排列组合专题复习及经典例题详解
2023年高考数学复习----排列组合错位排列典型例题讲解
2023年高考数学复习----排列组合错位排列典型例题讲解【典型例题】例25.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有()A.10种B.20种C.30种D.60种【答案】B【解析】先选择两个编号与座位号一致的人,方法数有2510C=,另外三个人编号与座位号不一致,方法数有2,所以不同的坐法有10220⨯=种.故选:B例26.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A.90B.135C.270D.360【答案】B【解析】根据题意,分以下两步进行:(1)在6个小球中任选2个放入相同编号的盒子里,有2615C=种选法,假设选出的2个小球的编号为5、6;(2)剩下的4个小球要放入与其编号不一致的盒子里,对于编号为1的小球,有3个盒子可以放入,假设放入的是2号盒子.则对于编号为2的小球,有3个盒子可以放入,对于编号为3、4的小球,只有1种放法.综上所述,由分步乘法计数原理可知,不同的放法种数为1533135⨯⨯=种.故选:B.例27.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有()A.20 B.90 C.15 D.45【答案】D【解析】根据题意,分2步分析:①先从5个人里选1人,恰好摸到自己写的卡片,有15C种选法,②对于剩余的4人,因为每个人都不能拿自己写的卡片,因此第一个人有3种拿法,被拿了自己卡片的那个人也有3种拿法,剩下的2人拿法唯一,所以不同的拿卡片的方法有11153345C C C⋅⋅=种.故选:D.。
排列组合知识点总结+典型例题及答案解析资料
排列组合知识点总结+ 典型例题及答案解析排列组合知识点总结+典型例题及答案解析'•基本原理1加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2. 乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n个不同元素中,任取m( m< n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出 m 个元素的一个排列,所 有排列的个数记为A^1. 1.公式:1. A ! n n 1 n n! n m ! 2 V m 刚三为(於■ 1)3 ■ 2) (2)规定:0!(1) n ! n (n 1)!,( n 1) n! (n 1)!n! [(n 1) 1] n! (n 1) n! n! (n 1)! n!; ⑶(n 1)! (n 1)! (n 1)! (n 1)! n! 1(n 1)! 三.组合:从n 个不同元素中任取 m(m <n )个元素并组成一组,叫做从n 个不同的m 元素中任取m 个元素的组合数,记作 Cn 。
1公式:c m A m n n 1……n m 1A m m! m! n n! J 人 m ! 规定:C ° 12.组合数性质:c_m c :m , c m c m 1 Cm , c n C ;C : 2n rr 「 r 「「;「 「 「 「「;「 r 「「;注: c r c r 1 c r 2 L c n 1 c n c r 1 c r 1 c r 2 L c n 1 c nc r 2 c r 2 L c n 1 c n c n 1 若 C 「1四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序③分步还是分类。
2. 解排列、组合题的基本策略(1) 两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
排列与组合知识总结及经典例题OK
排列与组合1.排列与排列数“排列”的定义包含两个基本内容: 一是“取出元素;二是“按一定的书序排列。
“排列数”是指“从n 个不同元素中取出m 个元素的所有排列的个数”, 它是所有排列的个数, 是一个数值。
)1()2)(1(+---=m n n n n A m n 或)!(!m n n A m n -= (其中m ≤n m,n ∈Z ) 全排列、阶乘的意义;规定 0!=12.组合与组合数“一个组合”是指“从n 个不同元素中取出m 个元素合成一组”, 它是一件事情, 不是一个数;(隐含n ≥m )“组合数”是指“从n 个不同元素中取出m 个元素的所有组合的个数”, 它是一个数值。
基本公式: 或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且 组合数公式具有的两个性质: (1)常用的等式:(3)0132n n n n n n C C C C ++++= (由二项式定理知)证明: ∵又)!(!!m n m n C m n -=∴m n n m n C C -= )]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n)!1(!!)1(!+-++-=m n m m n m n n)!1(!!)1(+-++-=m n m n m m n)!1(!)!1(+-+=m n m nm n C 1+=∴ = + .