nRF24L01中文全数据手册翻译

合集下载

nRF24L01 无线模块 说明书

nRF24L01 无线模块 说明书

nRF24L01 无线模块用户手册目录产品概述 (3)基本特性 (3)引脚接口说明 (4)模块尺寸 (6)nRF2401工作模式 (7)Enhanced ShockBurstTM收发模式 (7)Enhanced ShockBurstTM数据发送流程 (8)空闲模式 (9)关机模式 (9)nRF24L01模块参数设置 (9)主要参数设置 (10)程序设计分析 (10)nRF24L01初始化 (10)nRF24L01SPI写操作 (11)nRF24L01 SPI读操作 (11)nRF24L01写寄存器函数 (12)nRF24L01连续读多个寄存器函数 (12)nRF24L01连续写多个寄存器函数 (12)nRF24L01接收模式设置 (13)nRF24L01接收数据流程 (13)nRF24L01发送数据流程 (13)无线应用注意事项 (14)我们的承诺 (15)产品概述nRF24L01是挪威NordicVLSI公司出品的一款新型射频收发器件,采用4 mm×4 mm QFN20封装;nRF24L01工作在ISM频段:2.4~2.524 GHz。

且内置频率合成器、功率放大器、晶体振荡器、调制器等功能,并融合增强型ShockBurst技术,其中地址、输出功率和通信频道可通过程序进行配置,适合用于多机通信。

nRF24L01功耗很低,在以-6 dBm的功率发射时,工作电流也只有9 mA;而对应接收机的工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。

nRF24L01在业界领先的低功耗特点使其特别适合采用钮扣电池供电的2.4G应用,整个解决方案包括链路层和MultiCeiver功能提供了比现有的 nRF24XX 更多的功能和更低的电源消耗,与目前的蓝牙技术相比在提供更高速率的同时,而只需花更小的功耗基本特性(1) 2.4Ghz全球开放ISM 频段免许可证使用(2) 最高工作速率2Mbps,高效GFSK调制,抗干扰能力强(3) 125频道,满足多点通信和跳频通信需要(4) 内置硬件CRC 检错和点对多点通信地址控制(5) 低功耗1.9 - 3.6V 工作,适合电池供电应用(6) 待机模式下状态为22uA;掉电模式下为900nA(7) 模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示),可直接接各种单片机使用,软件编程非常方便(8) 内置专门稳压电路,即使开关电源也有很好的通信效果(9) 标准DIP间距接口,便于嵌入式应用(10)具有自动应答机制,和CRC校验,数据通讯稳定可靠。

nRF24LE1中文数据手册

nRF24LE1中文数据手册
9
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
号进行解调,当地址与自身地址一致且 CRC 校验正确时,有效数据被送到 RX FIFOs.如果 RX FIFOs 已满,则数据包被丢弃。
射频收发器保持在接收模式直到 MCU 配置其进入待机模式 1 或掉电模式。如果自动应答特 性被开启,则收发器可以进入其他模式,如进入发送模式发送应答确认。
应用 l 电脑外设:鼠标、键盘、远程控制、游戏 l 高级远程控制:音频/视频、娱乐中心、家庭应用 l 有源 RFID、传感网络 l 安全系统:支付、报警、访问控制 l 医疗健康和运动 l 遥控玩具
1
Байду номын сангаас
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
可用于唤醒 低电流消耗(典型为 0.75 uA) 差分或单端输入 单端输入阈值可编程设置为 VDD 的 25%,50%,75%,100%或参考电压引脚的任意值 14 通道输入多路选择器 满摆幅输入电压范围 可编程输出极性 加密/解密加速器 使用高速节电的 AES 固件 随机数发生器 基于热噪声的非确认性构架 无需种子数 非重复序列 校正算法保证了均衡的统计分布 数据速率达 10kB 每秒 处理器空闲时操作 系统复位和电源监控视 上电复位和欠压复位 看门狗定时器复位 引脚复位 电源掉电中断通知 片上定时器 3 个以系统时钟运行的 16 位定时/计数器 1 个以 32.768 KHz 为时钟频率的 16 位定时/计数器 片上振荡器 16 MHz 晶体振荡器 16 MHz RC 振荡器 32.768 KHz 晶体振荡器 32.768 KHz RC 振荡器 电源管理功能 支持全静态停止/待机的低功耗设计 可编程时钟频率:125 KHz 到 16 MHz 片上稳压器支持低功耗模式 看门狗和唤醒功能运行在低功耗模式 片上支持 FS2 或 nRFprobe 硬件调试 完整的可用固件 硬件抽象层函数 库函数 Gazell 无线协议 应用实例

NRF24L01中文资料_数据手册_参数

NRF24L01中文资料_数据手册_参数

重点:NRF24L01是一个数字芯片,内部有若干寄存器,什么数据寄存器、配置寄存器、状态寄存器等。单片机通过SPI口,首先配置 好NRF24L01的配置寄存器,诸如频道,通道,地址,接收还是发送模式等等。然后分两种情况,一、如果配置为了发送模式,就可 以发送数据了,发送完数据以后,IRQ引脚会拉低,所以观察IRQ引脚就可以知道有没有发送成功;二、如果配置为了接收模式,就 需要不断的观察IRQ引脚,IRQ引脚正常是高电平,如果接收到数据,就会变成低电平,所以观察这个引脚就知道有没有接收到数 据。 新手在做NRF24L01的通信程序时,好拿两个相同的单片机,做相同的程序(除了一个配置未发送,一个配置为接收)。 重中之重:首先要确保单片机和NRF24L01能够正常的SPI通信,这个就好比你和一个阿拉伯人说话,你告它先去家乐福买瓶牛奶,再 去沃尔玛买个鸡腿,然后….,但是如果阿拉伯人根本听不懂你说话,那么…就没有然后了。你用单片机给NRF24L01写配置寄存器, 输入地址,输入频道…稍等,你配置了半天,NRF24L01的寄存器真的如你所想配置好了吗?不确定?这就需要验证。验证方法?太 容易了,找一个可读可写的寄存器,你先写进去,然后再读出来,如果数据一样,那么你的SPI通信就正常,你大可放心的配置了, 如果读出来的数据和写进去的数据不一样,恭喜你,你再和不懂汉语的阿拉伯人说了半天废话,你还是先搞通SPI再说吧。这里我给 你一个寄存器,就是地址寄存器,可读可写,所以你可以用地址寄存器验证一个SPI通信是否正常 如果你不确保你的SPI通信正常,请先确定以后再进行下面的内容,否则就可能要对牛弹琴了。 收发数据的程序,要先判断“数据是否发送出去了”和“是否接收到了”,而不要直接判断发送和接收的数据是否一致。 例如:接收模块,if(IRQ==0)点亮LED1,当程序执行后,当你看到LED1亮了,哇,接收到了。 当你确定接收到数据以后,你再判断接收到的数据和你发送的数据是否一致。 例如:接收模块,if(IRQ==0)把接收到的数据取出来,if(rec[0]==0x88),哇,和我发的一样。 记住了吗?做程序要循序渐进,而不是直接写完。多年亲自试验,不管多大的程序,循序渐进的写,速度是快的

nrf24l01中文资料

nrf24l01中文资料

nrf24l01中⽂资料NRF24L01⼀、初步认识⼀下NRF24L01是Nordic公司研发的⼀款2.4G通信芯⽚。

它不是zigbee、不是蓝⽛、不是wifi,它拥有的是⾃⼰的⼀套协议。

既然是通信芯⽚,⽽且有⾃⼰的协议,那说明这个芯⽚只能是⽤在NRF24L01与NRF24L01或者Nordic公司此系列的芯⽚通信,⼀般情况下,⽤在2个NRF24L01之间的通信,任何⼀个模块都可以设置为接收或者发送模式,⽽且可由主控单⽚机随时根据需要设置为发送或者接收模式。

⼆、深⼊认识⼀下NRF24L01是⼀个长着20个引脚的数字射频芯⽚,内部有若⼲寄存器,外部留有spi接⼝,外部单⽚机通过spi接⼝配置此芯⽚内部的寄存器。

内部寄存器⼤概分为控制寄存器和数据寄存器。

我们可以利⽤⽤单⽚机把它配置为接收模式或发送模式,还可以配置频道、地址、每次发送的字节数、是否带CRC校验、功率等。

配置成发送模式以后,⽤单⽚机把要发送的数据写进去,它就会⾃动把数据发出去;配置成接收模式以后,单⽚机通过观察它的IRQ引脚,就可以知道是否接收到了数据,IRQ为低电平,说明接收到了数据,单⽚机可以通过SPI⼝把接收到数据取出来。

三、通信条件两个nrf24l01通信,需要满⾜3个条件相同:1.频道相同(设置频道寄存器RF_CH)2.地址相同(设置TX_ADDR和RX_ADDR_P0相同)3.每次发送接收的字节数相同(如果设置了通道的有效数据宽度为n,那么每次发送的字节数也必须为n,当然,n<=32)四、是否可以⼀对多相互通信?答:可以。

nrf24l01最多⼀对⼏个呢?答案是⽆数个!官⽅⼿册上说,nrf24l01可以⼀对六,指的是⾃⾝的通道有6个,⽽且这种模式只能是1收6发,不能1发6收。

所以我们⼀般不⽤这种⽅式。

我们⼀般只⽤nrf24l01的通道0,通过改变频道和地址来实现1对多的互发。

它属于2.4G芯⽚,但实际上,可以在2.4G到2.5G之间的频道上通信,⼀共有125个频道,它的地址是5字节的。

NRF24L01--实用无线通信技术

NRF24L01--实用无线通信技术

NRF24L01是一款工作在2.4~2.5GHZ频段世界通用ISM频段(不受管制的频段)的单片无限收发器芯片,通信距离可达300米。

RF------------------------射频。

GFSK----------高斯频移键控。

一、模块介绍(1) 2.4Ghz 全球开放ISM 频段免许可证使用(2) 最高工作速率2Mbps ,高效GFSK 调制,抗干扰能力强,特别适合工业控制场合(3) 126 频道,满足多点通信和跳频通信需要(4) 内置硬件CRC 检错和点对多点通信地址控制(5) 低功耗1.9 - 3.6V 工作,待机模式下状态为22uA ;掉电模式下为900nA(6) 内置2.4Ghz 天线,体积小巧15 mm X 29 mm(7) 模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示) ,可直接接各种单片机使用,软件编程非常方便--------中断方式接收数据。

(8) 内置专门稳压电路,使用各种电源包括DC/DC 开关电源均有很好的通信效果(9) 2.54 MM 间距接口,DIP 封装(10) 工作于Enhanced ShockBurst 具有Automatic packet handling, Auto packet transaction handling, 具有可选的内置包应答机制,极大的降低丢包率。

二、注意事项(1) VCC 脚接电压范围为1.9V~3.6V 之间,不能在这个区间之外,超过3.6V 将会烧毁模块。

推荐电压3.3V 左右。

(2) 除电源VCC 和接地端,其余脚都可以直接和普通的5V 单片机IO直接相连,无需电平转换。

当然对3V 左右的单片机更加适用了。

三、NRF24L01模块蛇形部分应该为天线(无线通信);中间方形部分应该为NRF24L01芯片,上面跑道形状为晶振。

四、8个引脚GND,VCC(接3.3V)CE-----芯片使能CSN-----片选非SCK------SPI1 CLKMOSI,MISO------SPI数据线IRQ-------中断信号线VDD_PA 电源输出---------给RF的功率放大器提供的+1.8V电源ANT1------------------天线接口1ANT2------------------天线接口2五、工作模式---------软件编程部分。

nRF24L01无线通信模块使用手册12要点

nRF24L01无线通信模块使用手册12要点

深圳市德普施科技有限公司nRF24L01无线通信模块使用手册一、模块简介该射频模块集成了NORDIC公司生产的无线射频芯片nRF24L01:1.支持2.4GHz的全球开放ISM频段,最大发射功率为0dBm2.2Mbps,传输速率高3.功耗低,等待模式时电流消耗仅22uA4.多频点(125个),满足多点通信及跳频通信需求5.在空旷场地,有效通信距离:25m(外置天线)、10m(PCB天线)6.工作原理简介:发射数据时,首先将nRF24L01配置为发射模式,接着把地址TX_ADDR和数据TX_PLD 按照时序由SPI口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10μs,延迟130μs后发射数据;若自动应答开启,那么nRF24L01在发射数据后立即进入接收模式,接收应答信号。

