高级高三文科数学中档题训练33

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高级高三文科数学中档题训练(3)

17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,5

1=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且2

7

=

BD ,求边BC 的长.

18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,

,DAB DCB ∆≅∆,3

12

EA EB AB PA ====

,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.

19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。为方便计算,编号为1,编号为2,…,编号为10.数据如下:

(Ⅰ

)从

这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;

(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算

的估计值和实际值之间的差的绝对值。 12

21

n

i i

i n

i

i x y nx y

b x

nx

==-=

-∑∑, a y bx =-.

21、已知函数1()()ln (,)f x a x b x a b R x

=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-

年份(x )

1

2 3 4 5 6 7 8 9 10 人数(y )

3

5 8 11 13 14 17 22 30 31

高考理科数学试题及答案

(考试时间:120分钟试卷满分:150分)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题

1.

31i

i

+=+() A .12i + B .12i - C .2i + D .2i -

2. 设集合{}1,2,4A =,{}

2

40x x x m B =-+=.若{}1A

B =,则B =()

A .{}1,3-

B .{}1,0

C .{}1,3

D .{}1,5

3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百

八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏

4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某

几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π

5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪

-+≥⎨⎪+≥⎩

,则2z x y =+的最小值是()

A .15-

B .9-

C .1

D .9

6. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共

有()

A .12种

B .18种

C .24种

D .36种

7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,

2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家

说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的

S =()A .2 B .3 C .4 D .5

9. 若双曲线C:22

221x y a b

-=(0a >,0b >)的一条渐

近线被圆()2

224x y -+=所截得的弦长为2,则C 的 离心率为()

A .2

B .3

C .2

D .

23

10. 若2x =-是函数2

1`

()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()

A.1-

B.32e --

C.35e -

D.1

11. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB

与1C B 所成角的余弦值为()

A .32

B .155

C .105

D .33

12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()

A.2-

B.32-

C. 4

3

- D.1-

二、填空题:本题共4小题,每小题5分,共20分。

13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽

相关文档
最新文档