式(1)说明从n 个不同元素中取出m 个元素, 与从n 个不同元素中取出n-m 个元素是一一对应关系, 即“取出的”与“留下的”是一一对应关系;式(2)说明从a, b, c ……(n+1个元素)中取出m 个元素的组合数可以分为两类: 第一类含某个有元素( ), 第二类不含这个元素( )要解决的问题是排列问题还是组合问题, 关键是看是否与顺序有关排列问题的主要题型⑴ 有特殊元素或特殊位置的排列问题, 通常是先排特殊元素或特殊位置, 称为优先处理特殊元素(位置)法(优先法);⑵ 某些元素要求必须相邻时, 可以先将这些元素看作一个元素, 与其他元素排列后, 再考虑相邻元素的内部排列, 这种方法称为“捆绑法”;⑶ 某些元素不相邻排列时, 可以先排其他元素, 再将这些不相邻元素插入空挡, 这种方法称为“插空法”;⑷ 在处理排列问题时, 一般可采用直接和间接两种思维形式, 从而寻求有效的解题途径, 这是学好排列问题的根基.第一部分1.⑴ 7位同学站成一排, 共有多少种不同的排法?⑵ 7位同学站成两排(前3后4), 共有多少种不同的排法? ⑶ 7位同学站成一排, 其中甲站在中间的位置, 共有多少种不同的排法?⑷7位同学站成一排, 甲、乙只能站在两端的排法共有多少种?⑸7位同学站成一排, 甲、乙不能站在排头和排尾的排法共有多少种?2.7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?⑵甲、乙和丙三个同学都相邻的排法共有多少种?⑶甲、乙两同学必须相邻, 而且丙不能站在排头和排尾的排法有多少种?3.7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种?⑵甲、乙和丙三个同学都不能相邻的排法共有多少种?4.从10个不同的文艺节目中选6个编成一个节目单, 如果某女演员的独唱节目一定不能排在第二个节目的位置上, 则共有多少种不同的排法?5.⑴八个人排成前后两排, 每排四人, 其中甲、乙要排在前排, 丙要排在后排, 则共有多少种不同的排法?⑵不同的五种商品在货架上排成一排, 其中a, b两种商品必须排在一起, 而c, d两种商品不排在一起, 则不同的排法共有多少种?⑶6张同排连号的电影票, 分给3名教师与3名学生, 若要求师生相间而坐, 则不同的坐法有多少种?6.⑴由数字1, 2, 3, 4, 5可以组成多少个没有重复数字的正整数?⑵由数字1, 2, 3, 4, 5可以组成多少个没有重复数字, 并且比13 000大的正整数?7、用1, 3, 6, 7, 8, 9组成无重复数字的四位数, 由小到大排列.⑴第114个数是多少?⑵ 3 796是第几个数?8、用0, 1, 2, 3, 4, 5组成无重复数字的四位数, 其中⑴能被25整除的数有多少个?⑵十位数字比个位数字大的有多少个?9、现有8名青年, 其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任), 现在要从中挑选5名青年承担一项任务, 其中3名从事英语翻译工作, 2名从事德语翻译工作, 则有多少种不同的选法?10、甲、乙、丙三人值周, 从周一至周六, 每人值两天, 但甲不值周一, 乙不值周六, 问可以排出多少种不同的值周表?11.6本不同的书全部送给5人, 每人至少1本, 有多少种不同的送书方法?变题1: 6本不同的书全部送给5人, 有多少种不同的送书方法?变题2: 5本不同的书全部送给6人, 每人至多1本, 有多少种不同的送书方法?变题3: 5本相同的书全部送给6人, 每人至多1本, 有多少种不同的送书方法?12、6本不同的书, 按下列要求各有多少种不同的选法:⑴分给甲、乙、丙三人, 每人两本;⑵分为三份, 每份两本;⑶分为三份, 一份一本, 一份两本, 一份三本;⑷分给甲、乙、丙三人, 一人一本, 一人两本, 一人三本;⑸分给甲、乙、丙三人, 每人至少一本.13.身高互不相同的7名运动员站成一排, 甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?14.⑴四个不同的小球放入四个不同的盒中, 一共有多少种不同的放法?⑵四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?15、马路上有编号为1, 2, 3, …, 10的十盏路灯, 为节约用电又不影响照明, 可以把其中3盏灯关掉, 但不可以同时关掉相邻的两盏或三盏, 在两端的灯都不能关掉的情况下, 有多少种不同的关灯方法?16.九张卡片分别写着数字0, 1, 2, …, 8, 从中取出三张排成一排组成一个三位数, 如果6可以当作9使用, 问可以组成多少个三位数?17、平均分组问题除法策略6本不同的书平均分成3堆,每堆2本共有多少分法?18、重排问题求幂策略把6名实习生分配到7个车间实习,共有多少种不同的分法19、排列组合混合问题先选后排策略有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.20、小集团问题先整体后局部策略用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个?第二部分一. 选择题1.3名医生和6名护士被分配到3所学校为学生体检, 每校分配1名医生和2名护士, 不同分配方法共有()(A)90种(B)180种(C)270种(D)540种2.从8盒不同的鲜花中选出4盆摆成一排, 其中甲、乙两盆不同时展出的摆法种数为()A. 1320B. 960C. 600D. 3603.20个不加区别的小球放入编号为1号, 2号, 3号三个盒子中, 要求每个盒子内的球数不小于盒子的编号数, 则不同的放法总数是()(A)760 (B)764 (C)120(D)914. 从10名女学生中选2名, 40名男生中选3名, 担任五种不同的职务, 规定女生不担任其中某种职务, 不同的分配方案有()A. B. C. D.5.