各种仪器分析及原理

合集下载

各种仪器分析的基本原理

各种仪器分析的基本原理

各种仪器分析的基本原理仪器分析的基本原理主要涉及到不同类型仪器的工作原理和分析原理。

以下是一些常见仪器的基本原理:1.光谱仪器光谱仪器包括紫外可见光谱仪、红外光谱仪、质谱仪等。

其基本原理是测量样品对不同波长的光的吸收、发射或散射。

通过样品吸收、发射或散射光的特征,可以推断样品的组成、结构和浓度等信息。

2.色谱仪器色谱仪器包括气相色谱仪(GC)、液相色谱仪(HPLC)、离子色谱仪(IC)等。

其基本原理是在不同相的载体(固定相)上,利用样品分子在移动相中的不同分配、吸附、离子交换等特性,在固定相和移动相之间进行分离和分析。

3.质谱仪器质谱仪器是一种通过离子化技术对化学物质进行分析的仪器。

其基本原理是将样品中的分子或原子通过电离过程转变为带电的离子,然后通过质谱仪中不同电场、磁场等设备进行分析和检测。

4.电化学仪器电化学仪器包括电位计、电导仪、电解池等。

其基本原理是利用电化学反应来分析和测试样品中的化学物质。

常用电化学仪器有电化学分析技术、电化学平衡技术等。

5.核磁共振仪器核磁共振仪器通过检测和分析化学物质中原子核的行为来获得样品结构和性质的信息。

其基本原理是通过外加磁场和射频脉冲来激发和探测样品中的核磁共振信号,从而得到样品的谱图和数据。

6.能谱仪器能谱仪器是以能量测量为基础的一类仪器,包括γ射线仪、X射线仪、电子显微镜等。

其基本原理是通过测量材料与射线相互作用后所产生的能量变化来分析和测量样品的成分、形态和结构等。

7.热分析仪器热分析仪器主要有差示扫描量热仪(DSC)、示差热分析仪(DTA)、热重分析仪(TGA)等。

其基本原理是通过样品在不同温度下吸热、放热或失重的行为,来分析材料的性质、热稳定性和热分解特性。

8.电子显微镜电子显微镜是一种使用电子束替代可见光进行成像的仪器。

其基本原理是通过加速电子并聚焦形成电子束,然后在样品表面扫描,通过与样品相互作用所产生的信号来生成图像。

电子显微镜主要包括透射电子显微镜(TEM)和扫描电子显微镜(SEM)。

仪器分析的原理范文

仪器分析的原理范文

仪器分析的原理范文仪器分析是一种利用各种物理、化学或生物原理和技术手段对物质进行定性或定量分析的方法。

下面,我会简要介绍几种常见的仪器分析原理。

1.光谱分析原理光谱分析利用物质与光的相互作用来进行定性和定量分析。

常见的光谱分析方法包括紫外可见光谱分析、红外光谱分析和拉曼光谱分析等。

这些方法根据物质不同的吸收、发射或散射光的特性来确定物质的成分或浓度。

2.质谱分析原理质谱分析是一种利用质谱仪来分析物质的化学成分和结构的方法。

它通过将样品离子化并通过磁场或电场将其分离,然后测量样品离子的质荷比来确定样品的成分和结构。

质谱分析广泛应用于无机分析、有机分析、生物分析和环境分析等领域。

3.色谱分析原理色谱分析是一种利用固态或液态材料对物质进行分离和分析的方法。

常见的色谱分析方法有气相色谱、液相色谱和层析色谱等。

这些方法根据样品在固定相或液相中的相互作用差异来分离物质,然后根据分离出来的物质的不同特性进行定性和定量分析。

4.电化学分析原理电化学分析是一种利用电性质来进行定性和定量分析的方法。

常见的电化学分析方法包括电位滴定、极谱分析和电化学传感器等。

这些方法基于样品在电极表面的电化学反应来确定样品的成分和浓度。

5.核磁共振分析原理核磁共振分析是一种利用样品中核自旋的性质来进行分析的方法。

核磁共振分析常用于确定样品的结构、测量样品中不同核自旋的含量和动力学研究等。

核磁共振分析依赖于样品中核自旋与外加磁场相互作用的性质。

6.质量分析原理质量分析是一种利用质量分析仪器对粒子、分子或离子的质量进行分析的方法。

质量分析常用于确定样品中不同化学元素或化合物的质量以及分析样品中的碳同位素比例、氢同位素比例等。

质量分析基于样品中质谱离子质量和质量荷比的性质来确定样品的成分和浓度。

总之,仪器分析方法的原理主要依赖于物质与特定性质(如光、质量、电性等)的相互作用,通过测量这些相互作用的特性来确定样品的成分和浓度。

这些原理为我们提供了广泛、灵敏和准确分析样品的手段,广泛应用于科学研究、工业生产和环境监测等领域。

仪器分析 知识点总结

仪器分析 知识点总结

仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。

其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。

2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。

在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。

在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。

在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。

二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。

其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。

红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。

2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。

其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。

质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。

3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。

其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。

气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。

4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。

其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。

离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。

三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。

仪器分析方法的原理及应用

仪器分析方法的原理及应用

仪器分析方法的原理及应用1. 仪器分析方法简介仪器分析是一种利用仪器设备进行化学分析的方法,与传统的化学分析方法相比,仪器分析具有快速、准确、灵敏和自动化等特点。