如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD从发送堆栈中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC_CNT)达到上限,MAX_RT置高,TX_PLD不会被清除;MAX_RT或TX_DS置高时,使IRQ变低,以便通知MCU。

最后发射成功时,若CE为低,则nRF24L01进入待机模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入待机模式2。

接收数据时,首先将nRF24L01配置为接收模式,接着延迟130μs进入接收状态等待数据的到来。

当接收方检测到有效的地址和CRC时,就将数据包存储在接收堆栈中,同时中断标志位RX_DR置高,IRQ变低,以便通知MCU去取数据。

若此时自动应答开启,接收方则同时进入发射状态回传应答信号。

最后接收成功时,若CE变低,则nRF24L01进入空闲模式1。

三、模块引脚说明深圳市德普施科技有限公司7 NC 空 8 CSN 芯片片选信号 I 9 CE 工作模式选择I 10+5V电源四、模块与AT89S52单片机接口电路注:上图为示意连接,可根据自己实际需求进行更改;使用AT89S52MCU 模块时,请将Nrf24L01通讯模块每个端口(MOSI 、SCK 、CSN 和CE )接4.7K 的排阻上拉到VCC 增强其驱动能力(如下图:)。

nRF24L01P产品说明书V1.0综述

nRF24L01P产品说明书V1.0综述

nRF24L01+单片机2.4 GHz收发器产品说明书v1.0主要功能:全球通用的2.4 GHz ISM波段操作250kbps, 1Mbps and 2Mbps空中数据传输速率超低功率运行发射功率为0dBm(1.0mW)时,发射电流为11.3mA2Mbps空中数据传输速率,接收电流为13.5mA掉电电流为900nA待机-I电流26μA片内电压调整器1.9至3.6V电源供电范围增强型ShockBurst TM自动数据包处理自动包数据包事务处理6数据通道的MultiCeiver TM与nRF24L01嵌入式兼容空中数据速率250kbps 和1Mbps,与nRF2401A,nRF2402, nRF24E1和nRF24E2兼容低BOM成本±60ppm 16MHz晶振容许5V输入紧凑的20引脚4x4mm QFN封装应用无线 PC外围设备鼠标,键盘和遥控器三和一桌面捆绑先进的媒体中心遥控器网络电话耳机游戏控制器蓝牙模块运动手表和传感器消费电子产品射频遥控器家庭和商业自动化超低功率无线传感器网络RFID 射频识别资产跟踪系统玩具免责条款北欧半导体ASA有权做出随时更改,提高产品可靠性、功能或设计,不另行通知。

北欧半导体ASA不承担由于应用程序或使用任何所述产品或电路引起的责任。

所有应用程序的信息咨询,不构成说明书的组成部分。

极限值超过一个或多个限制的应力可能会造成设备永久性损坏。

这些应力等级只有在这样或那样的操作环境中提出,在规范中没有给出。

长时间暴露在限制值附近可能会影响设备的可靠性。

生命支持应用这些产品并非为因故障会引起人身伤害的维生装备,设备或系统设计的。

北欧半导体ASA客户使用或出售这些产品,他们将自担风险并同意完全赔偿北欧半导体ASA因使用不当或销售行为造成任何损害。

详细联系方式访问www.nordicsemi.no进入北欧半导体销售办事处和全世界的分销商网站总办公室:Otto Nielsens vei 127004 Trondheim电话: +47 72 89 89 00传真: +47 72 89 89 89www.nordicsemi.no写作惯例本产品规范遵循一套排版规则,文档一致,容易阅读。

nRF24L01中文手册

nRF24L01中文手册

小心:静电敏感器件。操作时遵守防护规则。
COPYRIGHT ©2007 迅通科技 TEL 北京:+86 10 64390486 深圳:+86 755 26675941
6
术语表
迅通科技
术语
描述
ACK
确认信芯片使能
CLK
3
迅通科技
电气特性:
条件:VDD=+3V,VSS=0V,TA=-40℃到+85℃
符号
参数(条件)
最小值 典型值 最大值 单位
操作条件
VDD
电源
1.9
3.0
3.6
V
温度
工作温度
-40
+27
+85

数字输入脚
VOH
高电平输出电压(IOH=-0.5mA)
VOL
高电平输出电压(IOL=0.5mA)
常用射频条件
PCB PER PID PLD PRX
最高有效位 最高有效字节 印刷电路板 数据包误码率 数据包识别位 载波 接收源

PTX PWR_DWN
PWR_UP RX
RX_DR SPI TX
发射源
通掉电
上电 接收 接收数据准备就绪 串行可编程接口 发送
TX_DS
已发送数据

表 5、术语表
COPYRIGHT ©2007 迅通科技 TEL 北京:+86 10 64390486 深圳:+86 755 26675941
通 掉电模式: 在掉电模式下,nRF24L01 各功能关闭,保持电流消耗最小。进入掉电模式后,nRF24L01 停止工作, 但寄存器内容保持不变。启动时间见表格 13。掉电模式由寄存器中 PWR_UP 位来控制

NRF24L01模块系列说明书

NRF24L01模块系列说明书
13 问:你们提供些单片机的程序?
答:原厂给的标准收发演示例程,有 51 PIC STM32 的,都是标准 C 语言编写, 因此即使移植其它单片机也很快
14 问:拿到模块和程序后,自己焊接测试电路和移植程序,下载进去后通讯不 了。
答:首先不用怀疑模块的问题。生产工艺成熟,不良率在不测试时候低于 1%, 何况全部测试,不良率低于千分之一。大部分新手自己焊接电路移植程序不良是 因为移植时候硬件错误或者软件增删错误引起,因为即使很小点错误,也能导致 整个程序的失效,所以建议自己移植程序时候要很小心,尽量照搬我们的例程, 等整个程序跑起来再做修改。若实在搞不定,可以借用我们的测试板,或者付出 很少费用就能买到配套的测试板,这样能给客户节省不少的时间。
11 问 NRF24L01 系列模块可以一对多发送或者多对一接收吗?
答:完全可以,70%客户都这么用的。
12 问:我是新手,你们提供哪些方面的技术支持?
答:2.4G 系列模块属于有点技术难度的产品,若完全依靠客户参照规格书 写程序,会浪费客户一个多礼拜的时间,比较幸运的是我们提供了参考程序,并 且提供和程序配套的测试板借用或购买,可以让客户快速体验模块的性能。建议 项目比较急的客户选用,价格每个 20 元成本价格销售,可以给客户节省好几天 的调试时间,很划算。
答:一款原产台湾,一款原产品挪威,随着众多 IC 晶圆厂自己无线 IC 的 推出,兼容模块的价格从 2008 年的 20 元左右一直跌落到目前的 4.5,利润由当 初的 10 元降到现在的 0.5 元以下,其中挪威版的出的最早,价格虽然猛降,但 是始终拼不过台产芯片。
3 问:挪威版本的 NRF24L01+和台产版的哪个使用效果会更好? 答:台产版的完全克隆挪威版的,并在以前的基础上加了+7DB 的功放电路,