编号1, 2, 3, 4, 5, 6的六个球分别放入编号为1, 2, 3, 4, 5, 6的六个盒子中, 其中有且只有三个球的编号与盒子的编号一致的放法种数有()A. 20B. 40C. 120D. 4806.如果一个三位正整数形如“”满足, 则称这样的三位数为凸数(如120、363.374等), 那么所有凸数个数为()A. 240B. 204C. 729D. 9207.有两排座位, 前排11个座位, 后排12个座位, 现安排2人就座, 规定前排中间的3个座位不能坐, 并且这2人不左右相邻, 那么不同排法的种数是( )A. 234B. 346C. 350D. 3638. 某校高二年级共有六个班级, 现从外地转入4名学生, 要安排到该年级的两个班级且每班安排2名, 则不同的安排方案种数( )A. B. C. D.9.4名教师分配到3所中学任教, 每所中学至少1名教师, 则不同的分配方案共有( )A. 12 种B. 24 种 C 36 种 D. 48 种10.从5位男教师和4位女教师中选出3位教师, 派到3个班担任班主任(每班1位班主任)要求这3位班主任中男、女教师都要有, 则不同的选派方案共有A. 210种B. 420种C. 630种D. 840种11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种, 分别种在不同土质的三块土地上, 其中黄瓜必须种植, 不同的种植方法共有( )A. 24种B. 18种C. 12种D. 6种12.用0、1.2.3.4这五个数字组成无重复数字的五位数, 其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A. 48B. 36C. 28D. 1213.已知集合A={1, 2, 3, 4}, B={5, 6}, 设映射, 使集合B中的元素在A中都有原象, 这样的映射个数共有()A. 16B. 14C. 15D. 12 14.ABCD—A1B1C1D1是单位正方体, 黑白两个蚂蚁从点A出发沿棱向前爬行, 每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→……, 黑蚂蚁爬行的路是AB→BB1→……, 它们都遵循如下规则: 所爬行的第段所在直线必须是异面直线(其中i是自然数).设白、黑蚂蚁都走完2005段后各停止在正方体的某个顶点处, 这时黑、白两蚂蚁的距离是A. 1B.C.D. 015.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为.. )A.480B.240C.120D.9616.从1, 2, 3, 4, 5, 6中任取3个数字组成无重复数字的三位数,其中若有1和3时,3必须排在1的前面,若只有1和3其中一个时,也应排在其它数字的前面,这样的不同三位数个数有( )A321144432A A C C++ B.311443A A C+ C.3612A+24A D.36A17.有7名同学站成一排照毕业照, 其中甲必须站在中间, 并且乙、丙两位同学要站在一起, 则不同的站法有( )(A)240 (B)192 (C)96 (D)48二. 填空题1. 五个不同的球放入四个不同的盒子, 每盒不空, 共有____ 种放法。
错位排列(原卷版)排列组合题型全归纳 专题07
专题07错位排列【方法技巧与总结】错位排列公式1(1)(1)!!inn i D n n =-=+⋅∑【典型例题】例1.(2023春·重庆沙坪坝·高二重庆八中校考期末)“数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相间,若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从大到小排列的,则不同的填法种数为()A .72B .108C .144D .196例2.(2023·全国·高三专题练习)编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有()A .10种B .20种C .30种D .60种例3.(2023·全国·高三专题练习)将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A .90B .135C .270D .360例4.(2023春·广东广州·高二广州奥林匹克中学校考阶段练习)将编号为1、2、3、4、5、6的六个小球放入编号为1、2、3、4、5、6的六个盒子里,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的方法总数是()A .20B .40C .120D .240例5.(2023春·吉林延边·高二校考期中)同室4人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则4张贺卡不同分配方式有A .8种B .9种C .10种D .12种例6.(2023·全国·高三专题练习)元旦来临之际,某寝室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡不同的分配方式有()A.6种B.9种C.11种D.23种例7.(2023·全国·高三专题练习)若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有()A.20B.90C.15D.45例8.(2023春·辽宁鞍山·高二统考期中)5个人站成一列,重新站队时各人都不站在原来的位置上,共有种不同的站法()A.42B.44C.46D.48例9.