仪器分析方法广泛应用于各个领域,包括环境监测、医药研发、食品安全、材料分析等。

2. 仪器分析的原理仪器分析的原理基于物质的性质与测量信号的相关性。

常见的仪器分析方法包括光谱分析、电化学分析、质谱分析等。

2.1 光谱分析原理光谱分析是利用物质对特定波长的光的吸收、发射或散射现象进行分析的方法。

它基于物质与光的相互作用的特性,通过测量光的强度变化来推断样品中物质的含量或性质。

常见的光谱分析方法包括紫外可见光谱、红外光谱、拉曼光谱、荧光光谱等。

这些方法在不同波长范围内对样品进行激发或检测,通过测量不同波长的光信号来获取样品的信息。

2.2 电化学分析原理电化学分析是利用电化学方法进行分析的一种手段。

它基于物质在电场或电流作用下的电化学反应,通过测量电流、电压等电学信号来分析样品的组成和性质。

常见的电化学分析方法包括电解析、电位法、极谱法等。

这些方法通过测量电化学反应产生的电信号来确定样品中某种物质的含量、反应速率等信息。

2.3 质谱分析原理质谱分析是利用质谱仪对样品中不同离子的质量-电荷比进行分析的方法。

它基于物质在电磁场中消耗或释放能量的特性,通过测量样品中离子的质量-电荷比来分析样品的组成和结构。

质谱分析方法包括质谱仪、质谱质点法、质谱图谱法等。

这些方法通过将样品原子或分子离子化后,利用电场、磁场或进一步的离子反应分析样品成分。

3. 仪器分析方法的应用仪器分析方法在不同领域都有广泛的应用,下面列举了一些典型应用场景:•环境监测:利用光谱分析、电化学分析等方法,监测空气、水体、土壤等环境中污染物的含量,以及有害物质的来源和分布情况。

•医药研发:利用质谱分析、光谱分析等方法,对药物、活性成分进行结构分析和含量测定,以提高药物的疗效和稳定性。

•食品安全:利用光谱分析、电化学分析等方法,对食品中的添加剂、农残、重金属等进行检测,保障食品的安全和品质。

仪器分析知识点总结大全

仪器分析知识点总结大全

仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。

以下是对常见仪器分析方法的知识点总结。

一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。

其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。

原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。

优点:选择性好、灵敏度高、分析范围广、精密度好。

局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。

(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。

原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。

其仪器包括激发光源、分光系统和检测系统。

优点:可同时测定多种元素、分析速度快、选择性好。

缺点:精密度较差、检测限较高。

(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。

原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。

仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。

应用广泛,可用于定量分析、定性分析以及化合物结构研究。

(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。

原理是:分子的振动和转动能级跃迁产生红外吸收。

仪器包括红外光源、样品室、单色器、检测器和记录仪。

常用于有机化合物的结构鉴定。

二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。

包括直接电位法和电位滴定法。

仪器分析实验讲义(全部)

仪器分析实验讲义(全部)

仪器分析实验实验1 邻二氮菲分光光度法测定铁一、实验原理邻二氮菲(phen)和Fe2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen)32+,其lgK=21.3,κ508=1。

1 × 104L·mol—1·cm—1,铁含量在0.1~6μg·mL—1范围内遵守比尔定律。

其吸收曲线如图1-1所示。

显色前需用盐酸羟胺或抗坏血酸将Fe3+全部还原为Fe2+,然后再加入邻二氮菲,并调节溶液酸度至适宜的显色酸度范围。

有关反应如下:2Fe3++2NH2OH·HC1=2Fe2++N2↑+2H2O+4H++2C1-图1—1 邻二氮菲一铁(Ⅱ)的吸收曲线用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线.在同样实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,即可计算试样中被测物质的质量浓度。

二、仪器和试剂1.仪器 721或722型分光光度计。

2.试剂(1)0。

1 mg·L—1铁标准储备液准确称取0.702 0 g NH4Fe(S04)2·6H20置于烧杯中,加少量水和20 mL 1:1H2S04溶液,溶解后,定量转移到1L容量瓶中,用水稀释至刻度,摇匀。