nrf24L01中文资料

nrf24L01中文资料

单片2.4G 无线射频收发芯片nRF24L01===================================================特性● 真正的GFSK● 内置链路层● 增强型ShockBurst TM● 自动应答及自动重发功能 ● 地址及CRC 检验功能● 数据传输率1或2Mbps ● SPI 接口数据速率0~8Mbps ● 125个可选工作频道● 很短的频道切换时间可用于跳频 ● 与nRF 24XX 系列完全兼容 ● 可接受5V 电平的输入 ● 20脚QFN 44mm 封装 ● 极低的晶振要求60ppm ● 低成本电感和双面PCB 板 ● 工作电压 1.9~3.6V 应用● 无线鼠标键盘游戏机操纵杆 ● 无线门禁● 无线数据通讯 ● 安防系统 ● 遥控装置 ● 遥感勘测● 智能运动设备 ● 工业传感器 ● 玩具 概述:nRF24L01是一款工作在2.4~2.5GHz 世界通用ISM 频段的单片无线收发器芯片无线收发器包括:频率发生器增强型SchockBurst TM 模式控制器功率放大器晶体振荡器调制器解调器输出功率频道选择和协议的设置可以通过SPI 接口进行设置极低的电流消耗当工作在发射模式下发射功率为-6dBm 时电流消耗为9.0mA 接收模式时为12.3mA掉电模式和待机模式下电流消耗更低 快速参考数据参数 数值 单位最低供电电压 1.9 V最大发射功率 0 dBm最大数据传输率 2000 kbps发射模式下电流消耗0dBm 11.3 mA接收模式下电流消耗2000kbps 12.3 mA温度范围 -40~ +85数据传输率为1000kbps 下的灵敏度 -85 dBm掉电模式下电流消耗 900 nA 表1 nRF24L01快速参考数据很短的时间???hehe,,有想法,,,是Mbps,,,,要利用好,,,这是在此功耗下,,,大的功耗消耗更大丠丠dBm=10*lg(P/1mW)为0.9uA 1mW W分类信息型号描述版本nRF24L01 IC 裸片 DnRF24L01 20脚QFN 4*4mm,RoHS&SS-00259compliant DnRF24L01-EVKIT 评估套件 1.0表2nRF24L01 分类信息结构方框图:图1 nRF24L01 及外部接口引脚及其功能引脚名称引脚功能描述1 CE 数字输入 RX或TX模式选择2 CSN 数字输入 SPI片选信号3 SCK 数字输入 SPI时钟4 MOSI 数字输入从SPI数据输入脚5 MISO 数字输出从SPI数据输出脚6 IRQ 数字输出可屏蔽中断脚7 VDD 电源电源+3V8 VSS 电源接地0V9 XC2 模拟输出晶体震荡器2脚10 XC1 模拟输入晶体震荡器1脚/外部时钟输入脚11 VDD_PA 电源输出给RF的功率放大器提供的+1.8V电源12 ANT1 天线天线接口113 ANT2 天线天线接口214 VSS 电源接地0V15 VDD 电源电源+3V16 IREF 模拟输入参考电流17 VSS 电源接地0V18 VDD 电源电源+3V19 DVDD 电源输出去耦电路电源正极端20 VSS 电源接地0V表3nRF24L01引脚功能图2 引脚封装电气特性参数+27 +85 高电平输出电压=-0.5mA 高电平输出电压=0.5mA 160 320R GFSK >0 1800 2000 单通道工作电流单通道工作电流0.1%BRE(@2000kbps)图3nRF24L01外形封装尺寸极限范围供电电压VDD…………………………….-0.3V~+3.6VVSS (0V)输入电压V I………………………………-0.3V~5.25V输出电压V O……………………………. VSS~VDD总功耗=85……………………… 60mWPD T温度工作温度……………………-40~+85存储器温度…………………-40~+125注意:若超出上述极限值可能对元器件有损害静电敏感元件术语表术语描述ACK 确认信号应答信号ART 自动重发CE 芯片使能CLK 时钟信号CRC 循环冗余校验CSN 片选非ESB 增强型ShockBrust TMGFSK 高斯键控频移IRQ 中断请求ISM 工业科学医学LNA 低噪声放大LSB 最低有效位LSByte 最低有效字节Mbps 兆位/秒MCU 微控制器MISO 主机输入从机输出MOSI 主机输出从机输入MSB 最高有效位MSByte 最高有效字节PCB 印刷电路板PER 数据包误码率PID 数据包识别位PLD 载波PRX 接收源PTX 发射源PWR_DWN 掉电PWR_UP 上电RX 接收RX_DR 接收数据准备就绪SPI 串行可编程接口TX 发送TX_DS 已发送数据表5术语表功能描述工作模式nRF24L01可以设置为以下几种主要的模式模式PWR_UP PRIM_RX CE FIFO寄存器状态-接收模式 1 1 1数据在TX FIFO寄存器中发送模式 1 0 1发送模式 1 0 10 停留在发送模式直至数据发送完TX FIFO为空待机模式II 1 0 1待机模式I 1 - 0无数据传输-掉电模式0 - -表6 nRF24L01主要工作模式关于nRF24L01 I/O脚更详细的描述请参见下面的表7nRF24L01在不同模式下的引脚功能引脚名称 方向 发送模式接收模式 待机模式 掉电模式CE 输入 高电平>10us 高电平低电平-CSN 输入 SPI 片选使能低电平使能SCK 输入 SPI 时钟 MOSI输入 SPI 串行输入 MISO 三态输出 SPI 串行输出 IRQ输出 中断低电平使能表7nRF24L01引脚功能待机模式待机模式I在保证快速启动的同时减少系统平均消耗电流在待机模式I 下晶振正常工作在待机模式II 下部分时钟缓冲器处在工作模式当发送端TX FIFO 寄存器为空并且CE 为高电平时进入待机模式II 在待机模式期间寄存器配置字内容保持不变掉电模式在掉电模式下,nRF24L01各功能关闭保持电流消耗最小进入掉电模式后nRF24L01停止工作但寄存器内容保持不变启动时间见表格13掉电模式由寄存器中PWR_UP 位来控制数据包处理方式nRF24L01有如下几种数据包处理方式ShockBurst TM 与nRF2401nRF24E1nRF2402nRF24E2数据传输率为1Mbps 时相同 增强型ShockBurst TM 模式ShockBurst TM 模式ShockBurst 模式下nRF24L01可以与成本较低的低速MCU 相连高速信号处理是由芯片内部的射频协议处理的nRF24L01提供SPI 接口数据率取决于单片机本身接口速度ShockBurst 模式通过允许与单片机低速通信而无线部分高速通信减小了通信的平均消耗电流在ShockBurst TM 接收模式下当接收到有效的地址和数据时IRQ 通知MCU 随后MCU 可将接收到的数据从RX FIFO 寄存器中读出 在ShockBurst TM发送模式下nRF24L01自动生成前导码及CRC 校验参见表格12数据发送完毕后IRQ 通知MCU 减少了MCU 的查询时间也就意味着减少了MCU 的工作量同时减少了软件的开发时间nRF24L01内部有三个不同的RX FIFO 寄存器6个通道共享此寄存器和三个不同的TX FIFO 寄存器在掉电模式下待机模式下和数据传输的过程中MCU 可以随时访问FIFO 寄存器这就允许SPI 接口可以以低速进行数据传送并且可以应用于MCU 硬件上没有SPI 接口的情况下增强型的ShockBurst TM 模式增强型ShockBurst TM 模式可以使得双向链接协议执行起来更为容易有效典型的双向链接为发送方要求终端设备在接收到数据后有应答信号以便于发送方检测有无数据丢失一旦数据丢失则通过重新发送功能将丢失的数据恢复增强型的ShockBurst TM 模式可以同时控制应答及重发功能而无需增加MCU 工作量确实,,由硬件完成,,减小了量,,,图4 nRF24L01在星形网络中的结构图nRF24L01在接收模式下可以接收6路不同通道的数据见图4每一个数据通道使用不同的地址但是共用相同的频道也就是说6个不同的nRF24L01设置为发送模式后可以与同一个设置为接收模式的nRF24L01进行通讯而设置为接收模式的nRF24L01可以对这6个发射端进行识别数据通道0是唯一的一个可以配置为40位自身地址的数据通道1~5数据通道都为8位自身地址和32位公用地址所有的数据通道都可以设置为增强型ShockBurst 模式nRF24L01在确认收到数据后记录地址并以此地址为目标地址发送应答信号在发送端数据通道0被用做接收应答信号因此数据通道0的接收地址要与发送端地址相等以确保接收到正确的应答信号见图5 选择地址举例图5应答地址确定举例nRF24L01配置为增强型的ShockBurst TM发送模式下时只要MCU 有数据要发送nRF24L01就会启动ShockBurst TM 模式来发送数据在发送完数据后nRF24L01转到接收模式并等待终端的应答信号如果没有收到应答信号nRF24L01将重发相同的数据包直到收到应答信号或重发次数超过SETUP_RETR_ARC 寄存器中设置的值为止如果重发次数超过了设定值则产生MAX_RT 中断只要收到确认信号nRF24L01就认为最后一包数据已经发送成功接收方已经收到数据把TX FIFO 中的数据清除掉并产生TX_DS 中断IRQ 引脚置高在发射器中,,通道0要接收应答回来的信号,,所以应该与发送通道地址,,,相同,,在增强型ShockBurst模式下nRF24L01有如下的特征当工作在应答模式时快速的空中传输及启动时间极大的降低了电流消耗低成本nRF24L01集成了所有高速链路层操作比如重发丢失数据包和产生应答信号无需单片机硬件上一定有SPI口与其相连SPI 接口可以利用单片机通用I/O口进行模拟 由于空中传输时间很短极大的降低了无线传输中的碰撞现象由于链路层完全集成在芯片上非常便于软硬件的开发增强型ShockBurstTM发送模式1配置寄存器位PRIM_RX为低2当MCU有数据要发送时接收节点地址TX_ADDR和有效数据(TX_PLD)通过SPI接口写入nRF24L01发送数据的长度以字节计数从MCU写入TX FIFO当CSN为低时数据被不断的写入发送端发送完数据后将通道0设置为接收模式来接收应答信号其接收地址(RX_ADDR_P0)与接收端地址(TX_ADDR)相同例在图5中数据通道5的发送端(TX5)及接收端(RX)地址设置如下TX5TX_ADDR=0xB3B4B5B605TX5RX_ADDR_P0=0xB3B4B5B605RX RX_ADDR_P5=0xB3B4B5B6053设置CE为高启动发射CE高电平持续时间最小为10 us4nRF24L01 ShockBurst TM模式无线系统上电启动内部16MHz时钟无线发送数据打包见数据包描述高速发送数据由MCU设定为1Mbps或2Mbps5如果启动了自动应答模式自动重发计数器不等于0ENAA_P0=1无线芯片立即进入接收模式如果在有效应答时间范围内收到应答信号则认为数据成功发送到了接收端此时状态寄存器的TX_DS位置高并把数据从TX FIFO中清除掉如果在设定时间范围内没有接收到应答信号则重新发送数据如果自动重发计数器ARC_CNT溢出超过了编程设定的值则状态寄存器的MAX_RT位置高不清除TX FIFO中的数据当MAX_RT或TX_DS为高电平时IRQ引脚产生中断IRQ中断通过写状态寄存器来复位见中断章节如果重发次数在达到设定的最大重发次数时还没有收到应答信号的话在MAX_RX中断清除之前不会重发数据包数据包丢失计数器(PLOS_CNT)在每次产生MAX_RT中断后加一也就是说重发计数器ARC_CNT计算重发数据包次数PLOS_CNT计算在达到最大允许重发次数时仍没有发送成功的数据包个数6如果CE置低则系统进入待机模式I如果不设置CE为低则系统会发送TX FIFO寄存器中下一包数据如果TX FIFO寄存器为空并且CE为高则系统进入待机模式II.7如果系统在待机模式II当CE置低后系统立即进入待机模式I.增强型ShockBurst TM接收模式1 ShockBurst TM接收模式是通过设置寄存器中PRIM_RX位为高来选择的准备接收数据的通道必须被使能EN_RXADDR寄存器所有工作在增强型ShockBurst TM模式下的数据通道的自动应答功能是由(EN_AA寄存器)来使能的有效数据宽度是由RX_PW_Px寄存器来设置的地址的建立过程见增强型ShockBurst TM发送章节23 130us后4接收到有效的数据包后地址匹配CRC检验正确数据存储在RX_FIFO中同时RX_DR位置高并产生中断状态寄存器中RX_P_NO位显示数据是由哪个通道接收到的5如果使能自动确认信号则发送确认信号6 MCU设置CE脚为低进入待机模式I低功耗模式7 MCU将数据以合适的速率通过SPI口将数据读出8芯片准备好进入发送模式接收模式或掉电模式两种数据双方向的通讯方式如果想要数据在双方向上通讯寄存器必须紧随芯片工作模式的变化而变化处理器必须保证PTX和PRX端的同步性在RX_FIFO和TX_FIFO寄存器中可能同时存有数据CE=1是开始启动的标志,,,这个以前没有注意,,,!!!