(2023春·河北沧州·高二泊头市第一中学校考开学考试)若5个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有()A.45种B.40种C.55种D.60种例10.(2023秋·福建三明·高三三明一中校考阶段练习)若4个人按原来站的位置重新站成一排,恰有一个人站在自己原来的位置,则共有()种不同的站法.A.4B.8C.12D.24例11.(2023春·江西宜春·高二江西省铜鼓中学校考阶段练习)编号为1,2,3,4,5的五个人,分别坐在编号为1,2,3,4,5的座位上,则恰有两个人的编号与其座位号分别相同的坐法种数为__________.(用数字作答)例12.(2023秋·天津静海·高二静海一中校考期末)将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为______________.例13.(2023春·重庆南岸·高二重庆市广益中学校校考阶段练习)5个同学玩“真心话”游戏,回答抽到的问题.若5个人将各自的问题写在一张卡片上(每张卡片的形状、大小均相同),并将这5张卡片放入一个不透明的箱子里,搅拌均匀,再让这5人在箱子里各摸一张,恰有1人需回答自己问题的种数为___________.例14.(2023·高二课时练习)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有____________(用数字作答).例15.(2023·高二单元测试)数独是源自18世纪瑞土的一种数学游戏.如图是数独的一个简化版,由3行3列9个单元格构成,玩该游戏时,需要将数字1,2,3(各3个)全部填入单元格,每个单元格填个数字,要求每一行,每一列均有1,2,3这三个数字,则不同的填法有________种(用数字作答).例16.(2023·全国·高二专题练习)4位顾客将各自的帽子随意放在衣帽架上,然后,每人随意取走一顶帽子,则4人拿的都不是自己的帽子方案总数为____________.(用数字作答)例17.(2023·高一课时练习)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客1P ,2P ,3P ,4P ,5P 的座位号分别为1,2,3.4,5,他们按照座位号从小到大的顺序先后上车乘客户,因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.乘客1P 2P 3P 4P 5P 座位号3214532451(1)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处);(2)若乘客1P坐到了2号座位,其他乘客按规则就座,求乘客5P坐到5号座位的概率.例18.(2023春·江苏镇江·高二扬中市第二高级中学校考期中)将4个编号为1、2、3、4的不同小球全部放入4个编号为1、2、3、4的4个不同盒子中.求:(1)每个盒至少一个球,有多少种不同的放法?(2)恰好有一个空盒,有多少种不同的放法?(3)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种不同的放法?(4)把已知中4个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种不同的放法?例19.(2023·全国·高三专题练习)6名教师从星期一至星期六值日,若甲教师不排星期一,乙教师不排星期二,丙教师不排星期三,则不同的值日排法有多少种?例20.(2023·全国·高三专题练习)n个学生参加一次聚会,每人带一张贺卡和一件礼物,会后每个人任取一张贺卡和一件礼物.问:发生下列情况时,有多少种可能?(1)没有任何一位学生取回他原来自己的一件物品;(2)有人取回了他原来的物品;(3)恰好只有一人取回他原来的物品.例21.(2023·全国·高三专题练习)将用1~6编号的六张卡片,插入用1~6编号的六个盒子里,每只盒子插一张,求:(1)使每一卡片的号码与所在盒子号码都不同的插法总数;(2)恰好有3张卡片号码与所在盒子号码相同的插法总数.例22.(2023·全国·高三专题练习)有编号为1,2,3,…,n 的n 个学生,入坐编号为1,2,3,…,n 的n 个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X ,已知当2X =时,共有6种坐法.n 的值为________;()3P X ==________.。
(完整版)排列组合知识点总结典型例题及解析
排列组合知识点总结 +典型例题及答案解析一.根根源理1.加法原理:做一件事有n 类方法,那么完成这件事的方法数等于各样方法数相加。
2.乘法原理:做一件事分n 步完成,那么完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或地址赞同重复使用,求方法数常常用根根源理求解。
二.排列:从n 个不相同元素中,任取m〔 m≤ n 〕个元素,依照必然的序次排成一列,叫做从 n个不相同元素中取出m个元素的一个排列,所有排列的个数记为A n m .1. 公式: 1. A n m n n 1 n 2 ⋯⋯ n m 1n!n m !2.规定: 0!1(1) n!n ( n 1)!,( n 1) n! (n 1)!(2)n n! [( n 1) 1] n! (n 1) n! n! (n 1)!n! ;(3)n n 1 1n1111(n1)!(n1)!( n1)!(n 1)!n!( n 1)!三.组合:从 n 个不相同元素中任取m〔m≤n〕个元素并组成一组,叫做从n 个不相同的 m 元素中任取 m 个元素的组合数,记作Cn 。