(2)10—3 moL-1铁标准溶液可用铁储备液稀释配制。

(3)100 g·L-1盐酸羟胺水溶液用时现配.(4)1。

5 g·L—1邻二氮菲水溶液避光保存,溶液颜色变暗时即不能使用。

(5)1。

0 mol·L—1叫乙酸钠溶液。

(6)0.1 mol·L—1氢氧化钠溶液。

三、实验步骤1.显色标准溶液的配制在序号为1~6的6只50 mL容量瓶中,用吸量管分别加入0,0。

20,0.40,0.60,0.80,1。

仪器分析实验报告

仪器分析实验报告

仪器分析实验报告引言:仪器分析是现代科学研究中重要的一环,它通过使用精密的仪器设备,结合相应的分析技术,对物质的成分、结构和性质进行准确而全面的研究与分析。

本实验旨在通过对某种物质的全面分析,展示仪器分析的应用及其重要性。

一、实验目的本实验的主要目的是利用多种常用仪器设备进行物质分析,包括质谱仪、红外光谱仪、核磁共振仪等,以便全面了解目标物质的结构和组分。

二、实验原理1. 质谱分析质谱分析是一种利用质谱仪分析目标物质的化学成分和结构的方法。

它通过将物质分子中的粒子进行电离,并根据其质量-电荷比进行区别和测量。

通过分析质谱图,可以判断样品的分子量、它的含量等。

2. 红外光谱分析红外光谱分析基于物质吸收不同波长的红外辐射的特性。

通过红外光谱仪,可以分析物质中的化学键类型,识别功能团,从而研究物质的结构和性质。

3. 核磁共振分析核磁共振分析利用物质中原子核的共振吸收来研究物质的结构和组成。

该方法通过让样品在强磁场中受到长度和频率固定的射频脉冲照射,从而获得样品吸收的一维、二维、多维数据,用于分析分子间的连接关系、原子间的距离和角度,以及确定各原子之间的化学环境等。