要接收几点的地址,,,看看要求,,,我的天那,,,认真看吧,,自动应答时,,接收方和发送方的EN_AA都要打开,,,接收方也要设置有效位,,跟发送的应该一致,,,自动应答RX自动应答功能减少了外部MCU 的工作量并且在鼠标/键盘等应用中也可以不要求硬件一定有SPI 接口因此降低成本减少电流消耗自动重应答功能可以通过SPI 口对不同的数据通道分别进行配置在自动应答模式使能的情况下收到有效的数据包后系统将进入发送模式并发送确认信号发送完确认信号后系统进入正常工作模式工作模式由PRIM_RX 位和CE 引脚决定自动重发功能ART (TX)自动重发功能是针对自动应答系统的发送方启动重发数据的时间长度在每次发送结束后系统都会进入接收模式并在设定的时间范围内等待应答信号接收到应答信号后系统转入正常发送模式如果TX FIFO 中没有待发送的数据且CE 脚电平为低则系统将进入待机模式I 如果没有收到确认信号则系统返回到发送模式并重发数据直到收到确认信号或重发次数超过设定值达到最大的重发次数有新的数据发送或PRIM_RX 寄存器配置改变时丢包计数器复位 数据包识别和CRC 校验应用于增强型ShockBurst TM模式下每一包数据都包括两位的PID 数据包识别来识别接收的数据是新数据包还是重发的数据包PID 识别可以防止接收端同一数据包多次送入MCU 在发送方每从MCU 取得一包新数据后PID 值加一PID 和CRC 校验应用在接收方识别接收的数据是重发的数据包还是新数据包如果在链接中有一些数据丢失了则PID 值与上一包数据的PID 值相同如果一包数据拥有与上一包数据相同的PID 值nRF24L01将对两包数据的CRC 值进行比较如果CRC 值也相同的话就认为后面一包是前一包的重发数据包而被舍弃1接收方接收方对新接收数据包的PID 值与上一包进行比较如果PID 值不同则认为接收的数据包是新数据包如果PID 值与上一包相同则新接收的数据包有可能与前一包相同接收方必须确认CRC 值是否相等如果CRC 值与前一包数据的CRC 值相等则认为是同一包数据并将其舍弃 2发送方每发送一包新的数据则发送方的PID 值加一图6PID 值生成和检测CRC 校验的长度是通过SPI 接口进行配置的一定要注意CRC 计算范围包括整个数据包地址PID确实,,减小了编程量,,,额,,,高四位设置,,额,,,两个CNT 就复位了,,,和有效数据等若CRC 校验错误则不会接收数据包这一点是接收数据包的附加要求在上图没有说明载波检测CD当接收端检测到射频范围内的信号时将CD 置高否则CD 为低内部的CD 信号在写入寄存器之前是经过滤波的内部CD 高电平状态至少保持128us 以上在增强型ShockBurst TM 模式中只有当发送模块没有成功发送数据时推荐使用CD 检测功能如果发送端PLOS_CNT 显示数据包丢失率太高时可将其设置位接收模式检测CD 值如果CD 为高说明通道出现了拥挤现象需要更改通信频道如果CD 为低电平状态距离超出通信范围可保持原有通信频道但需作其它调整数据通道nRF24L01配置为接收模式时可以接收6路不同地址相同频率的数据每个数据通道拥有自己的地址并且可以通过寄存器来进行分别配置数据通道是通过寄存器EN_RXADDR 来设置的默认状态下只有数据通道0和数据通道1是开启状态的 每一个数据通道的地址是通过寄存器RX_ADDR_Px 来配置的通常情况下不允许不同的数据通道设置完全相同的地址数据通道0有40位可配置地址数据通道1~5的地址为32位共用地址+各自的地址最低字节图7所示的是数据通道1~5的地址设置方法举例所有数据通道可以设置为多达40位但是1~5数据通道的最低位必须不同图7 通道0~5的地址设置当从一个数据通道中接收到数据并且此数据通道设置为应答方式的话则nRF24L01在收到数据后产生应答信号此应答信号的目标地址为接收通道地址 寄存器配置有些是针对所有数据通道的有些则是针对个别的如下设置举例是针对所有数据通道的 CRC 使能/禁止 CRC 计算 接收地址宽度 频道设置无线数据通信速率 LNA 增益 射频输出功率寄存器配置,,,注意了丗不同地址丆相同频率,,,不允许配置相同的地址的,,,额,,,这的目标地址为其接受到的地址,,,这么多是相同的,,,nRF24L01所有配置都在配置寄存器中所有寄存器都是通过SPI 口进行配置的 SPI 接口SPI 接口是标准的SPI 接口其最大的数据传输率为10Mbps 大多数寄存器是可读的 SPI 指令设置SPI 接口可能用到的指令在下面有所说明CSN 为低后SPI 接口等待执行指令每一条指令的执行都必须通过一次CSN 由高到低的变化 SPI 指令格式<命令字由高位到低位每字节>AAAAA AAAAA 1-32读操作全部从字节当读有效数据完成后寄存器中有效数据被清除应用于接收模式下1-32开始应用于发射模式下应用于发射模式下寄存器应用于接收模式下在传输应答信号过程中不应执行此指令信号过程中执行此指令的话将使得应答信号不能被完整的传输重新使用上一包有效数据当数据包被不断的重新发射空操作寄存器可能操作单字节或多字节寄存器当访问多字节寄存器时首先要读/写的是最低字节的高位在所有多字节寄存器被写完之前可以结束写SPI 操作在这种情况下没有写完的高字节保持原有内容不变例如RX_ADDR_P0寄存器的最低字节可以通过写一个字节给寄存器RX_ADDR_P0来改变在CSN 状态由高变低后可以通过MISO 来读取状态寄存器的内容 中断nRF24L01的中断引脚IRQ 为低电平触发当状态寄存器中TX_DS RX_DR 或MAX_RT 为高时触发中断当MCU 给中断源写1时中断引脚被禁止可屏蔽中断可以被IRQ 中断屏蔽通过设置可屏蔽中断位为高则中断响应被禁止默认状态下所有的中断源是被禁止的SPI 时序图8910和表910给出了SPI 操作及时序在写寄存器之前一定要进入待机模式或掉电模式在图8至图10中用到了下面的符号Cn-SPI 指令位 Sn-状态寄存器位Dn-数据位备注由低字节到高字节每个字节中高位在前图8SPI 读操作不会出现无线命令的配置,,,即:设置MASK 为高,,所以说写之前要把CSN 拉低,,,,图9SPI写操作图10SPI NOP 操作时序图表9SPI参考时间C load=5pF表10SPI参考时间C load=10pF寄存器地址所有未定义位可以被读出其值为0’地址 参数 位 复位值类型 描述 00 寄存器配置寄存器 reserved 7 0 R/W 默认为0 MASK_RX_DR 6R/W 可屏蔽中断RX_RD1IRQ 引脚不显示RX_RD 中断0RX_RD 中断产生时IRQ 引脚电平为低MASK_TX_DS 5 0 R/W 可屏蔽中断TX_DS1IRQ 引脚不显示TX_DS 中断0TX_DS 中断产生时IRQ 引脚电平为低MASK_MAX_RT 4 0 R/W 可屏蔽中断MAX_RT1IRQ 引脚不显示TX_DS 中断0MAX_RT 中断产生时IRQ 引脚电平为低EN_CRC 3 1 R/W CRC 使能如果EN_AA 中任意一位为高则EN_CRC 强迫为高CRCO 2 0 R/W CRC 模式‘0’-8位CRC 校验 ‘1’-16位CRC 校验PWR_UP 1 0 R/W 1:上电 0:掉电 PRIM_RX 0 0 R/W 1:接收模式 0:发射模式01 EN_AA Enhanced ShockBurst TM 使能自动应答功能此功能禁止后可与nRF2401通讯 Reserved 7:6 00 R/W 默认为0 ENAA_P5 5 1 R/W 数据通道5自动应答允许 ENAA_P4 4 1 R/W 数据通道4自动应答允许 ENAA_P3 3 1 R/W 数据通道3自动应答允许 ENAA_P2 2 1 R/W 数据通道2自动应答允许 ENAA_P1 1 1 R/W 数据通道1自动应答允许 ENAA_P0 0 1 R/W 数据通道0自动应答允许 02 EN_RXADDR 接收地址允许 Reserved 7:6 00 R/W 默认为00 ERX_P5 5 0 R/W 接收数据通道5允许 ERX_P4 4 0 R/W 接收数据通道4允许 ERX_P3 3 0 R/W 接收数据通道3允许 ERX_P2 2 0 R/W 接收数据通道2允许 ERX_P1 1 1 R/W 接收数据通道1允许 ERX_P0 0 1 R/W 接收数据通道0允许 03 SETUP_AW 设置地址宽度所有数据通道 Reserved 7:2 00000 R/W 默认为00000 AW 1:0 11 R/W 接收/发射地址宽度‘00’-无效‘01’-3字节宽度 ‘10’-4字节宽度 ‘11’-5字节宽度04 SETUP_RETR 建立自动重发允许–1Mbps ‘1’-18dBm当接收到有效数据后置一接收数据通道号数据通道号寄存器满标志寄存器满当写存器复位当丢失15个数据包后此寄存器重启 ARC_CNT 3:0 0 R 重发计数器发送新数据包时此寄存器复位09 CDReserved 7:1 000000 RCD 0 0 R 载波检测0A RX_ADDR_P0 39:0 0xE7E7E7E7E7 R/W 数据通道0接收地址最大长度:5个字节先写低字节所写字节数量由SETUP_AW设定0B RX_ADDR_P1 39:0 0xC2C2C2C2C2 R/W 数据通道1接收地址最大长度:5个字节先写低字节所写字节数量由SETUP_AW设定0C RX_ADDR_P2 7:0 0xC3 R/W数据通道2接收地址最低字节可设置高字节部分必须与RX_ADDR_P1[39:8]相等0D RX_ADDR_P3 7:0 0xC4 R/W数据通道3接收地址最低字节可设置高字节部分必须与RX_ADDR_P1[39:8]相等0E RX_ADDR_P4 7:0 0xC5 R/W数据通道4接收地址最低字节可设置高字节部分必须与RX_ADDR_P1[39:8]相等0F RX_ADDR_P5 7:0 0xC6 R/W数据通道5接收地址最低字节可设置高字节部分必须与RX_ADDR_P1[39:8]相等10 TX_ADDR 39:0 0xE7E7E7E7E7 R/W 发送地址先写低字节在增强型ShockBurst TM模式下RX_ADDR_P0与此地址相等11 RX_PW_P0Reserved 7:6 00 R/W 默认为00RX_PW_P0 5:0 0 R/W 接收数据通道0有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度12 RX_PW_P1Reserved 7:6 00 R/W 默认为00RX_PW_P1 5:0 0 R/W 接收数据通道1有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度13 RX_PW_P2Reserved 7:6 00 R/W 默认为00RX_PW_P2 5:0 0 R/W 接收数据通道2有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度14 RX_PW_P3Reserved 7:6 00 R/W 默认为00RX_PW_P3 5:0 0 R/W 接收数据通道3有效数据宽度(1到32字节)0 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度15 RX_PW_P4Reserved 7:6 00 R/W 默认为00RX_PW_P4 5:0 0 R/W 接收数据通道4有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度16 RX_PW_P5Reserved 7:6 00 R/W 默认为00RX_PW_P5 5:0 0 R/W 接收数据通道5有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度17 FIFO_STATUS FIFO 状态寄存器Reserved 7 0 R/W 默认为0TX_REUSE 6 0 R 若TX_REUSE=1则当CE位高电平状态时不断发送上一数据包TX_REUSE通过SPI 指令REUSE_TX_PL设置通过W_TX_PALOAD或FLUSH_TX复位TX_FULL 5 0 R TX FIFO寄存器满标志1:TX FIFO寄存器满0: TX FIFO寄存器未满有可用空间 TX_EMPTY 4 1 R TX FIFO寄存器空标志1:TX FIFO寄存器空0: TX FIFO寄存器非空 Reserved 3:2 00 R/W 墨认为00RX_FULL 1 0 R RX FIFO寄存器满标志1:RX FIFO寄存器满0: RX FIFO寄存器未满有可用空间 RX_EMPTY 0 1 R RX FIFO寄存器空标志1:RX FIFO寄存器空0: RX FIFO寄存器非空N/A TX_PLD 255:0 WN/A RX_PLD 255:0 R表11nRF24L01寄存器地址与nRF24XX兼容的寄存器配置如何建立nRF24L01从nRF2401/ nRF2402/ nRF24E1/ nRF24E2接收数据使用与nRF2401/ nRF2402/ nRF24E1/ nRF24E2相同的CRC配置设置PRIM_RX位为1相应通道禁止自动应答功能与发射模块使用相同的地址宽度与发射模块使用相同的频道在nRF24L01和nRF2401/ nRF2402/ nRF24E1/ nRF24E2两端都选择1Mbit/s的数据传输率设置正确的数据宽度设置PWR_UP和CE为高即频率相同,,,如何建立nRF24L01发射nRF2401/ nRF2402/ nRF24E1/ nRF24E2接收数据使用与nRF2401/ nRF2402/ nRF24E1/ nRF24E2相同的CRC 配置 设置PRIM_RX 位为0设置自动重发计数器为0禁止自动重发功能与nRF2401/ nRF2402/ nRF24E1/ nRF24E2使用相同的地址宽度 与nRF2401/ nRF2402/ nRF24E1/ nRF24E2使用相同的频道在nRF24L01和nRF2401/ nRF2402/ nRF24E1/ nRF24E2两端都选择1Mbit/s 的数据传输率 设置PWR_UP 为高发送与nRF2401/ nRF2402/ nRF24E1/ nRF24E2寄存器配置数据宽度相同的数据长度 设置CE 为高启动发射打包描述增强型ShockBurst TM 模式下的数据包形式前导码 地址35字节 9位标志位 数据132字节 CRC 校验 0/1/2字节ShockBurst TM 模式下与nRF2401/ nRF2402/ nRF24E1/ nRF24E2相兼容的数据包形式前导码 地址35字节 数据132字节 CRC 校验0/1/2字节1在发送模式下加入前导码从接收的数据包中自动去除地址PID 其中两位七位保留用作将来与其它产品相兼容nRF24L01 校验的多项式是校验的多项式是12重要的时序数据下面是nRF24L01部分工作时序数据nRF24L01时序信息nRF24L01时序最大值 最小值 参数名 掉电模式待机模式1.5ms T pd2stby 待机模式发送/接收模式 130usT stby2aCE 高电平保持时间10us Thce CSN 为低电平CE 上升沿的延迟时间4us T pece2csn表13nRF24L01工作时序nRF24L01在掉电模式下转入发射模式或接收模式前必须经过1.5ms 的待机模式注意当关掉电源VDD 后寄存器配置内容丢失模块上电后需重新进行配置最好禁止自动重发功能,,,增强型ShockBurst模式时序图11增强型ShockBurst TM模式发送一包数据时序2Mbps图11所示是发送一包数据并收到应答信号的示意图数据送入发送模块部分没有在图中显示接收模块转入接收模式CE=1发射模块配置为发射模式CE=1持续至少10us 130us 后启动发射再过37us 后发送一字节数据发送结束后发送模块自动转入接收模式等待应答信号发送模块在收到应答信号后产生中断通知MCU IRQ (TX_DS)=>TX-data sent(数据发送完)接收模块接收到数据包后产生中断通知MCU IRQ (RX_DR)=>RX-data ready(数据接收完毕)外围RF 信息 天线输出ANT1和ANT2输出脚给天线提供稳定的RF 输出这两个脚必须连接到VDD 的直流通路或者通过RF 扼流圈或者通过天线双极的中心点在输出功率最大时0dBm 推荐使用负载阻抗为15+j88通过简单的网络匹配可以获得较低的阻抗例如50Ω输出功率调节RF_PWR 输出功率 电流消耗11 0 dBm 11.3mA 10 -6 dBm 9.0 mA 01 -12 dBm 7.5 mA 00 -18 dBm 7.0 mA 工作条件VDD=3.0V ,VSS=0V ,T A =27,负载=15+j88表14nRF24L01输出功率设置接收完应答信号后才产生中断,,,。