1. 公式:C n m A n m n n 1 ⋯⋯ n m1n!定: C n01A m m m!m! n m !2.组合数性质: C n m C n n m,C n m C n m 1 C n m1, C n0 C n1⋯⋯ C n n2n①;②;③;④注: C r r C r r1C r r2L C n r1C n r C r r11C r r1C r r2 L C n r1C n r C r r21C r r2L C n r1 C n r C n r11假设C n m1C n m2 m1 =m 2或 m1+m 2n四.办理排列组合应用题 1.①明确要完成的是一件什么事〔审题〕②有序还是无序③分步还是分类。
2.解排列、组合题的根本策略〔1〕两种思路:①直接法;②间接法:对有限制条件的问题,先从整体考虑,再把不吻合条件的全部状况去掉。
排列组合典型题大全含答案
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种 (B) 20种 (C) 25种 (D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合知识点总结+典型例题及答案解析
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加. 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1。
公式:1。
()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m(m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn .1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1。
排列组合知识点总结典型例题及答案解析
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
经典排列组合问题100题配超详细解析版
1.n N 且n 55,则乘积(55 n)(56 n)L (69 n) 等于A.55 nA B .69 n15A C.55 n15A D .69 n14A69 n【答案】 C【分析】依据摆列数的定义可知,(55 n)(56 n)L (69 n) 中最大的数为69-n, 最小的数为55-n ,那么可知下标的值为69-n, 共有69-n- (55-n )+1=15 个数,所以选择C2.某企业新招聘8 名职工,均匀分派给部下的甲、乙两个部门,此中两名英语翻译人员不能分在同一部门,此外三名电脑编程人员也不可以全分在同一部门,则不一样的分派方案共有()A. 24 种B. 36 种C. 38 种D. 108 种【答案】 B【分析】因为均匀分派给部下的甲、乙两个部门,此中两名英语翻译人员不可以分在同一部门,此外三名电脑编程人员也不可以全分在同一部门,那么特别元素优先考虑,分步来达成可知所有的分派方案有36 种,选B*3.n∈N,则(20-n )(21-n) ⋯⋯(100-n) 等于()A.80A B.100 n20A100nnC.81A D.100 n81 A20 n【答案】 C*【分析】因为依据摆列数公式可知n∈N,则(20-n )(21-n) ⋯⋯(100-n) 等于81A ,选C 100 n4.从0,4,6 中选两个数字, 从中选两个数字,构成无重复数字的四位数. 此中偶数的个数为()B. 96C. 36【答案】 B【分析】因为第一确立末端数为偶数,那么要分为两种状况来解,第一种,末端是0,那么3其余的有 A 5=60,第二种状况是末端是4,或许6,首位从 4 个人选一个,其余的再选2个摆列即可 4 3 3,共有96 种5.从6 名志愿者中选出 4 人分别从事翻译、导游、导购、保洁四项不一样的工作,若此中甲、乙两名志愿者不可以从事翻译工作,则选派方案共有()A. 280 种B. 240 种C. 180 种D. 96 种【答案】B【解析】依据题意,由摆列可得,从 6 名志愿者中选出 4 人分别从事四项不一样工作,有4A6 360 种不一样的状况,此中包含甲从事翻译工作有3A5 60 种,乙从事翻译工作的有3A5 60 种,若此中甲、乙两名增援者都不可以从事翻译工作,则选派方案共有360-60-60=240 种.6.如图,在∠AOB的两边上分别有A1、A2、A3、A4 和B1、B2、B3、B4、B5 共9 个点,连接线段A iB j(1≤i ≤4,1 ≤j ≤5),假如此中两条线段不订交,则称之为一对“友善线”,则图中共有()对“友善线”.A.60 B .62 C.72【答案】A【解析】在∠AOB的两边上分别取 A , A (i j), 和B p ,B q (p q) ,可得四边形A i A j B p B qi j中,恰有一对“友善线”( A B 和A j B q ),而在OA上取两点有i p2C 种方法,在OB 上取两5点有 2C 种方法,共有10 6 60对“友善线”.47.在某种信息传输过程中,用 4 个数字的一个摆列(数字同意重复)表示一个信息,不一样摆列表示不一样信息,若所用数字只有0 和1,则与信息0110 至多有两个对应地点上的数字同样的信息个数为()A.10 B.11 C.12 D.15【答案】B【解析】由题意知与信息0110 至多有两个对应地点上的数字同样的信息包含三类:第一类:与信息0110 有两个对应地点上的数字同样有C42=6(个)第二类:与信息0110 有一个对应地点上的数字同样的有C41=4 个,第三类:与信息0110 没有一个对应地点上的数字同样的有C4 =1,由分类计数原理知与信息0110 至多有两个对应地点数字同样的共有6+4+1=11 个8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中起码有1门不同样的选法共有()A.6 种B.12 种C.30 种D.36 种【答案】C【解析】分有一门不相同和二门不相同两种情况,所以共有 2 1 1 2C4 C2C2 C4 30 9.