[200, 400]内,最优基维持不变,
千克,最优解有什么变化?


1的周供应量1在什么范围内变化时,原生产组合(仅生产A和
B)仍为最优组合?
1增加至500时,最优解是什么?
44
灵敏度分析示例1
45
灵敏度分析示例1
46
灵敏度分析示例1
47
灵敏度分析示例1
48
灵敏度分析示例1

线性规划课后题答案(张干宗)

线性规划课后题答案(张干宗)

P11.3(1)将下列线性规划模型化成标准形式:⎩⎨⎧=+≤+--=10352..3max 212121x x x x t s x x z 解:令"2'22"1'11,,'x x x x x x z z -=-=-=,代入上面的线性规划,得标准形式⎪⎩⎪⎨⎧≥=-+-=+-++--++-=0,,,,1033522..33'min 3"2'2"1'1"2'2"1'13"2'2"1'1"2'2"1'1x x x x x x x x x x x x x x t s x x x x z P14:1、用图解法求解下列线性规划问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤-≤-≤+-≤++-=0,013721042242..23min 212121212121x x x x x x x x x x t s x x f 利用图解法:于是得最优解为(4,1),最优值为-10。

P15:2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥-≥+-=06063222..26max 21212121x x x x x x t s x x z 解:利用图解法于是最优解为(6,0),最优值为36。

P15.3⎪⎪⎩⎪⎪⎨⎧≥≥≥+≤+≤+--=0,0121272172..27min 21212121210x x x x x x x x t s x x x 解:利用图解法求得有无穷多最优解,都落在一个线段上,该线段的两个端点是:)3/7,3/7(),0,3()2()1(==x x于是全部的最优解可以表示成)1(x与)2(x的凸组合,即.10,)1()2()1(*≤≤-+=αααx x x最优值都是-21。

P16:1、 解:设ij x 表示第i 台机床加工第j 类产品的产量,于是可得数学模型⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤+≤+≤+≤++++++++++++++++=.6,5,4,3,2,1,0900600700850..)(80)(64)(72)(32)(28)(40max 464335322421161514131211461635152414431332122111j x x x x x x x x x x x x x t s x x x x x x x x x x x x f j P16:2、 解:设j x 表示第j 食品的采购量,于是可得数学模型13、某养鸡场有一万只鸡,用动物饲料和谷物饲料混合喂养,每天每只鸡平均吃混合饲料0.5公斤,其中动物饲料占的比例不得少于1/5。

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)

解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
X1 X2 X3 X4 X 5
2 检 0 1 -1 1 2 -4 0 -2 1 1 -6 0 0 1 0 0 0 0 1
Z Z-10
X1 1 X4 0
5 5 -9
X5 0
4
14 13 X1 X 2 X 3

X1 X4
0 1 0 0 0 0 0 1
X4
X5
-1/4 Z-31/4 1/4 1/2 11/4 1/2
所在行的基变量出基 则取br
4、以ari0 为主元素进行换基迭代 ,得一新的单纯形表, 转2
例:用对偶单纯形法 求解下列问题 max Z 2 x1 x 2 x1 x 2 x3 5 2x x 5 11 9 2 3 最优解 X ( ,) s.t 4 4 4 x 6 x 9 2 3 31 x1 , x 2 ,Z x3 0 最优值
-1/2 0 -1/2 0 -2 3/2 1 0
X2
-1/4 9/4
11 9 1 最优解 X ( ,, 0, , 0 ) 4 4 2 初始基 B (P ) 1,P 4,P 5 31 最优值 Z 不是典则形式 4
注意:对偶单纯形法仅限于初始基B对应 可用对偶单 的典则形式中目标函数的系数(检 纯形法 验数)均≤0的情形。 B的典则形式
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性规划问题

例4-7 用对偶单纯形法求解线性规划问题Min z =5x 1+3x 2X 1 - 6 x 2 A 4在表4-17中,b=-16<0,而yA 0,故该问题无可行解. 注意:对偶单纯形法仍是求解原问题 ,它是适用于当原问题无可行基 ,且所有检验数均为负的情况.若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解.在计算机求解时,只有人工变量法,没有对偶单纯形法.3.对偶问题的最优解由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系 从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1)设原问题(P)为Min z= exs.t.-2 X i + 3x 2 A 6A 0 (j=1,2 )解:将问题转化为 XjMax z = -5X 1 -3 x 2 s.t. 2x i - 3xX 3 = -6-3 x i + 6 X2+ x 4A -4Xj其中,X 3 , X 4 ,3,4 )A 0 (j=1,2 为松弛变量,可以作为初始基变量,单纯形表见表4-17.,可以根据这些关系,Xj > 0 (j=1,2 , 3,4 )则标准型 (LP) 为AX b s.t.X0Max z=CXAX b s.t.X0其对偶线性规划(D )为Max z=b T Y AX b s.t.X0用对偶单纯形法求解 时,有 Pj=-e i , c j =0 (LP ),得最优基B 和最优单纯形表 T ( B )。