nRF24LE1中文手册

nRF24LE1中文手册
AD 转换 6,8,10,12 位分辨率 14 个输入通道 单端或差分输入 量程可通过内部参考电压,外部参考电压或 VDD 设置 2,4,8,16 Kbps 持续采样速率
4
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
低电流消耗,2 Kbps 采样速率下仅 0.1 mA 电压比较器
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
nRF24LE1
超低功耗无线片上系统解决方案 产品说明书 V1.6
关键特征
l nRF24L01+2.4 Hz 收发器(250 bps,1 Mbps,2 Mbps 空中速率 l 集成高速单片机(兼容 8051) l 16 kB 片上程序存储器 l 1 kB 片上数据存储器 l 512 字节非易失性数据存储器 l AES 对称加密硬件加速 l 16-32 位乘法除法协处理器 l 6-12 位 ADC l 高灵活性输入输出端口 l 从超低功耗到高效运行的省电模式 l 4*4 mm QFN24 5*5mm QFN32 7*7mm QFN48 封装 l 支持硬件调试器 l 硬件支持固件更新
1 简介
nRF24LE1 是一款高性价比且内置微控制器的智能 2.4GHz 射频收发器家族中的一员。 nRF24LE1 为提供超低功耗无线应用而作了优化。处理器能力,内存,低功耗晶振,实时实 名,计数器,AES 加密加速器,随机数发生器和节电模式的组合为实现射频协议提供了理 想的平台。使用 nRF24LE1 的好处包括严密的协议时序,安全性,低功耗和改善共存的性能。 对于应用层,nRF24LE1 提供了一个丰富的外设包括:SPI,IIC,UART,6 至 12 位 ADC, PWM 和一个用于电压等级系统唤醒的超低功耗模拟比较器。 nRF24LE1 三种封装的差异 超紧凑 4*4mm 24 脚 QFN 封装(7 个通用 IO 引脚),主要用于对大小有严格要求的应用场 合,如 穿戴式运动传感器和手册 5*5mm 32 脚 QFN 封装(15 个通用 IO 引脚)适用于无线鼠标,远程控制和玩具 7*7mm 48 脚 QFN 封装(31 个通用 IO 引脚)为对 I/O 数量要求很高的产品而设计,如无线 键盘

nRF24L01中文全数据手册翻译

nRF24L01中文全数据手册翻译

图 4:在微处理器中的数据时钟形式 与
无线射频发送技术
下图中分别示意了在没有无线射频发送时,数据传输速率由 MCU 决定 以及 有无线 射频发送时的时钟状态:
图 5:nRF2401 工作在无线射频时或非无线射频时的电流损耗
图 6:nRF2401 以无线射频模式进行数据发送的流程图
nRF2401 以无线射频发送数据时的条件: 相关 MCU 接口引脚:CE、CLK1、DATA � 当运行 MCU 并有数据发送时,置高 CE。接下来便激活 nRF2401 进行发送数据的 处理 � 接收机地址与所需传输的数据在系统时钟下写入 nRF2401,此时芯片运行速率或 MCU 运行速率小于 1Mbps(例如只有:10kbps) � 在上述情况完成后,MCU 置低 CE,这一行为便激活 nRF2401 以无线射频方式进 行数据发送 � nRF2401 的无线射频发送: � 射频前端上电 � 射频数据包完成(数据开始位添加成功,CRC 校验计算完成) � 数据以高速进行发送(用户可以配置发送速率为:250kbps 或 1Mbps) � 当数据发送完成,nRF2401 进入睡眠模式
nRF2401 运行模式:
概述: 通过不同的设置 PWR_UP、CE、CS 这三个引脚,nRF2401 可以工作在一下主要工作模式:
表 6:nRF2401 主要工作模式 � 激活模式(接收/发送) :PWR_UP—CE—CS(110) � 配置模式:PWR_UP—CE—CS(101) � 睡眠模式:PWR_UP—CE—CS(100) � 掉电模式:PWR_UP—CE—CS(0XX) 对于完整概述 nRF2401 输入/输出引脚的不同工作模式的设置请参照表 7。 激活模式: nRF2401 有两种接收/发送工作模式: � 无线射频模式 � 直接发送模式 nRF2401 工作于何种激活模式完全依照于配置字的组成,而配置字存在于专有的配置区域。 无线射频模式( Shock Burst) : 无线射频技术使用片上的先入先出( FIFO)功能来记录低速的数据写入,并以非常高 的速率进行数据发送,因此这样可以极大的减少电能损耗。 当 nRF2401 工作在无线射频模式时, 你可以通过由 2.4GHz 的频带来获得高速的数据传 输速率 (1Mbps) 而不需要额外的费用, 而这些数据的传输加工均由高速的微处理器来完成。 通过片上的无线射频协议来处理高速信号的传输,nRF2401 具有如下优势: � 大大减小电流的损耗 � 更低的系统花费(使用相对便宜的微处理器) � 通过短时间传输大大减低信号在空中的因传输干扰而产生的危险 nRF2401 可以通过使用 3 线接口来对其进行编程处理, 其数据的传输速率由微处理器的 处理速率决定。 当无线射频连接在最大数据传输速率时, 让芯片会把运行状态下的数字处理部分工作在 最低速率,此时 nRF2401 工作在无线射频模式下时可以在相当大的范围内减小平均电流声 损耗。 无线射频传输规则( Shock Burst Principle) : 当 nRF2401 配置为无线射频模式时(Shock Burst mode) ,其数据的发送或接收遵循如 下组成方式(以 10kbps 为范例) :

nRF24L01P快速开发系统使用手册

nRF24L01P快速开发系统使用手册

nRF24L01-Quick-Dev2Mbps 无线快速开发系统使用手册为了便于用户开发应用先进的nRF24L01高速2Mbps无线芯片开发,迅通科技另外可提供nRF24L01快速开发系统。

nRF24L01开发系统包括两个无线高速多频道模块、两个开发板(含可更换MCU及用户开发空间),详细源代码,原理图,资料光盘,开发板上有MCU、按键和指示灯等,加电即可使用,可完成无线双向数据高速传输的全部功能,并可方便地进行性能以及距离评测,并迅速掌握nRF24L01的多频以及高速无线通信编程和协议的设计。

时间缩短您的开发时间,建立您对RF产品开发的信心;风险接近实用的评估板板,方便验证和改进,零风险;费用只需不到一个工程师半个月的薪水或您预算内很小一部分市场可对多种产品及应用进行验证,实现平台式的验证与应用资料技术资料全,上手快,可以使您立刻进入与世界同步的无线设计领域;1、n RF24L01快速开发系统的安装示意图:(1) 按照安装示意图,将开发板与无线模块正确连接。

(2) 将开发板接上直流稳压电源,注意电源输入为4.5~6V(不能超过6V),由于开发板内部没有防反接保护电路,请注意检查输入信号的极性。

正确接上电源后,开发板上的LED灯会闪亮,表示自检成功。

3、nRF24L01开发板的使用:1.测试1:按下其中任何一块开发板上的按键,另一块开发板上对应的红色LED点亮,表示数据发送成功;每块开发板板均可进行双向数据的高速传输与控制,用户还可以更改源程序进行多频无线通信。

2.测试2(串口传输):(1)此测试进行前需要先将开发板与计算机串口通过九芯串口电缆相连(2)在计算机上运行任何一种串口调试工具(如串口专家),用来接收和显示无线数据,串口速率设定为19200,“8,N,1”;(3)正确接上电源;(4)按下开发板的按键,对应的LED灯将点亮,同时另外一块开发板将接收到的键值数据通过串口发送到PC并在串口调试工具上实时显示。