从一个不透明的口袋中摸出红球的概率为1/5 ,已知袋中红球有 3 个,则袋中共有球的个数为() .A.5 个 B .8 个 C .10 个 D .15 个【答案】D【解析】由于从一个不透明的口袋中摸出红球的概率为1/5 ,而且袋中红球有 3 个,设袋中共有球的个数为n,则3 1 ,n 5 所以n 15.10.从编号为1,2,3,4 的四个不一样小球中取三个不一样的小球放入编号为1,2,3 的三个不一样盒子,每个盒子放一球,则1号球不放 1 号盒子且 3 号球不放 3 号盒子的放法总数为A.10 B.12 C .14 D .16【答案】 C解决,,要分类意知元素的限制条件比许多【分析】解:由题,从前一组为例,当选出的三个球是1、2、3 或1、3、4时1 号球在2 号盒子里, 2 号和3 号只有一种方法,1 号球在 3 号盒子里,2 号和3 号各有两种结果,选1、2、3时共有 3 种结果,选1、3、4时也有 3 种结果,,各有C2当选到1、2、4 或2、3、4时1A 2=4 种结果,2果,数原理获取共有3+3+4+4=14 种结和分步计由分类应选C.11..在实验室进行的一项物理实验中,要先后实行 6 个程序,此中程序A只好出此刻第一或最后一步,程序B和C 在实行时一定相邻,则实验次序的编排方法共有()A.34 种B.48 种C.96 种 D .144种【答案】 C题,数问【分析】解:此题是一个分步计刻第一步或最后一步,意知程序 A 只好出此∵由题1果∴从第一个地点和最后一个地点选一个地点把A摆列,有A2 =2 种结一定相邻,时∵程序 B 和C实行还有一个摆列,共有∴把 B 和C看做一个元素,同除 A 外的 3 个元素摆列,注意B和C之间A44A 2=48 种结果. 依据分步计数原理知共有2×48=96 种结果,2应选C.12.由两个1、两个2、一个3、一个4这六个数字构成6 位数,要求同样数字不可以相邻,则这样的 6 位数有A. 12 个B. 48 个C. 84 个D. 96 个【答案】 C依据同样数字不可以相邻【分析】解:因为先排雷1,2,3,4 而后将其与的元素插入进去,则意的 6 位数有84 个。
2023年高考数学复习----排列组合排队问题典型例题讲解
2023年高考数学复习----排列组合排队问题典型例题讲解【典型例题】例48.(2022春·福建福州·高三福州四中校考阶段练习)甲、乙、丙三人相约一起去做核酸检测,到达检测点后,发现有,A B 两支正在等待检测的队伍,则甲、乙、丙三人不同的排队方案共有______种.【答案】24【解析】先进行分类:①3人到A 队伍检测,考虑三人在A 队的排队顺序,此时有33A 6=种方案;②2人到A 队伍检测,同样要考虑两人在A 队的排队顺序,此时有23A 6=种方案;③1人到A 队伍检测,要考虑两人在B 队的排队顺序,此时有23A 6=种方案;④0人到A 队伍检测,要考虑两人在B 队的排队顺序,此时有33A 6=种方案;所以,甲、乙、丙三人不同的排队方案共有24种.故答案为:24例49.(2022秋·安徽·高三芜湖一中校联考阶段练习)某医院对9个人进行核酸检测,为了防止排队密集,将9人分成两组,第一组5人,排队等候,由于甲、乙两人不熟悉流程,故无论在哪一组,排队都不在第一位,则第一组的不同排法种数为_________.(用数字作答)【答案】11760【解析】第一组的第一位排法种数为7,后4位的排法种数48A ,故所有排法种数为487A 11760⨯=. 故答案为:11760.例50.(2022·上海·统考模拟预测)有七名同学排队进行核酸检测,其中小王站在正中间,并且小李、小张两位同学要站在一起,则不同的排队法有___________种.【答案】192【解析】当小李和小张在小王的左侧时共有2123223496A C A A =(种)排列方法,同理,当小李和小张在小王的右侧时也有96种排列方法,∴共有192种排列方法.故答案为:192本课结束。
2023年高考数学复习---排列组合几何问题典型例题讲解
2023年高考数学复习---排列组合几何问题典型例题讲解【典型例题】例1、(2022秋·山东聊城·高二校考期中)从正方体六个面的对角线中任取两条作为一对,其中相互平行或相互垂直的有()A.24对B.16对C.18对D.48对【答案】C【解析】从正方体六个面的对角线中任取两条作为一对,相互平行或相互垂直,则考虑相对面的相互平行或相互垂直的情况即可.相对面中,相互平行的有2对,相互垂直的4对,共6对,正方体有三组相对面,故3×6=18,故选C例2、(2022·全国·高考真题)在直角坐标系xOy中,已知AOB三边所在直线的方程分别为0,0,2330==+=,则AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是x y x y()A.95 B.91 C.88 D.75【答案】B【解析】由题设,直线2330+=分别交x、y轴于(15,0)、(10,0),x y以高为10,宽为15的矩形内(含边)整数点有176个,其中直线2330+=上的整数点x y有(15,0)、(12,2)、(9,4)、(6,6)、(3,8)、(0,10),共6个,所以,矩形对角线AB 两侧的三角形中整点的个数为1766852−=个, 综上,△AOB 中整点的个数为85691+=个.故选:B例3、(2022·全国·高三专题练习)已知60C 分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯,60C 是单纯由碳原子结合形成的稳定分子,它具有60个顶点和若干个面,.各个面的形状为正五边形或正六边形,结构如图.已知其中正六边形的面为20个,则正五边形的面为( )个.A .10B .12C .16D .20【答案】B 【解析】由结构图知:每个顶点同时在3个面内, 所以五边形面数为603206125⨯−⨯=个, 故选B .本课结束。