三、实验过程1. 样品制备选取目标物质,并采取适当的方法进行样品制备,以保证样品的纯度和适配性。

2. 质谱分析将样品注入质谱仪进行分析,获取质谱图。

根据质谱图的峰位置和峰强度,可以初步判断样品的分子量和组成。

3. 红外光谱分析将样品放入红外光谱仪,检测物质吸收红外辐射的情况。

比对样品的吸收峰位和峰形,可以初步推断物质中的化学键类型和官能团。

4. 核磁共振分析将样品放入核磁共振仪,利用核磁共振吸收信号进行分析。

通过解析核磁共振谱图,可以进一步推断样品的结构和力学性质,例如化学环境、原子位移等。

四、实验结果与分析根据实验所得的数据,我们得到了目标物质的质谱图、红外光谱图和核磁共振谱图。

通过对谱图的解析和比对,我们初步确定了样品的组分、化学键类型、官能团等重要信息。

仪器分析方法

仪器分析方法

仪器分析方法仪器分析方法是指利用各种仪器设备对物质进行分析、检测和测量的方法。

在现代科学研究和工业生产中,仪器分析方法扮演着至关重要的角色。

本文将从仪器分析方法的基本原理、常见仪器设备及其应用领域等方面进行介绍。

仪器分析方法的基本原理。

仪器分析方法的基本原理是利用仪器设备对物质的性质、成分、结构等进行定量或定性的分析和测量。

这些仪器设备包括光谱仪、色谱仪、质谱仪、电化学分析仪等。

通过这些仪器设备,可以对样品进行光谱分析、色谱分析、质谱分析、电化学分析等,从而获取样品的相关信息。

常见仪器设备及其应用领域。

光谱仪是一种利用物质对光的吸收、散射、发射等特性进行分析的仪器设备。

它广泛应用于化学、生物、环境等领域的物质分析和检测。

色谱仪是一种利用物质在固定相和流动相中的分配行为进行分离和分析的仪器设备。

它主要应用于化学、生物、医药等领域的成分分析和检测。

质谱仪是一种利用物质的质谱特性进行分析和检测的仪器设备。

它主要应用于化学、生物、医药等领域的成分分析和结构鉴定。

电化学分析仪是一种利用物质在电场作用下的电化学行为进行分析和检测的仪器设备。

它主要应用于化学、生物、环境等领域的电化学分析和检测。

仪器分析方法的发展趋势。

随着科学技术的不断发展,仪器分析方法也在不断创新和完善。

未来,仪器分析方法的发展趋势主要体现在以下几个方面,一是智能化。

随着人工智能、大数据等技术的发展,仪器分析方法将更加智能化,实现自动化、智能化分析和检测。

二是远程化。

随着互联网、物联网等技术的发展,仪器分析方法将实现远程监测和远程控制,实现远程化分析和检测。

三是微型化。

随着纳米技术、微流控技术等的发展,仪器分析方法将更加微型化,实现微型化分析和检测。

四是多元化。

随着多元分析技术的发展,仪器分析方法将实现多元化分析和检测,获取更加全面的样品信息。

结语。

仪器分析方法作为现代科学研究和工业生产中不可或缺的手段,发挥着重要作用。

通过本文的介绍,相信读者对仪器分析方法有了更深入的了解,希望本文能够对相关领域的科研工作和生产实践有所帮助。

仪器分析与总结

仪器分析与总结

仪器分析与总结分析仪器与总结仪器分析是一种通过仪器设备对物质进行测试和分析,获取精确数据和结果的方法。

其广泛应用于科研实验室、工业生产和环境监测等领域。

本文将对仪器分析的原理、分类和应用进行详细的分析,并总结其优缺点及发展趋势。

一、仪器分析的原理仪器分析的原理是基于物质与电磁辐射、粒子束、声波等相互作用的基础上进行分析。

具体而言,仪器分析分为光学分析、电化学分析、质谱分析、核磁共振分析和热分析等多种方法。

这些方法通过测量样品与仪器之间的响应信号,来推断样品的组成、结构和性质。

光学分析是利用光的吸收、散射、发射和干涉等现象对样品进行分析的方法。

其中,常用的方法有紫外可见分光光度法、荧光法和原子吸收光谱法。

电化学分析是通过样品与电极之间的电荷转移过程进行分析的方法,其中常见的有电位滴定法、电位荧光法和电解析光波法。

质谱分析是通过测量样品中离子的质量-电荷比来分析样品的成分和结构,其中常见的有质谱法和电离质谱法。

核磁共振分析是通过测量样品中核自旋的频率来分析样品的结构和性质,其中常见的有核磁共振光谱法和电子顺磁共振法。

热分析是通过测量样品在一定条件下的物理和化学变化来分析样品的成分和性质,其中常见的有差示热分析法和热重分析法。

二、仪器分析的分类根据仪器的特点和应用范围,仪器分析可分为定性分析和定量分析。

定性分析是通过测量样品的响应信号来确定样品中存在的成分和结构的方法。

定性分析常用于物质的鉴定和鉴别。

例如,通过光谱法可以确定物质的吸收或发射峰,从而判断物质的种类和结构。

定量分析是通过测量样品的响应信号来确定样品中成分的含量和浓度的方法。

定量分析常用于物质的含量测定和质量控制。

例如,通过光度法可以测定物质的吸光度,从而计算出物质的浓度。

三、仪器分析的应用仪器分析广泛应用于科研实验室、工业生产和环境监测等领域。

其应用范围涉及医药、化工、冶金、环保、食品、农业等多个行业。

在医药领域,仪器分析可用于药物的研发、质量控制和药物代谢的研究等。

仪器分析的原理

仪器分析的原理

仪器分析的原理仪器分析是一种广泛应用于科学研究、工业生产和环境监测等领域的分析技术。

它通过使用各种仪器设备,利用物质的物理、化学性质和相互作用来定量或定性分析样品的成分和性质。

在仪器分析中,有多种原理被应用,下面将逐一介绍其中几种常见的原理。

1. 光谱分析原理:光谱分析是利用物质对光的吸收、发射或散射而进行分析的方法。

常见的光谱分析技术包括紫外可见光谱、红外光谱、质谱等。

光谱分析原理基于不同物质吸收或发射光的特征,通过测量样品与光源的相互作用,从而推断出样品的成分和浓度。

2. 色谱分析原理:色谱分析是利用物质在固定相和流动相中不同的分配或吸附性质进行分离分析的方法。

常见的色谱分析技术包括气相色谱、液相色谱等。

色谱分析原理基于样品成分在不同相中的携带速度差异,通过测量携带速度,从而实现对样品进行定性和定量分析。

3. 电化学分析原理:电化学分析是利用物质在电极上与电流或电势的关系进行分析的方法。

常见的电化学分析技术包括电解法、电沉积法、电化学阻抗谱等。

电化学分析原理基于物质在电场或电流的作用下,引起电势变化或电流变化,通过测量这些变化来推断样品的性质和浓度。

4. 质谱分析原理:质谱分析是利用物质在质谱仪中通过分子碎片的质量-电荷比进行分析的方法。

常见的质谱分析技术包括质谱质量分析、质谱图谱等。

质谱分析原理基于样品分子在高能状态下发生断裂,形成一系列碎片离子,根据这些离子的质量-电荷比进行分析。

5. 核磁共振分析原理:核磁共振分析是利用核自旋在外加磁场和射频电磁场的作用下发生共振而进行分析的方法。

常见的核磁共振分析技术包括核磁共振成像、核磁共振波谱等。

核磁共振分析原理基于不同核自旋在不同磁场中的共振频率差异,通过测量共振信号来推断样品的成分和分子结构。

综上所述,仪器分析的原理涵盖了光谱分析、色谱分析、电化学分析、质谱分析和核磁共振分析等多个领域,每种原理都有其独特的应用和优势。

仪器分析通过高效、准确的手段提供了快速分析样品成分和性质的方法,为科学研究和生产工作提供了重要的技术支持。

仪器分析第知识点总结

仪器分析第知识点总结

仪器分析第知识点总结1. 仪器分析的原理仪器分析是利用各种科学仪器对物质进行测试分析,从而确定物质的成分和性质。

仪器分析的原理是基于物质的特定性质和相应的测试方法。

常见的仪器分析原理包括光谱分析、色谱分析、质谱分析、电化学分析等。

2. 仪器分析的分类仪器分析可以按照分析方法、使用仪器、测定目的等多种方式进行分类。

根据不同的分类方式,仪器分析可以分为以下几类:(1)按分析方法分类:包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