nRF24L01P_Datasheet数据手册

nRF24L01P_Datasheet数据手册

All rights reserved.Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.September 2008nRF24L01+Single Chip 2.4GHz TransceiverProduct Specification v1.0Key Features•Worldwide 2.4GHz ISM band operation •250kbps, 1Mbps and 2Mbps on air data rates•Ultra low power operation•11.3mA TX at 0dBm output power •13.5mA RX at 2Mbps air data rate •900nA in power down •26µA in standby-I•On chip voltage regulator • 1.9 to 3.6V supply range •Enhanced ShockBurst™ •Automatic packet handling•Auto packet transaction handling • 6 data pipe MultiCeiver™•Drop-in compatibility with nRF24L01•On-air compatible in 250kbps and 1Mbps with nRF2401A, nRF2402, nRF24E1 and nRF24E2•Low cost BOM•±60ppm 16MHz crystal •5V tolerant inputs•Compact 20-pin 4x4mm QFN packageApplications•Wireless PC Peripherals•Mouse, keyboards and remotes •3-in-1 desktop bundles•Advanced Media center remote controls •VoIP headsets •Game controllers•Sports watches and sensors•RF remote controls for consumer electronics •Home and commercial automation •Ultra low power sensor networks •Active RFID•Asset tracking systems •ToysnRF24L01+ Product SpecificationLiability disclaimerNordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein.All application information is advisory and does not form part of the specification.Limiting valuesStress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the specifications are not implied. Exposure to limiting values for extended periods may affect device reliability.Life support applicationsThese products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nordic Semiconductor ASA cus-tomers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale.Contact detailsVisit www.nordicsemi.no for Nordic Semiconductor sales offices and distributors worldwideMain office:Otto Nielsens vei 127004 TrondheimPhone: +47 72 89 89 00 Fax: +47 72 89 89 89www.nordicsemi.noData sheet statusObjective product specificationThis product specification contains target specifications for product development.Preliminary product specification This product specification contains preliminary data; supplementarydata may be published from Nordic Semiconductor ASA later.Product specification This product specification contains final product specifications. NordicSemiconductor ASA reserves the right to make changes at any time without notice in order to improve design and supply the best possibleproduct.nRF24L01+ Product Specification Writing ConventionsThis product specification follows a set of typographic rules that makes the document consistent and easy to read. The following writing conventions are used:•Commands, bit state conditions, and register names are written in Courier .•Pin names and pin signal conditions are written in Courier bold .•Cross references are underlined and highlighted in blue .Revision HistoryAttention!DateVersion DescriptionSeptember 2008 1.0Observe precaution for handling Electrostatic Sensitive Device. HBM (Human Body Model) > 1Kv MM (Machine Model) > 200VnRF24L01+ Product Specification Contents1Introduction (7)1.1Features (8)1.2Block diagram (9)2Pin Information (10)2.1Pin assignment (10)2.2Pin functions (11)3Absolute maximum ratings (12)4Operating conditions (13)5Electrical specifications (14)5.1Power consumption (14)5.2General RF conditions (15)5.3Transmitter operation (15)5.4Receiver operation (16)5.5Crystal specifications (19)5.6DC characteristics (20)5.7Power on reset (20)6Radio Control (21)6.1Operational Modes (21)6.1.1State diagram (21)6.1.2Power Down Mode (22)6.1.3Standby Modes (22)6.1.4RX mode (23)6.1.5TX mode (23)6.1.6Operational modes configuration (24)6.1.7Timing Information (24)6.2Air data rate (25)6.3RF channel frequency (25)6.4Received Power Detector measurements (25)6.5PA control (26)6.6RX/TX control (26)7Enhanced ShockBurst™ (27)7.1Features (27)7.2Enhanced ShockBurst™ overview (27)7.3Enhanced Shockburst™ packet format (28)7.3.1Preamble (28)7.3.2Address (28)7.3.3Packet control field (28)7.3.4Payload (29)7.3.5CRC (Cyclic Redundancy Check) (30)7.3.6Automatic packet assembly (31)7.3.7Automatic packet disassembly (32)7.4Automatic packet transaction handling (33)7.4.1Auto acknowledgement (33)7.4.2Auto Retransmission (ART) (33)nRF24L01+ Product Specification7.5Enhanced ShockBurst flowcharts (35)7.5.1PTX operation (35)7.5.2PRX operation (37)7.6MultiCeiver™ (39)7.7Enhanced ShockBurst™ timing (42)7.8Enhanced ShockBurst™ transaction diagram (45)7.8.1Single transaction with ACK packet and interrupts (45)7.8.2Single transaction with a lost packet (46)7.8.3Single transaction with a lost ACK packet (46)7.8.4Single transaction with ACK payload packet (47)7.8.5Single transaction with ACK payload packet and lost packet (47)7.8.6Two transactions with ACK payload packet and the firstACK packet lost (48)7.8.7Two transactions where max retransmissions is reached (48)7.9Compatibility with ShockBurst™ (49)7.9.1ShockBurst™ packet format (49)8Data and Control Interface (50)8.1Features (50)8.2Functional description (50)8.3SPI operation (50)8.3.1SPI commands (50)8.3.2SPI timing (52)8.4Data FIFO (55)8.5Interrupt (56)9Register Map (57)9.1Register map table (57)10Peripheral RF Information (64)10.1Antenna output (64)10.2Crystal oscillator (64)10.3nRF24L01+ crystal sharing with an MCU (64)10.3.1Crystal parameters (64)10.3.2Input crystal amplitude and current consumption (64)10.4PCB layout and decoupling guidelines (65)11Application example (66)11.1PCB layout examples (67)12Mechanical specifications (71)13Ordering information (73)13.1Package marking (73)13.2Abbreviations (73)13.3Product options (73)13.3.1RF silicon (73)13.3.2Development tools (73)14Glossary of Terms (74)Appendix A - Enhanced ShockBurst™ - Configuration and communication example (75)Enhanced ShockBurst™ transmitting payload (75)nRF24L01+ Product Specification Enhanced ShockBurst™ receive payload (76)Appendix B - Configuration for compatibility with nRF24XX (77)Appendix C - Constant carrier wave output for testing (78)Configuration (78)nRF24L01+ Product Specification1 IntroductionThe nRF24L01+ is a single chip 2.4GHz transceiver with an embedded baseband protocol engine (Enhanced ShockBurst™), suitable for ultra low power wireless applications. The nRF24L01+ is designed for operation in the world wide ISM frequency band at 2.400 - 2.4835GHz.To design a radio system with the nRF24L01+, you simply need an MCU (microcontroller) and a few exter-nal passive components.You can operate and configure the nRF24L01+ through a Serial Peripheral Interface (SPI). The register map, which is accessible through the SPI, contains all configuration registers in the nRF24L01+ and is accessible in all operation modes of the chip.The embedded baseband protocol engine (Enhanced ShockBurst™) is based on packet communication and supports various modes from manual operation to advanced autonomous protocol operation. Internal FIFOs ensure a smooth data flow between the radio front end and the system’s MCU. Enhanced Shock-Burst™ reduces system cost by handling all the high speed link layer operations.The radio front end uses GFSK modulation. It has user configurable parameters like frequency channel, output power and air data rate. nRF24L01+ supports an air data rate of 250 kbps, 1 Mbps and 2Mbps. The high air data rate combined with two power saving modes make the nRF24L01+ very suitable for ultra low power designs.nRF24L01+ is drop-in compatible with nRF24L01 and on-air compatible with nRF2401A, nRF2402,nRF24E1 and nRF24E2. Intermodulation and wideband blocking values in nRF24L01+ are much improved in comparison to the nRF24L01 and the addition of internal filtering to nRF24L01+ has improved the margins for meeting RF regulatory standards.Internal voltage regulators ensure a high Power Supply Rejection Ratio (PSRR) and a wide power supply range.nRF24L01+ Product Specification 1.1 FeaturesFeatures of the nRF24L01+ include:•RadioX Worldwide 2.4GHz ISM band operationX126 RF channelsX Common RX and TX interfaceX GFSK modulationX250kbps, 1 and 2Mbps air data rateX1MHz non-overlapping channel spacing at 1MbpsX2MHz non-overlapping channel spacing at 2Mbps•TransmitterX Programmable output power: 0, -6, -12 or -18dBmX11.3mA at 0dBm output power•ReceiverX Fast AGC for improved dynamic rangeX Integrated channel filtersX13.5mA at 2MbpsX-82dBm sensitivity at 2MbpsX-85dBm sensitivity at 1MbpsX-94dBm sensitivity at 250kbps•RF SynthesizerX Fully integrated synthesizerX No external loop filer, VCO varactor diode or resonatorX Accepts low cost ±60ppm 16MHz crystal•Enhanced ShockBurst™X1 to 32 bytes dynamic payload lengthX Automatic packet handlingX Auto packet transaction handlingX6 data pipe MultiCeiver™ for 1:6 star networks•Power ManagementX Integrated voltage regulatorX1.9 to 3.6V supply rangeX Idle modes with fast start-up times for advanced power managementX26µA Standby-I mode, 900nA power down modeX Max 1.5ms start-up from power down modeX Max 130us start-up from standby-I mode•Host InterfaceX4-pin hardware SPIX Max 10MbpsX3 separate 32 bytes TX and RX FIFOsX5V tolerant inputs•Compact 20-pin 4x4mm QFN packagenRF24L01+ Product Specification1.2 Block diagram ArrayFigure 1. nRF24L01+ block diagramnRF24L01+ Product Specification 2 Pin Information2.1 Pin assignment ArrayFigure 2. nRF24L01+ pin assignment (top view) for the QFN20 4x4 package2.2 Pin functionsPin Name Pin function Description1CE Digital Input Chip Enable Activates RX or TX mode2CSN Digital Input SPI Chip Select3 SCK Digital Input SPI Clock4MOSI Digital Input SPI Slave Data Input5 MISO Digital Output SPI Slave Data Output, with tri-state option6IRQ Digital Output Maskable interrupt pin. Active low7 VDD Power Power Supply (+1.9V - +3.6V DC)8VSS Power Ground (0V)9XC2Analog Output Crystal Pin 210XC1Analog Input Crystal Pin 111VDD_PA Power Output Power Supply Output (+1.8V) for the internalnRF24L01+ Power Amplifier. Must be connectedto ANT1 and ANT2 as shown in Figure 32.12ANT1RF Antenna interface 113ANT2RF Antenna interface 214VSS Power Ground (0V)15VDD Power Power Supply (+1.9V - +3.6V DC)16IREF Analog Input Reference current. Connect a 22kΩ resistor toground. See Figure 32.17VSS Power Ground (0V)18VDD Power Power Supply (+1.9V - +3.6V DC)19DVDD Power Output Internal digital supply output for de-coupling pur-poses. See Figure 32.20VSS Power Ground (0V)Table 1. nRF24L01+ pin function3 Absolute maximum ratingsNote: Exceeding one or more of the limiting values may cause permanent damage to nRF24L01+.Operating conditions Minimum Maximum Units Supply voltagesVDD-0.3 3.6V VSS0V Input voltageV I-0.3 5.25V Output voltageV O VSS to VDD VSS to VDDTotal Power DissipationP D (T A=85°C)60mW TemperaturesOperating Temperature-40+85°C Storage Temperature-40+125°CTable 2. Absolute maximum ratings4 Operating conditionsSymbol Parameter (condition)Notes Min.Typ.Max.Units VDD Supply voltage 1.9 3.0 3.6V VDD Supply voltage if input signals >3.6V 2.7 3.0 3.3V TEMP Operating Temperature -40+27+85ºCTable 3. Operating conditionsConditions: VDD = +3V, VSS = 0V, T A = - 40ºC to + 85ºC5.1 Power consumptionTable 4. Power consumptionSymbol Parameter (condition)NotesMin.Typ.Max.Units Idle modesI VDD_PD Supply current in power down900nA I VDD_ST1Supply current in standby-I modea a.This current is for a 12pF crystal. Current when using external clock is dependent on signal swing.26µA I VDD_ST2Supply current in standby-II mode 320µA I VDD_SU Average current during 1.5ms crystal oscillator startup 400µATransmitI VDD_TX0Supply current @ 0dBm output powerb b.Antenna load impedance = 15Ω+j88Ω..11.3mA I VDD_TX6Supply current @ -6dBm outputpowerb 9.0mA I VDD_TX12Supply current @ -12dBm outputpowerb 7.5mA I VDD_TX18Supply current @ -18dBm outputpowerb 7.0mA I VDD_AVG Average Supply current @ -6dBm out-put power, ShockBurst™c c.Antenna load impedance = 15Ω+j88Ω. Average data rate 10kbps and max. payload length packets.0.12mA I VDD_TXS Average current during TX settlingd d.Average current consumption during TX startup (130µs) and when changing mode from RX to TX (130µs).8.0mA ReceiveI VDD_2M Supply current 2Mbps 13.5mA I VDD_1M Supply current 1Mbps 13.1mA I VDD_250Supply current 250kbps12.6mA I VDD_RXSAverage current during RX settlinge e.Average current consumption during RX startup (130µs) and when changing mode from TX to RX (130µs).8.9mATable 5. General RF conditions5.3 Transmitter operationTable 6. Transmitter operationSymbol Parameter (condition)NotesMin.Typ.Max.Units f OP Operating frequencya a.Regulatory standards determine the band range you can use.24002525MHz PLL res PLL Programming resolution 1MHz f XTAL Crystal frequency16MHz Δf 250Frequency deviation @ 250kbps ±160kHz Δf 1M Frequency deviation @ 1Mbps ±160kHz Δf 2M Frequency deviation @ 2Mbps±320kHz R GFSKAir Data rateb b.Data rate in each burst on-air2502000kbps F CHANNEL 1M Non-overlapping channel spacing @ 250kbps/1Mbpsc c.The minimum channel spacing is 1MHz1MHz F CHANNEL 2M Non-overlapping channel spacing @ 2Mbpsc 2MHzSymbol Parameter (condition)Notes Min.Typ.Max.Units P RF Maximum Output Powera a.Antenna load impedance = 15Ω+j88Ω0+4dBm P RFC RF Power Control Range 161820dB P RFCR RF Power Accuracy±4dB P BW220dB Bandwidth for Modulated Carrier (2Mbps)18002000kHz P BW120dB Bandwidth for Modulated Carrier (1Mbps)9001000kHz P BW25020dB Bandwidth for Modulated Carrier (250kbps)700800kHz P RF1.21st Adjacent Channel Transmit Power 2MHz (2Mbps)-20dBc P RF2.22nd Adjacent Channel Transmit Power 4MHz (2Mbps)-50dBc P RF1.11st Adjacent Channel Transmit Power 1MHz (1Mbps)-20dBc P RF2.12nd Adjacent Channel Transmit Power 2MHz (1Mbps)-45dBc P RF1.2501st Adjacent Channel Transmit Power 1MHz (250kbps)-30dBc P RF2.2502nd Adjacent Channel Transmit Power 2MHz (250kbps)-45dBc5.4 Receiver operationTable 7. RX SensitivityTable 8. RX selectivity according to ETSI EN 300 440-1 V1.3.1 (2001-09) page 27Datarate Symbol Parameter (condition)Notes Min.Typ.Max.Units RX max Maximum received signal at <0.1% BER 0dBm 2Mbps RX SENS Sensitivity (0.1%BER) @2Mbps -82dBm 1Mbps RX SENS Sensitivity (0.1%BER) @1Mbps -85dBm 250kbpsRX SENSSensitivity (0.1%BER) @250kbps-94dBmDatarate Symbol Parameter (condition)Notes Min.Typ.Max.Units 2Mbps C/I CO C/I Co-channel7dBc C/I 1ST 1st ACS (Adjacent Channel Selectivity) C/I 2MHz 3dBc C/I 2ND 2nd ACS C/I 4MHz -17dBc C/I 3RD 3rd ACS C/I 6MHz-21dBc C/I Nth N th ACS C/I, f i> 12MHz-40dBc C/I Nth N th ACS C/I, f i> 36MHzaa.Narrow Band (In Band) Blocking measurements: 0 to ±40MHz; 1MHz step sizeFor Interferer frequency offsets n*2*fxtal, blocking performance is degraded by approximately 5dB com-pared to adjacent figures.