排列组合专题复习与经典例题详解
排列组合专题复习及经典例题详解1.学习目标掌握排列、组合问题的解题策略2.重点(1)特殊元素优先安排的策略:(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略.3.难点综合运用解题策略解决问题.4.学习过程:(1)知识梳理1. 分类计数原理(加法原理): 完成一件事, 有几类办法, 在第一类办法中有种不同的方法, 在第2类办法中有种不同的方法……在第n类型办法中有种不同的方法, 那么完成这件事共有种不同的方法.2.分步计数原理(乘法原理):完成一件事, 需要分成n个步骤, 做第1步有种不同的方法, 做第2步有种不同的方法……, 做第n步有种不同的方法;那么完成这件事共有种不同的方法.特别提醒:分类计数原理与“分类”有关, 要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关, 要注意“步”与“步”之间具有的相依性和连续性, 应用这两个原理进行正确地分类、分步, 做到不重复、不遗漏.3. 排列:从n个不同元素中, 任取m(m≤n)个元素, 按照一定的顺序排成一列, 叫做从n 个不同元素中取出m个元素的一个排列, 时叫做选排列, 时叫做全排列.4.排列数: 从n个不同元素中, 取出m(m≤n)个元素的所有排列的个数, 叫做从n个不同元素中取出m个元素的排列数, 用符号表示.5. 排列数公式:排列数具有的性质:特别提醒:规定0!=16. 组合: 从n个不同的元素中, 任取m(m≤n)个不同元素, 组成一组, 叫做从n个不同元素中取m个不同元素的一个组合.7.组合数: 从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数,用符号表示.8. 组合数公式:组合数的两个性质: ①;②特别提醒: 排列与组合的联系与区别.联系: 都是从n个不同元素中取出m个元素.区别:前者是“排成一排”, 后者是“并成一组”, 前者有顺序关系, 后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按下列要求站一横排, 分别有多少种不同的站法(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端, 乙不站右端.【解析】: (1)方法一: 要使甲不站在两端, 可先让甲在中间4个位置上任选1个, 有种站法, 然后其余5人在另外5个位置上作全排列有种站法, 根据分步乘法计数原理, 共有站法:方法二: 由于甲不站两端, 这两个位置只能从其余5个人中选2个人站, 有种站法, 然后中间4人有种站法, 根据分步乘法计数原理, 共有站法:方法三: 若对甲没有限制条件共有种站法, 甲在两端共有种站法, 从总数中减去这两种情况的排列数, 即共有站法:(2)方法一: 先把甲、乙作为一个“整体”, 看作一个人, 和其余4人进行全排列有种站法, 再把甲、乙进行全排列, 有种站法, 根据分步乘法计数原理, 共有方法二: 先把甲、乙以外的4个人作全排列, 有种站法, 再在5个空档中选出一个供甲、乙放入, 有种方法, 最后让甲、乙全排列, 有种方法, 共有(3)因为甲、乙不相邻, 中间有隔档, 可用“插空法”, 第一步先让甲、乙以外的4个人站队, 有种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中, 有种站法, 故共有站法为此外, 也可用“间接法”, 6个人全排列有种站法, 由(2)知甲、乙相邻有种站法, 所以不相邻的站法有.(4)方法一: 先将甲、乙以外的4个人作全排列, 有种, 然后将甲、乙按条件插入站队, 有种, 故共有站法.方法二: 先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上, 有种, 然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有种方法, 最后对甲、乙进行排列, 有种方法, 故共有站法.(5)方法一: 首先考虑特殊元素, 甲、乙先站两端, 有种, 再让其他4人在中间位置作全排列, 有种, 根据分步乘法计数原理, 共有站法.方法二: 首先考虑两端两个特殊位置, 甲、乙去站有种站法, 然后考虑中间4个位置, 由剩下的4人去站, 有种站法, 由分步乘法计数原理共有站法.(6)方法一: 甲在左端的站法有种, 乙在右端的站法有种, 甲在左端而且乙在右端的站法有种, 故甲不站左端、乙不站右端共有-2 + =504(种)站法.方法二:以元素甲分类可分为两类:①甲站右端有 种站法, ②甲在中间4个位置之一, 而乙又不在右端有 种, 故共有 + =504(种)站法.考点二:组合问题例2.男运动员6名, 女运动员4名, 其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法(1)男运动员3名, 女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长, 又要有女运动员.