(2)按使用仪器分类:包括光谱仪、色谱仪、质谱仪、电化学仪器等。

(3)按测定目的分类:包括定性分析和定量分析。

3. 仪器分析的常用技术(1)光谱分析:是利用物质吸收、发射、散射等光谱特性进行定性和定量分析的方法,包括紫外-可见吸收光谱、红外光谱等。

(2)色谱分析:是一种以物质在固定相和流动相中分配系数不同而分离出组分的方法,包括气相色谱、液相色谱等。

(3)质谱分析:是利用物质在质谱仪中被离子化并在电场作用下产生碎片进行分析的方法,包括质子、电子和质子化电子撞击等。

(4)电化学分析:是利用电化学方法进行分析的技术,包括电导率法、电动势法、极谱法等。

4. 仪器分析的应用仪器分析技术已广泛应用于化学、生物、环境、药物等领域,为各行各业的科研和生产提供了重要支持。

例如,在环境保护领域,仪器分析可用于检测大气、水体和土壤中的污染物;在药物研发领域,仪器分析可用于药物的成分分析和质量控制。

综上所述,仪器分析作为一种重要的化学分析手段,具有广泛的应用前景。

通过对仪器分析的原理、分类、常用技术和应用进行系统总结,有助于加深对仪器分析技术的理解,对于提高仪器分析的能力和水平具有积极的意义。

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法 ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法 IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法 PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法 GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析 DTA分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析 TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态动态热―力分析 DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ透射电子显微术 TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等扫描电子显微术 SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等原子吸收 AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。