对于(LP )来说,当j=n+iT (B )中,对于检验数,有(b n+1,b n+2・・・b n+m) = (C n+i , c n+2…,c n+m ) -C B B -1(Pn +1,Pn+2 …,Pn+m ) =- C B B -1(-I)于是,Y*= (b n+1,b n+2…b n+m T 。

可见,在(LP )的最优单纯形表中,剩余变 量对应的检验数就是对偶问题的最优解。

同时,在最优单纯形表 T ( B )中,由于剩余变量对应的系数 所以从而,在最优单纯形表b n +2 …bB 1 = ( -y n+1 , -y n+2 …-y n+m )例 4-8 求下列线性规划问题的对偶问题的最优解。

对偶单纯形法的条件

对偶单纯形法的条件

对偶单纯形法的条件对偶单纯形法是线性规划中一种重要的求解方法,主要用于解决线性规划问题的对偶问题。

它通过对原问题进行转化和运算,求解出对偶问题的最优解,从而得到原问题的最优解。

对偶单纯形法是基于单纯形法的扩展,具有更广泛的适用性和更高效的求解效果。

对于使用对偶单纯形法求解线性规划问题,需要满足以下条件:1. 原问题必须是标准形式的线性规划问题:目标函数为最小化形式,约束条件为等式形式,并且所有变量的取值范围为非负数。

2. 原问题必须存在可行基本解:可行基本解是指满足所有约束条件的解,可以通过单纯形法或其他方法求得。

3. 原问题的最优解必须有限:即原问题存在最优解,不是无界的。

在满足以上条件的基础上,使用对偶单纯形法求解线性规划问题的步骤如下:步骤一:建立对偶问题根据原问题的约束条件和目标函数,建立对偶问题的目标函数和约束条件。

对偶问题的目标函数为原问题的约束条件的系数构成的向量与对偶变量的乘积之和,约束条件为原问题的目标函数的系数构成的向量与对偶变量之和等于对偶约束条件的系数构成的向量。