-48dBc 1MbpsC/I CO C/I Co-channel 9dBc C/I 1ST 1st ACS C/I 1MHz 8dBc C/I 2ND 2nd ACS C/I 2MHz -20dBc C/I 3RD 3rd ACS C/I 3MHz -30dBc C/I Nth N th ACS C/I, f i> 6MHz-40dBc C/I Nth N th ACS C/I, f i> 25MHza-47dBc 250kbps C/I CO C/I Co-channel12dBc C/I 1ST 1st ACS C/I 1MHz -12dBc C/I 2ND 2nd ACS C/I 2MHz -33dBc C/I 3RD 3rd ACS C/I 3MHz -38dBc C/I Nth N th ACS C/I, f i> 6MHz-50dBc C/I Nth N th ACS C/I, f i> 25MHza-60dBcTable 9. RX selectivity with nRF24L01+ equal modulation on interfering signal. Measured usingPin = -67dBm for wanted signal.2MbpsC/I CO C/I Co-channel (Modulated carrier)11dBc C/I 1ST 1st ACS C/I 2MHz 4dBc C/I 2ND 2nd ACS C/I 4MHz -18dBc C/I 3RD 3rd ACS C/I 6MHz-24dBc C/I Nth N th ACS C/I, f i > 12MHz -40dBc C/I NthN th ACS C/I, f i > 36MHz a-48dBc 1MbpsC/I CO C/I Co-channel 12dBc C/I 1ST 1st ACS C/I 1MHz 8dBc C/I 2ND 2nd ACS C/I 2MHz -21dBc C/I 3RD 3rd ACS C/I 3MHz -30dBc C/I Nth N th ACS C/I, f i > 6MHz -40dBc C/I NthN th ACS C/I, f i > 25MHz a -50dBc 250kbpsC/I CO C/I Co-channel 7dBc C/I 1ST 1st ACS C/I 1MHz -12dBc C/I 2ND 2nd ACS C/I 2MHz -34dBc C/I 3RD 3rd ACS C/I 3MHz -39dBc C/I Nth N th ACS C/I, f i >6MHz -50dBc C/I NthN th ACS C/I, f i >25MHza -60dBca.Narrow Band (In Band) Blocking measurements: 0 to ±40MHz; 1MHz step sizeWide Band Blocking measurements: 30MHz to 2000MHz; 10MHz step size 2000MHz to 2399MHz; 3MHz step size 2484MHz to 3000MHz; 3MHz step size 3GHz to 12.75GHz; 25MHz step sizeWanted signal for wideband blocking measurements: -67dBm in 1Mbps and 2Mbps mode -77dBm in 250kbps modeFor Interferer frequency offsets n*2*fxtal, blocking performance are degraded by approximately 5dB compared to adjacent figures.If the wanted signal is 3dB or more above the sensitivity level then, the carrier/interferer ratio is indepen-dent of the wanted signal level for a given frequency offset.Note: Wanted signal level at Pin = -64 dBm. Two interferers with equal input power are used. Theinterferer closest in frequency is unmodulated, the other interferer is modulated equal with the wanted signal. The input power of interferers where the sensitivity equals BER = 0.1% is pre-sented. Table 10. RX intermodulation test performed according to Bluetooth Specification version 2.02Mbps P_IM(6Input power of IM interferers at 6 and 12MHz offset from wanted signal-42dBmP_IM(8)Input power of IM interferers at 8 and 16MHz offset from wanted signal-38dBmP_IM(10)Input power of IM interferers at 10 and 20MHz offset from wanted signal-37dBm1Mbps P_IM(3)Input power of IM interferers at 3 and 6MHz offset from wanted signal-36dBmP_IM(4)Input power of IM interferers at 4 and 8MHz offset from wanted signal-36dBmP_IM(5)Input power of IM interferers at 5 and 10MHz offset from wanted signal-36dBm250kbps P_IM(3)Input power of IM interferers at 3 and 6MHz offset from wanted signal-36dBmP_IM(4)Input power of IM interferers at 4 and 8MHz offset from wanted signal-36dBmP_IM(5)Input power of IM interferers at 5 and 10MHz offset from wanted signal-36dBm5.5 Crystal specificationsTable 11. Crystal specificationsThe crystal oscillator startup time is proportional to the crystal equivalent inductance. The trend in crystal design is to reduce the physical outline. An effect of a small outline is an increase in equivalent serialinductance Ls, which gives a longer startup time. The maximum crystal oscillator startup time, Tpd2stby = 1.5 ms, is set using a crystal with equivalent serial inductance of maximum 30mH. An application specific worst case startup time can be calculated as :Tpd2stby= Ls/30mH *1.5ms if Ls exceeds 30mH.Note: In some crystal datasheets Ls is called L1 or Lm and Cs is called C1 or Cm.Figure 3. Equivalent crystal componentsSymbol Parameter (condition)NotesMin.Typ.Max.Units Fxo Crystal Frequency 16MHz ΔF Tolerancea ba. Frequency accuracy including; tolerance at 25ºC , temperature drift, aging and crystal loading.b. Frequency regulations in certain regions set tighter requirements for frequency tolerance (For example, Japan and South Korea specify max. +/- 50ppm).±60ppm C 0Equivalent parallel capacitance 1.57.0pF Ls Equivalent serial inductance cc.Startup time from power down to standby mode is dependant on the Ls parameter. See Table 16. on page 24 for details.30mH C L Load capacitance81216pF ESREquivalent Series Resistance100ΩCoCs LsESR5.6 DC characteristicsTable 12. Digital input pinTable 13. Digital output pin5.7 Power on resetTable 14. Power on resetSymbol Parameter (condition)NotesMin.Typ.Max.Units V IH HIGH level input voltage 0.7VDD 5.25aa.If the input signal >3.6V, the VDD of the nRF24L01+ must be between 2.7V and 3.3V (3.0V±10%)V V ILLOW level input voltageVSS0.3VDD V SymbolParameter (condition)NotesMin.Typ.Max.Units V OH HIGH level output voltage (I OH =-0.25mA)VDD -0.3VDD V V OLLOW level output voltage (I OL =0.25mA)0.3VSymbol Parameter (condition)NotesMin.Typ.Max.Units T PUP Power ramp up time a a.From 0V to 1.9V.100ms T PORPower on resetbb.Measured from when the VDD reaches 1.9V to when the reset finishes.1100ms6 Radio ControlThis chapter describes the nRF24L01+ radio transceiver’s operating modes and the parameters used to control the radio.The nRF24L01+ has a built-in state machine that controls the transitions between the chip’s operating modes. The state machine takes input from user defined register values and internal signals.6.1 Operational ModesYou can configure the nRF24L01+ in power down, standby, RX or TX mode. This section describes these modes in detail.6.1.1 State diagramThe state diagram in Figure 4. shows the operating modes and how they function. There are three types of distinct states highlighted in the state diagram:•Recommended operating mode: is a recommended state used during normal operation.•Possible operating mode: is a possible operating state, but is not used during normal operation.•Transition state: is a time limited state used during start up of the oscillator and settling of the PLL. When the VDD reaches 1.9V or higher nRF24L01+ enters the Power on reset state where it remains in reset until entering the Power Down mode..Figure 4. Radio control state diagram6.1.2 Power Down ModeIn power down mode nRF24L01+ is disabled using minimal current consumption. All register values avail-able are maintained and the SPI is kept active, enabling change of configuration and the uploading/down-loading of data registers. For start up times see Table 16. on page 24. Power down mode is entered by setting the PWR_UP bit in the CONFIG register low.6.1.3 Standby Modes6.1.3.1 Standby-I modeBy setting the PWR_UP bit in the CONFIG register to 1, the device enters standby-I mode. Standby-I mode is used to minimize average current consumption while maintaining short start up times. In this mode only part of the crystal oscillator is active. Change to active modes only happens if CE is set high and when CE is set low, the nRF24L01 returns to standby-I mode from both the TX and RX modes.6.1.3.2 Standby-II modeIn standby-II mode extra clock buffers are active and more current is used compared to standby-I mode. nRF24L01+ enters standby-II mode if CE is held high on a PTX device with an empty TX FIFO. If a new packet is uploaded to the TX FIFO, the PLL immediately starts and the packet is transmitted after the nor-mal PLL settling delay (130µs).Register values are maintained and the SPI can be activated during both standby modes. For start up times see Table 16. on page 24.6.1.4 RX modeThe RX mode is an active mode where the nRF24L01+ radio is used as a receiver. To enter this mode, the nRF24L01+ must have the PWR_UP bit, PRIM_RX bit and the CE pin set high.In RX mode the receiver demodulates the signals from the RF channel, constantly presenting the demodu-lated data to the baseband protocol engine. The baseband protocol engine constantly searches for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the packet is pre-sented in a vacant slot in the RX FIFOs. If the RX FIFOs are full, the received packet is discarded.The nRF24L01+ remains in RX mode until the MCU configures it to standby-I mode or power down mode. However, if the automatic protocol features (Enhanced ShockBurst™) in the baseband protocol engine are enabled, the nRF24L01+ can enter other modes in order to execute the protocol.In RX mode a Received Power Detector (RPD) signal is available. The RPD is a signal that is set high when a RF signal higher than -64 dBm is detected inside the receiving frequency channel. The internal RPD signal is filtered before presented to the RPD register. The RF signal must be present for at least 40µs before the RPD is set high. How to use the RPD is described in Section 6.4 on page 25.6.1.5 TX modeThe TX mode is an active mode for transmitting packets. To enter this mode, the nRF24L01+ must have the PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO and a high pulse on the CE for more than 10µs.The nRF24L01+ stays in TX mode until it finishes transmitting a packet. If CE = 0, nRF24L01+ returns to standby-I mode. If CE = 1, the status of the TX FIFO determines the next action. If the TX FIFO is not empty the nRF24L01+ remains in TX mode and transmits the next packet. If the TX FIFO is empty the nRF24L01+ goes into standby-II mode. The nRF24L01+ transmitter PLL operates in open loop when in TX mode. It is important never to keep the nRF24L01+ in TX mode for more than 4ms at a time. If the Enhanced ShockBurst™ features are enabled, nRF24L01+ is never in TX mode longer than 4ms.6.1.6 Operational modes configurationThe following table (Table 15.) describes how to configure the operational modes.Table 15. nRF24L01+ main modes6.1.7 Timing InformationThe timing information in this section relates to the transitions between modes and the timing for the CE pin. The transition from TX mode to RX mode or vice versa is the same as the transition from the standby modes to TX mode or RX mode (max. 130µs), as described in Table 16.Table 16. Operational timing of nRF24L01+For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode. There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before the CE is set high.Note: If VDD is turned off the register value is lost and you must configure nRF24L01+ before enter-ing the TX or RX modes. ModePWR_UP register PRIM_RX register CE input pin FIFO state RX mode111-TX mode101Data in TX FIFOs. Will empty all levels in TX FIFOs a .a.If CE is held high all TX FIFOs are emptied and all necessary ACK and possible retransmits are car-ried out. The transmission continues as long as the TX FIFO is refilled. If the TX FIFO is empty whenthe CE is still high, nRF24L01+ enters standby-II mode. In this mode the transmission of a packet isstarted as soon as the CSN is set high after an upload (UL) of a packet to TX FIFO.TX mode10Minimum 10µs high pulse Data in TX FIFOs.Will empty one level in TX FIFOs b .b.This operating mode pulses the CE high for at least 10µs. This allows one packet to be transmitted.This is the normal operating mode. After the packet is transmitted, the nRF24L01+ enters standby-Imode.Standby-II101TX FIFO empty.Standby-I1-0No ongoing packet transmission.Power Down 0---Name nRF24L01+Notes Max.ments Tpd2stby Power Down Î Standby mode 150µsWith external clock a a.See Table 11. on page 19 for crystal specifications.1.5msExternal crystal, Ls < 30mH 3msExternal crystal, Ls = 60mH 4.5msExternal crystal, Ls = 90mH Tstby2a Standby modes Î TX/RX mode130µs Thce Minimum CE high10µs Tpece2csn Delay from CE positive edge to CSNlow 4µs。