化工仪器分析串讲

化工仪器分析串讲

化工仪器分析串讲摘要化工仪器分析是化工领域中非常重要的一部分,它用于测量、分析和监测化工过程中的物质的性质和质量。

本文将从化工仪器分析的基本原理、常见的仪器设备以及应用案例三个方面进行串讲。

通过本文的介绍,读者将可以初步了解化工仪器分析的基本知识和应用。

1. 化工仪器分析的基本原理化工仪器分析的基本原理是运用物理、化学及相关科学原理,利用仪器设备进行测量和分析的过程。

化工仪器分析的基本原理包括光谱分析、色谱分析、电化学分析、质谱分析等。

下面我们将详细介绍其中几种常见的原理。

1.1 光谱分析光谱分析是根据物质吸收、发射或散射光的特性来进行分析的方法。

其中常见的光谱分析技术包括紫外可见光谱、红外光谱和荧光光谱等。

这些技术可以用于分析样品的物质成分、结构和功能。

1.2 色谱分析色谱分析是利用样品中物质在固定相和移动相之间分配的差异进行分离和分析的方法。

常见的色谱分析技术包括气相色谱、液相色谱和超高效液相色谱等。

这些技术广泛应用于分析样品中的有机化合物、无机离子等。

1.3 电化学分析电化学分析是利用电化学方法对样品进行测量和分析的方法。

电化学分析技术包括电位滴定、极谱分析和电化学传感器等。

这些技术可以用于分析样品中的离子浓度、氧化还原反应等。

1.4 质谱分析质谱分析是通过对样品中的物质进行离子化、分离和检测来确定其结构、成分和质量的方法。

质谱分析技术包括质谱仪、飞行时间质谱和质谱成像等。

这些技术广泛应用于分析样品中的有机物、无机物和生物分子。

2. 常见的化工仪器设备化工仪器分析需要使用到各种各样的仪器设备。

下面我们将介绍一些常见的化工仪器设备及其应用。

2.1 气相色谱质谱联用仪气相色谱质谱联用仪是一种结合了气相色谱和质谱技术的分析仪器。

它可以用于分析复杂样品中的各种成分,广泛应用于环境、食品、药品等领域。

2.2 红外光谱仪红外光谱仪是一种通过测量样品对红外辐射的吸收、散射和透射来确定样品的成分和结构的仪器。

试验仪器原理

试验仪器原理

试验仪器原理一、电子天平原理:电子天平利用电磁力的平衡原理进行测量。

当被测物体放在电子天平的称盘上时,称盘上的电磁振子会产生振动,通过称盘与振子之间的电磁感应,将称盘的振动变为电信号输出。

电子天平会根据电信号的变化判断称盘上物体的重量。

二、分光光度计原理:分光光度计通过将入射的白光经过一系列光学元件分解成不同波长的光束,并通过样品、参比和检测光电池,来测量光束的吸光度。

当样品溶液通过样品池时,它会对一定波长范围内的光吸收一部分,吸光度与溶液中物质浓度成正比。

三、pH计原理:pH计测定物质的酸碱度。

pH计内置一个具有标准化电势的酸碱电极和参比电极。

当电极浸入溶液中时,参比电极会提供一个固定的电势作为参照,而酸碱电极则对溶液的酸碱度产生响应,生成相应的电势。

pH计通过测量这两个电势之间的差异,将其与已知溶液标准化时的电势差进行比较,从而得到溶液的pH值。

四、气相色谱仪原理:气相色谱仪将样品蒸发成气体,并通过柱子内的填充物与移动相进行相互作用。

样品分子会因为在固定相上的亲和力不同而以不同的速率通过柱子,从而分离成不同的成分。

经过柱子的成分会进入一个检测器,检测器根据不同成分的性质产生不同的信号,形成色谱图。

通过对色谱图的分析,可以确定样品中不同成分的含量和种类。

五、光纤光谱仪原理:光纤光谱仪通过将进入光纤的光束在光栅的作用下分散成不同波长的光束,并通过检测器测量光强度,来获得光谱。

入射的光经过光纤传输到样品,样品上的反射和散射会对光强度产生影响。

通过测量不同波长下的光强度变化,可以获得样品的光谱信息,从而分析样品中的成分和性质。

以上是一些常见试验仪器的原理介绍,它们分别通过不同的物理原理来测量或分析样品的性质和组成。

各种仪器分析的基本原理及谱图表示方法

各种仪器分析的基本原理及谱图表示方法

各种仪器分析的基本原理及谱图表示方法仪器分析是化学分析中的重要分支,它利用各种仪器设备,通过对样品中成分的检测、鉴定和测量,实现对样品的分析和解释。

下面介绍几种常见的仪器分析方法及其基本原理和谱图表示方法。

原子吸收光谱法(AAS)1.基本原理:原子吸收光谱法是基于原子能级跃迁的吸收光谱法。

样品中的原子在高温烈焰中被激发为原子态,当光源发射的光束通过样品时,其中的某些元素会被吸收,导致光强减弱。

通过测量光强减弱程度,可以推算出样品中元素的含量。

2.谱图表示方法:原子吸收光谱的谱图表示吸光度(Absorbance)与波长(Wavelength)的关系。

横坐标为波长,纵坐标为吸光度。

在每个元素的吸收峰处,吸光度会显著增加,从而实现对元素的定性定量分析。

气相色谱法(GC)1.基本原理:气相色谱法是一种分离和分析复杂混合物的方法。

样品中的组分在气相状态下被载气携带通过色谱柱,不同组分在固定相和移动相之间的分配系数不同,因此会以不同的速度通过色谱柱,从而实现各组分的分离。

通过检测器对分离后的组分进行检测和测量,可以得到各组分的含量。

2.谱图表示方法:气相色谱图的横坐标为时间(Time),纵坐标为峰高(Peak Height)或峰面积(Peak Area)。

各组分会在不同的时间点出现,通过对比标准品可以得到各峰的定性结果,通过测量峰高或峰面积可以计算出各组分的含量。

紫外-可见光谱法(UV-Vis)1.基本原理:紫外-可见光谱法是一种基于分子吸收光子能量的光谱法。

样品中的分子在紫外-可见光照射下会吸收特定波长的光子能量,导致光强减弱。

通过测量光强减弱程度,可以推算出样品中分子的含量及分子结构信息。

2.谱图表示方法:紫外-可见光谱图的横坐标为波长(Wavelength),纵坐标为吸光度(Absorbance)或透过率(Transmittance)。

在每个分子的特征吸收峰处,吸光度会显著增加,从而实现对分子的定性定量分析。

仪器分析的应用和原理

仪器分析的应用和原理

仪器分析的应用和原理1. 仪器分析的概述仪器分析是一种专门应用于化学和材料科学领域的实验技术,通过使用各种仪器和设备,对物质的成分、结构和性质进行检测、分析和表征。

仪器分析广泛应用于生物医药、环境保护、食品安全、材料研发等领域。

2. 仪器分析的原理和分类仪器分析的原理基于物质与辐射、电磁波、电子束等相互作用的特性,并通过测量物质在这些相互作用中所产生的信号,获得关于物质组成和性质的信息。