步骤二:初始化给定初始对偶变量的取值,通常取为0,然后计算初始对偶解。

步骤三:判断最优性根据当前对偶解,判断原问题的最优性。

如果原问题的最优性条件满足,则停止计算,得到最优解;否则,进行下一步。

步骤四:选择换入变量根据当前对偶解,选择换入变量。

具体方法是在对偶约束条件中,选择不满足约束条件且对偶变量目标函数系数最小的变量作为换入变量。

步骤五:选择换出变量根据换入变量,选择换出变量。

具体方法是在换入变量所对应的约束条件中,选择满足约束条件且使对偶解最小的变量作为换出变量。

步骤六:更新对偶解根据换入、换出变量,更新对偶解。

具体方法是用换入变量替换对应的换出变量,计算新的对偶解。

重复步骤三到六,直到原问题的最优性条件满足为止。

最终得到原问题的最优解和对偶问题的最优解。

对偶单纯形法的优点在于它能够通过解决对偶问题来求解原问题,从而减少了计算量,提高了求解效率。

对偶单纯形法无界解的判断标准

对偶单纯形法无界解的判断标准

对偶单纯形法无界解的判断标准在线性规划领域,对偶单纯形法是一种常用的方法,用于求解线性规划问题。

在实际应用中,我们经常会遇到线性规划问题的无界解情况,对偶单纯形法的无界解判断标准成为了至关重要的问题。

本文将从深度和广度的角度对对偶单纯形法无界解的判断标准进行全面评估和探讨,以便读者能够更全面、深刻地理解这一概念。

让我们对对偶单纯形法做一个简要的概述。

对偶单纯形法是一种基于单纯形法的线性规划算法,通过不断迭代求解对偶问题的最优解来间接地求解原始问题的最优解。

对于一个线性规划问题,若原始问题存在最优解,则其对偶问题也存在最优解,且二者的最优值相等。

对偶单纯形法在实际应用中具有重要的价值。

接下来,让我们探讨对偶单纯形法无界解的判断标准。

对于一个线性规划问题,首先需要构建对偶问题并利用对偶单纯形法求解最优解。

当对偶问题的最优解存在且对应的原始问题的解为无界时,我们称其为原问题存在无界解。

对偶单纯形法无界解的判断标准主要包括以下几点:1. 主对偶定理:根据主对偶定理,如果原始问题存在最优解,则对偶问题也存在最优解,且二者的最优值相等。

若对偶问题存在无界解,则原始问题解为无界。

2. 对偶单纯形表的检验数:在对偶单纯形法的迭代过程中,我们需要对对偶单纯形表的检验数进行检查。

若检验数中存在正值,则说明对偶问题的解并非最优解,同时也可以说明原问题的解为无界。

3. 对偶问题的最优解判断:在对偶单纯形法的迭代过程中,需要判断对偶问题是否存在最优解。

若对偶问题不存在最优解,则原问题的解必为无界。

4. 原始问题的去线性化:通过对原始问题进行去线性化处理,得到一个辅助问题。

若辅助问题的解为有界,则原问题的解也必为有界;若辅助问题的解为无界,则原问题的解为无界。

以上是对偶单纯形法无界解的判断标准的几个关键点,通过这些判断标准,我们能够更清晰地判断原始问题的解是否存在无界。

在个人观点方面,我认为对偶单纯形法无界解的判断标准是线性规划领域中的重要问题之一。

2、线性规划问题的对偶问题

2、线性规划问题的对偶问题
4 y1 + 2y2 50
3 y1 + y2 30
y 1, y 2 0
得到另外一个数学模型:
min s = 120 y1 + 50 y2
s.t. 4 y1 + 2y2 50 3 y1+ y2 30 (2.2)
y 1, y 2 0
模型(2.1)和模型(2.2) 既有区别又有 联系。联系在于它们都是关于家具 厂的模型并且使用相同的数据,区 别在于模型反映的实质内容是不同 的。模型(2.1)是站在家具厂经营者 立场追求销售收入最大,模型(2.2) 是则站在家具厂对手的立场追求所 付的租金最少。
max Z=2x1+3x2 s.t. 2x1+2x2 12 4x1 16 5x2 15 x1,x2 0
6 5 4 3 2 1 1 2 3 4 5 6 ① 2X+2y<=12 X=3 X=4
点(3,3)是最优解, z*=15 当A的资源变为13小 时,z*=16,说明A的边 际价格是1,即影子 价格是1。
约束条件右端项 目标函数变量的系数
目标函数变量的系数 约束条件右端项
• 例2-7:写出下列线性规划的对偶问题
min z=7x1+4x2-3x3 s.t. -4x1+2x2-6x3≤24 -3x1-6x2-4x3≥15 5x2+3x3=30 x1≤0,x2取值无约束,x3≥0
Max w=24y1+15y2+30y3
引入变量 y1 , y2’,y2” 写出对偶问题
max g = 5 y1+ 4y2’- 4y2” s.t. y1 +2y2’- 2y2” 2 y1 3 -y1 + y2’- y2” -5 y1, y2’,y2” 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用对偶单纯形法求解线性
规划问题
The final edition was revised on December 14th, 2020.
例4-7用对偶单纯形法求解线性规划问题.
Min z =5x1+3x
2
.-2 x1 + 3x
2
≥6
3 x1 - 6 x
2
≥4
Xj≥0(j=1,2)
解:将问题转化为
Max z = -5 x1 - 3 x
2
. 2 x1 - 3x
2+ x
3
= -6
-3 x1 + 6 x
2+ x
4
≥-4
Xj≥0(j=1,2,3,4)
其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17.
表4-17 例4-7单纯形表
在表4-17中,b=-16<0,而y≥0,故该问题无可行解.
注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.
若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法.
3.对偶问题的最优解
由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解.
(1)设原问题(p)为
Min z=CX
. ⎩⎨⎧≥=0X b
AX
则标准型(LP)为 Max z=CX
. ⎩⎨⎧≥=0X b
AX
其对偶线性规划(D )为 Max z=b T Y
. ⎩⎨⎧≥=0X b
AX
用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。

对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0
从而,在最优单纯形表T (B )中,对于检验数,有
(σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)
于是,Y*=(σn+1,σn+2…σn+m)T 。

可见,在(LP)的最优单纯形表中,剩余变量对应的检验数就是对偶问题的最优解。

同时,在最优单纯形表T(B)中,由于剩余变量对应的系数
所以
B-1 =(-y n+1,-y n+2…-y n+m)
例4-8求下列线性规划问题的对偶问题的最优解。

Min z =6x1+8x
2
. x1 + 2x
2
≥20
3 x1 + 2x
2
≥50
Xj≥0(j=1,2)
解:将问题转化为
Max z =-6x1-8x
2
. -x1
— 2x2 + x3=20
-3 x1 - 2x
2+ x
4
=50
Xj≥0(j=1,2,3,4)用对偶单纯形法求解如表
表4-18 例4-8单纯形表
在引入松弛变量化为标准型之后,约束等式两侧同乘-1,能够立即得到检验数全部非正的原规划基本解,可以直接建立初始对偶单纯形表进行求解,非常方便。

对于有些线性规划模型,如果在开始求解时不能很快使所有检验数非正,最好还是采用单纯形法求解。

因为,这样可以免去为使检验数全部非正而作的许多工作。

从这个意义上看,可以说,对偶单纯形法是单纯形法的一个补充。

除此之外,在对线性规划进行灵敏度分析中有时也要用到对偶单纯形方法,可以简化计算。

例4-9:求解线性规划问题:
Min f = 2x1 + 3x2 + 4x3
. x1 + 2x2 + x3 ≥ 3
2x1 - x2 + x3 ≥ 4
x1 , x2 , x3 ≥ 0
标准化:Max z = - 2x1 - 3x2 - 4x3
. -x1-2x2-x3+x4= -3
-2x1+x2-3x3+x5= -4
x1,x2,x3,x4,x5 ≥ 0
表格对偶单纯形法。

相关文档
最新文档