nRF24LE1中文数据手册

nRF24LE1中文数据手册
8
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
1 Mbps 速率下非重叠频道间隔为 1 MHz 2 Mbps 速率下非重叠频道间隔为 2 MHz 增加型突发模式 1-32 字节动态有效载荷长度(即用户要发的数据长度可以 1-32 字节) 包自动处理(封包/解包) 自动包传输处理(自动应答确认,自动重传) 6 个数据通道可用于 6:1 星型网络
nRF24LE1 模块 nRF24LU1 模块 mPro 编程器 仅需 88 元! 支持芯片:51 AVR STC nRF24LXX PL3K 系列 EEPROM … 其他功能:USB 温湿度计 USB 开发板 USB 转串口 电脑遥控器
2
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
AD 转换 6,8,10,12 位分辨率 14 个输入通道 单端或差分输入 量程可通过内部参考电压,外部参考电压或 VDD 设置 2,4,8,16 Kbps 持续采样速率
4
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
低电流消耗,2 Kbps 采样速率下仅 0.1 mA 电压比较器
应用 l 电脑外设:鼠标、键盘、远程控制、游戏 l 高级远程控制:音频/视频、娱乐中心、家庭应用 l 有源 RFID、传感网络 l 安全系统:支付、报警、访问控制 l 医疗健康和运动 l 遥控玩具
1
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
9
nRF24LE1 nRF24LU1 模块 多功能编程器 RMB88
号进行解调,当地址与自身地址一致且 CRC 校验正确时,有效数据被送到 RX FIFOs.如果 RX FIFOs 已满,则数据包被丢弃。

NRF24l01使用手册函数介绍

NRF24l01使用手册函数介绍

NRF24l01使用手册以及函数指令寄存器介绍芯片简介NRF24L01 是NORDIC 公司最近生产的一款无线通信通信芯片,采用FSK 调制,内部集成NORDIC 自己的Enhanced Short Burst 协议。

可以实现点对点或是1 对 6 的无线通信。

无线通信速度可以达到2M(bps)。

NORDIC 公司提供通信模块的GERBER 文件,可以直接加工生产。

嵌入式工程师或是单片机爱好者只需要为单片机系统预留5 个GPIO,1 个中断输入引脚,就可以很容易实现无线通信的功能,非常适合用来为MCU 系统构建无线通信功能。

NRF24L01功能框图NRF24L01 的框图如Fig.1 所示,从单片机控制的角度来看,我们只需要关注Fig.1 右面的六个控制和数据信号,分别为CSN、SCK、MISO、MOSI、IRQ、CE。

CSN:芯片的片选线,CSN 为低电平芯片工作。

SCK:芯片控制的时钟线(SPI 时钟)MISO:芯片控制数据线(Master input slave output)MOSI:芯片控制数据线(Master output slave input)IRQ:中断信号。

无线通信过程中MCU 主要是通过IRQ 与NRF24L01 进行通信。

CE:芯片的模式控制线。

在CSN 为低的情况下,CE 协同NRF24L01 的CONFIG 寄存器共同决定NRF24L01 的状态(参照NRF24L01 的状态机)。

NRF24L01状态机NRF24L01 的状态机见Fig.2 所示,对于NRF24L01 的固件编程工作主要是参照NRF24L01 的状态机。

主要有以下几个状态Power Down Mode:掉电模式Tx Mode:发射模式Rx Mode:接收模式Standby-1Mode:待机1 模式Standby-2 Mode:待机2 模式上面五种模式之间的相互切换方法以及切换所需要的时间参照Fig.2。

nrf24L01中文资料

nrf24L01中文资料

描述 确认信号 应答信号 自动重发 芯片使能 时钟信号 循环冗余校验 片选非 增强型 ShockBrustTM 高斯键控频移 中断请求 工业 科学 医学 低噪声放大 最低有效位 最低有效字节 兆位/秒 微控制器 主机输入从机输出 主机输出从机输入 最高有效位 最高有效字节 印刷电路板 数据包误码率 数据包识别位 载波 接收源 发射源 掉电 上电 接收 接收数据准备就绪 串行可编程接口 发送 已发送数据
引脚及其功能
引脚 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
名称 CE CSN SCK MOSI MISO IRQ VDD VSS XC2 XC1 VDD_PA ANT1 ANT2 VSS VDD IREF VSS VDD DVDD VSS
ShockBurstTM 模式 ShockBurst 模式下 nRF24L01 可以与成本较低的低速 MCU 相连 高速信号处理是由芯片内部的射频
协议处理的 nRF24L01 提供 SPI 接口 数据率取决于单片机本身接口速度 ShockBurst 模式通过允许与
单片机低速通信而无线部分高速通信 减小了通信的平均消耗电流 在 ShockBurstTM 接收模式下 当接收到有效的地址和数据时 IRQ 通知 MCU 随后 MCU 可将接收到
分类信息
型号 nRF24L01 IC
nRF24L01 nRF24L01-EVKIT
描述 裸片 20 脚 QFN 4*4mm,RoHS&SS-00259compliant 评估套件 表 2 nRF24L01 分类信息
结构方框图:
版本 D D 1.0
图 1 nRF24L01 及外部接口
COPYRIGHT ©2005 ALL RIGHTS RESERVED 迅通科技 TEL:+86 10 64390486 E-mail: sales@

nRF24L01无线模块E01-ML01DP5说明书(亿佰特2.4G通讯)_202001081638017

nRF24L01无线模块E01-ML01DP5说明书(亿佰特2.4G通讯)_202001081638017

--模块简介E01-ML01DP5E01-ML01DP5 是一款标志性产品的 2.4G 无线模块,是当今市面上最优秀的nRF24L01+PA+LNA 射频模块,SPI 接口,目前已经稳定量产,并适用于多种应用场景。

E01-ML01DP5 采用挪威 Nordic 公司原装进口的 nRF24L01P 芯片,配备美国进口的 20dBm 功率放大芯片,使模块最大发射功率达到 100mW(20dBm),并同时将接收灵敏度提升10dB,使得模块超过nRF24L01P 自身10 倍以上的通信距离,硬件设计上带有抗干扰屏蔽罩,使得模块的抗干扰能力大大提升。

--电气参数E01-ML01DP5序号参数名称参数值摘要1 射频芯片nRF24L01P Nordic2 模块尺寸18 * 33.4mm 不含 SMA3 平均重量 4.9g 含 SMA4 工作频段 2.4G ~ 2.525G Hz 可调,1MHz 步进5 生产工艺无铅工艺,机贴无线类产品必须机贴方能保证批量一致性和可靠性6 接口方式 2 * 4 * 2.54mm 直插7 供电电压 2.0 ~ 3.6V DC 注意:高于 3.6V 电压,将导致模块永久损毁8 通信电平0.7VCC ~ 5V VCC 指模块供电电压9 实测距离2000m 晴朗空旷,最大功率,5dBi 天线,高度 2m,250k 空中速率10 发射功率最大 20dBm 约 100mW11 空中速率250k~2Mbps 3 级可调(250kbps、1Mbps、2Mbps)12 关断电流 1.0uA nRF24L01P 设置为掉电,CE 低电平13 发射电流130mA@20dBm 供电能力必须大于 300mA14 接收电流20mA CE=115 通信接口SPI 最高速率可达 10Mbps16 发射长度单个数据包 1~32 字节 3 级 FIFO17 接收长度单个数据包 1~32 字节 3 级 FIFO18 RSSI 支持不支持仅支持简单的丢包统计19 天线接口SMA-K 外螺纹内孔,50Ω特性阻抗20 工作温度-40 ~ +85℃工业级21 工作湿度10% ~ 90% 相对湿度,无冷凝22 储存温度-40 ~ +125℃工业级23 接收灵敏度-106dBm@250kbps 详见芯片手册--注意事项E01-ML01DP5*我司提供 Altium designer 封装库请下载或联系索取引脚序号引脚名称 引脚方向引脚用途1 GND 地线,连接到电源参考地2 VCC供电电源,必须 2.0 ~ 3.6V 之间3 CE 输入 模块控制引脚4 CSN 输入 模块片选引脚,用于开始一个 SPI 通信5 SCK 输入 模块 SPI 总线时钟6 MOSI 输入 模块 SPI 数据输入引脚7 MISO 输出 模块 SPI 数据输出引脚 8IRQ输出模块中断信号输出,低电平有效★关于模块的引脚定义、软件驱动及通信协议详见 Nordic 官方《nRF24L01P Datasheet 》 ★序号 类别 注意事项1 静电 高频模拟器件具有静电敏感特性,请尽可能避免人体接触模块上的电子元件(我司生产过程全部按照 IC 厂商官方防静电标准执行)。

nRF24L01无线通信模块使用手册

nRF24L01无线通信模块使用手册

nRF24L01无线通信模块使用手册一、模块简介该射频模块集成了NORDIC公司生产的无线射频芯片nRF24L01:1.支持2.4GHz的全球开放ISM频段,最大发射功率为0dBm2.2Mbps,传输速率高3.功耗低,等待模式时电流消耗仅22uA4.多频点(125个),满足多点通信及跳频通信需求5.在空旷场地,有效通信距离:25m(外置天线)、10m(PCB天线)6.工作原理简介:发射数据时,首先将nRF24L01配置为发射模式,接着把地址TX_ADDR和数据TX_PLD 按照时序由SPI口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10μs,延迟130μs后发射数据;若自动应答开启,那么nRF24L01在发射数据后立即进入接收模式,接收应答信号。

如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD从发送堆栈中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC_CNT)达到上限,MAX_RT置高,TX_PLD不会被清除;MAX_RT或TX_DS置高时,使IRQ变低,以便通知MCU。

最后发射成功时,若CE为低,则nRF24L01进入待机模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入待机模式2。

接收数据时,首先将nRF24L01配置为接收模式,接着延迟130μs进入接收状态等待数据的到来。

当接收方检测到有效的地址和CRC时,就将数据包存储在接收堆栈中,同时中断标志位RX_DR置高,IRQ变低,以便通知MCU去取数据。

若此时自动应答开启,接收方则同时进入发射状态回传应答信号。

最后接收成功时,若CE变低,则nRF24L01进入空闲模式1。

三、模块引脚说明四、模块与AT89S52单片机接口电路注:上图为示意连接,可根据自己实际需求进行更改;使用AT89S52MCU模块时,请将Nrf24L01通讯模块每个端口(MOSI、SCK、CSN和CE)接4.7K的排阻上拉到VCC增强其驱动能力(如下图:)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档