根据测量的信号类型和原理,仪器分析可以分为光谱仪器、电化学分析仪器、色谱仪器等。

2.1 光谱仪器光谱仪器是利用物质在光谱范围内吸收、发射、散射光,来获得关于物质组成和性质的信息的仪器。

常见的光谱仪器包括紫外可见分光光度计、红外光谱仪、质谱仪等。

这些仪器可以用来分析物质的成分、结构、浓度等。

2.2 电化学分析仪器电化学分析仪器是利用物质在电化学过程中产生的电流、电势等电化学信号,来获得关于物质组成和性质的信息的仪器。

常见的电化学分析仪器包括电位计、电导率计、电解质测定仪等。

这些仪器可以用来分析物质的离子浓度、氧化还原能力等。

2.3 色谱仪器色谱仪器是利用物质在流经固定相或液相柱中时与固定相发生相互作用而分离的原理,来获得关于物质组成和性质的信息的仪器。

常见的色谱仪器包括气相色谱仪、液相色谱仪等。

这些仪器可以用来分离和分析物质的成分、纯度、相对含量等。

3. 仪器分析的应用举例仪器分析在各个领域都有广泛的应用,以下是几个典型的应用例子。

3.1 生物医药在生物医药领域,仪器分析被用于药物的合成、分离纯化和品质控制等方面。

例如,色谱仪器可以用于药物中成分的分离和检测,质谱仪器可以用于分析药物的结构和纯度。

3.2 环境保护在环境保护领域,仪器分析被用于监测和分析土壤、水体和大气中的污染物。

例如,气相色谱仪可以用于检测空气中的有害气体,光谱仪器可以用于测定水体中的重金属离子浓度。

3.3 食品安全在食品安全领域,仪器分析被用于检测和分析食品中的化学添加剂、农药残留和重金属等有害物质。

26种仪器分析的原理及谱图方法大全

26种仪器分析的原理及谱图方法大全

26种仪器分析的原理及谱图方法大全1.紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息2.荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息3.红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率4.拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率5.核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息6.电子顺磁共振波谱法 ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息7.质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息8.气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关9.反气相色谱法 IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数10.裂解气相色谱法 PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型11.凝胶色谱法 GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布12.热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区13.热差分析 DTA分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区14.示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息15.静态热―力分析 TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态16.动态热―力分析 DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ17.透射电子显微术 TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等18.扫描电子显微术 SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等19.原子吸收AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。

各种仪器分析及原理

各种仪器分析及原理

各种仪器分析及原理仪器分析是通过使用各种仪器设备来进行物质分析的一种方法。

不同的仪器有不同的原理和应用,下面将介绍几种常见的仪器及其原理。

一、光谱仪器1.紫外-可见分光光度计:利用物质吸收可见光或紫外光的特性测定溶液中物质的浓度。

原理是测定物质在特定波长下的吸光度与浓度之间的关系。

2.红外光谱仪:通过测量物质在红外辐射下的吸收或散射特性来确定物质的结构和组成。

原理是不同化学键振动或分子转动会引起特定波长的吸收。

3.质谱仪:通过将物质分子离子化,并根据它们的质量电荷比进行分析。

原理是通过加速带电粒子在磁场中的运动轨迹和速度来测量粒子的质量。

二、电化学仪器1.pH计:通过测量溶液中氢离子浓度的变化来测定溶液的酸度或碱度。

原理是利用玻璃电极和参比电极在溶液中的电势差来计算酸碱度。

2.电位差计:用于测量两个电极之间电势差的仪器。

原理是通过测量两个电极之间的电势差,来确定水溶液或其他溶液中的电离物质浓度。

3.电导仪:测量电解质溶液中电导率的仪器。

原理是通过测量电流在导体中的传导来计算电解质的浓度。

三、色谱仪器1.气相色谱仪:通过将混合物分离为组分,并利用物质在固定相和移动相之间的分配系数进行测定。

原理是利用气相中组分分配的不同,从而分离和测量混合物中的各种组分。

2.液相色谱仪:通过将混合物分离为组分,并利用物质在固定相和移动相之间的分配系数进行测定。

原理是利用液相中组分分配的不同,从而分离和测量混合物中的各种组分。

四、质谱仪质谱仪是一种用于分析样品中各种化学物质的仪器,它通过将样品中的化合物离子化,并根据它们在电磁场中的差异来分析。

原理是将离子加速到高速,通过电磁场的转向来分离出质量差异较大的粒子。

五、核磁共振仪核磁共振仪是一种用于分析样品结构的仪器,它利用核自旋在外部磁场中的共振吸收信号来测量样品的性质。

原理是通过给定外部磁场和射频辐射下,观察样品反馈的核磁共振信号,从而分析样品的结构和组成。

六、质量分析仪质量分析仪是一种用于测量样品中不同质量的分子的仪器。

仪器分析_精品文档

仪器分析_精品文档

仪器分析仪器分析简介仪器分析是化学分析中一种常用的分析方法,利用各种仪器设备对样品进行测试和分析,以获得样品的组成、结构、性质等信息。

仪器分析可以广泛应用于科学研究、工业生产和环境监测等领域,为相关研究和工作提供可靠的数据和结果。

仪器分析的主要原理是根据样品与仪器产生的相互作用,通过测量这种相互作用所引起的信号变化,进而得到样品的相关信息。

不同的仪器分析方法有不同的原理和应用范围,下面将介绍几种常见的仪器分析方法。

1. 质谱分析质谱分析是一种通过测量气体或溶液中样品分子的质荷比(mass-to-charge ratio, m/z)来确定其化学组成的方法。

质谱仪能够将样品分子分离,并测量其分子质荷比,进而获得样品分子的质量信息。

质谱分析广泛应用于有机物和无机物的鉴定、定量分析以及生物分子的研究等领域。

2. 红外光谱分析红外光谱分析利用样品对红外光的吸收特性来推断样品分子的结构和功能群。

红外光谱仪通过测量样品对一系列红外光的吸收和散射,得到红外光谱图。

通过对谱图的解析和比对,可以确定样品中存在的化学键和官能团,从而推测样品的化学结构。

3. 紫外可见光谱分析紫外可见光谱分析是一种利用样品对紫外光和可见光的吸收特性来判断样品组成和浓度等信息的方法。

紫外可见光谱仪通过测量样品对不同波长光的吸收程度,绘制出吸收光谱图。

通过对光谱图的解析,可以获得样品的吸收峰位和强度,从而推断样品的组成和浓度。

4. 核磁共振分析核磁共振分析基于原子核固有的旋磁现象,通过应用外加磁场和无线电波,使原子核发生共振吸收发射,从而获得关于样品分子结构和动力学性质的信息。

核磁共振仪器可以测量样品的核磁共振谱图,通过对谱图的解析,可以确定分子结构、检测分子环境的变化等。

5. 荧光光谱分析荧光光谱分析是一种基于物质荧光特性进行检测和分析的方法。

荧光光谱仪通过激发样品分子,测量其荧光发射光谱,从而获得样品的荧光特性。

荧光光谱可以用来确定样品的结构和浓度,也可用于检测样品中特定物质的存在和数量。

各种仪器分析的原理及选择

各种仪器分析的原理及选择

各种仪器分析的原理及选择分析方法缩写分析原理谱图的表示方法提供的信息紫外吸收光谱UV 吸收紫外光能量,引起分子中电子能级的跃迁相对吸收光能量随吸收光波长的变化吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光发射的荧光能量随光波长的变化荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁相对透射光能量随透射光频率变化峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射散射光能量随拉曼位移的变化峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁吸收光能量随化学位移的变化峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁吸收光能量或微分能量随磁场强度变化谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离以棒图形式表示离子的相对峰度随m/e的变化分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 样品中各组分在流动相和固定相之间,由于分配系数不同而分离柱后流出物浓度随保留值的变化峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力探针分子比保留体积的对数值随柱温倒数的变化曲线探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片柱后流出物浓度随保留值的变化谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出柱后流出物浓度随保留值的变化高聚物的平均分子量及其分布热重法TG 在控温环境中,样品重量随温度或时间变化样品的重量分数随温度或时间的变化曲线曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化温差随环境温度或时间的变化曲线提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化热量或其变化率随环境温度或时间的变化曲线提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 样品在恒力作用下产生的形变随温度或时间变化样品形变值随温度或时间变化曲线热转变温度和力学状态动态热―力分析DMA 样品在周期性变化的外力作用下产生的形变随温度的变化模量或tgδ随温度变化曲线热转变温度模量和tgδ透射电子显微术TEM 高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等扫描电子显微术SEM 用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象背散射象、二次电子象、吸收电流象、元素的线分布和面分布等断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等仪器名称:X射线荧光光谱仪基本功能:对样品作无机元素的定性定量分析,可分析元素范围为:5B~92U。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学专业学生必备:各种仪器分析的基本原理及谱图表示方法紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法 ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法 IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法 PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法 GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析 DTA分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析 TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态动态热―力分析 DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ透射电子显微术 TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等扫描电子显微术 SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等原子吸收 AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。

吸光度与待测元素的浓度成正比。

(Inductive coupling high frequency plasma)电感耦合高频等离子体 ICP 原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。

通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。

X-ray diffraction ,x射线衍射即XRDX射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。

晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。

由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。

满足衍射条件,可应用布拉格公式:2dsinθ=λ应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。

高效毛细管电泳(high performance capillary electrophoresis,HPCE)CZE的基本原理HPLC选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。

毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。

HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。

在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。

所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。

溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。

带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。

与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。

MECC的基本原理MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。

MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。

扫描隧道显微镜(STM)扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。

将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。

这种现象即是隧道效应。

原子力显微镜(Atomic Force Microscopy ,简称AFM)原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。

一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。

AFM(原子力显微镜)原理:当原子间距离减小到一定程度以后,原子间的作用力将迅速上升。

因此,由显微探针受力的大小就可以直接换算出样品表面的高度,从而获得样品表面形貌的信息。

分类:(1) 接触式﹕利用探针和待测物表面之原子力交互作用(一定要接触),此作用力(原子间的排斥力)很小,但由于接触面积很小,因此过大的作用力仍会损坏样品,尤其对软性材质,不过较大的作用力可得较佳分辨率,所以选择较适当的作用力便十分的重要。

由于排斥力对距离非常敏感,所以较易得到原子分辨率。

(2) 非接触式﹕为了解决接触式之AFM 可能破坏样品的缺点,便有非接触式之AFM 被发展出来,这是利用原子间的长距离吸引力来运作,由于探针和样品没有接触,因此样品没有被破坏的问题,不过此力对距离的变化非常小,所以必须使用调变技术来增加讯号对噪声比。

在空气中由于样品表面水模的影响,其分辨率一般只有50nm,而在超高真空中可得原子分辨率。

俄歇电子能谱学(Auger electron spectroscopy),j简称AES俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。

外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。

对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。

原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。

因此,俄歇电子能谱适用于轻元素的分析。

相关文档
最新文档