【解析】: (1)选法为 .(2)方法一:至少1名女运动员包括以下几种情况:1女4男, 2女3男, 3女2男, 4女1男.由分类计数原理可得总选法数为(种)2461644263436244614=+++C C C C C C C C .方法二: 因“至少1名女运动员”的反面为“全是男运动员”, 故可用间接法求解. 从10人中任选5人有 种选法, 其中全是男运动员的选法有 种.所以“至少有1名女运动员”的选法(种)24656510=-C C .(3)方法一: 可分类求解:“只有男队长”的选法为48C ;“只有女队长”的选法为48C ;“男、女队长都入选”的选法为38C ;所以共有248C +38C =196(种)选法.方法二: 间接法: 从10人中任选5人有 种选法.其中不选队长的方法有 种.所以“至少1名队长”的选法为510C -58C =196种.(4)当有女队长时, 其他人任意选, 共有 种选法;不选女队长时, 必选男队长, 共有 种选法, 而且其中不含女运动员的选法有 种, 所以不选女队长时的选法共有 种选法.所以既有队长又有女运动员的选法共有191)(454849=-+C C C 种.考点三:综合问题例个不同的球, 4个不同的盒子, 把球全部放入盒内.(1)恰有1个盒不放球, 共有几种放法(2)恰有1个盒内有2个球, 共有几种放法(3)恰有2个盒不放球, 共有几种放法【解析】: (1)为保证“恰有1个盒不放球”, 先从4个盒子中任意取出去一个, 问题转化为“4个球, 3个盒子, 每个盒子都要放入球, 共有几种放法”即把4个球分成2, 1, 1的三组, 然后再从3个盒子中选1个放2个球, 其余2个球放在另外2个盒子内, 由分步乘法计数原理, 共有 ;(2)“恰有1个盒内有2个球”, 即另外3个盒子放2个球, 每个盒子至多放1个球, 也就是说另外3个盒子中恰有一个空盒, 因此, “恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事, 所以共有144种放法.(3)确定2个空盒有 种方法;4个球放进2个盒子可分成(3, 1)、(2, 2)两类: 第一类有序不均匀分组有8221134=P C C 种方法; 第二类有序均匀分组有622222224=⨯P P C C 种方法. 故共有842222222422113424=⨯+)(P P C C P C C C 种. 当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队, 要求其中男、女医生都有, 则不同的组队方案共有 ( )种 种 种 种【解析】: 分为2男1女, 和1男2女两大类, 共有 种.解题策略: 合理分类与准确分步的策略.年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事司机、导游、翻译、礼仪四项不同工作, 若其中小张和小赵只能从事前两项工作, 其余三人均能从事这四项工作, 则不同的选派方案共有 ( )种种种种【解析】: 合理分类, 通过分析分为(1)小张和小赵恰有1人入选, 先从两人中选1人, 然后把这个人在前两项工作中安排一个, 最后剩余的三人进行全排列有种选法. (2)小张和小赵都入选, 首先安排这两个人做前两项工作有种方法, 然后在剩余的3人中选2人做后两项工作, 有种方法. 故共有种选法.解题策略: ①.特殊元素优先安排的策略.②.合理分类与准确分步的策略.③.排列、组合混合问题先选后排的策略.3.从0, 1, 2, 3, 4, 5这六个数字中任取两个奇数和两个偶数, 组成没有重复数字的四位数的个数为()【解析】: 分为两大类: (1)含有0, 分步: ①从另外两个偶数中选一个, 有种方法, ②.从3个奇数中选两个, 有种方法;③.给0安排一个位置, 只能在个、十、百位上选, 有种方法;④.其他的3个数字进行全排列, 有种排法, 根据乘法原理共有种方法. (2)不含0, 分步: ①偶数必然是2和4 ;②奇数有种不同的选法, ③然后把4个元素全排列, 共种排法, 不含0 的排法有种. 根据加法原理把两部分加一块得108+72=180个4.甲组有5名男同学, 3名女同学;乙组有6名男同学, 2名女同学.若从甲、乙两组中各选出2名同学, 则选出的4人中恰有1名女同学的不同选法共有()种种种种【解析】: 4人中恰有1名女同学的情况分为两种, 即这1名女同学或来自甲组, 或来自乙组, 则所有不同的选法共有种选法.解题策略: 合理分类与准确分步的策略.5.甲、乙两人从4门课程中各选修2门, 则甲、乙所选的课程中至少有1门不相同的选法共有()【解析】: 法一: 甲、乙所选的课程中至少有1门不相同的选法可以分为两类:⑴. 甲、乙所选的课程中2门均不相同, 甲先从4门中任选2门, 乙选取剩下的2门, 有种.⑵. 甲、乙所选的课程中有且只有1门相同, 分为2步:①从4门中先任选一门作为相同的课程, 有种选法, ②甲从剩余的3门中任选1门, 乙从最后剩余的2门中任选1门, 有种选法, 由分步计数原理此时共有种.最后由分类计数原理, 甲、乙所选的课程中至少有1门不相同的选法共有6+24=30种.故选C.法二: 可以先让甲、乙任意选择两门, 有种方法, 然后再把两个人全相同的情况去掉, 两个人全相同, 可以将甲与乙看成为同一个人, 从4门中任选两门有种选法, 所以至少有一门不相同的选法为种不同的选法.解题策略: 正难则反, 等价转化的策略.6.用0 到9 这10 个数字, 可以组成没有重复数字的三位偶数的个数为()【解析】:第一类个位是0, 共种不同的排法;第二类个位不是0, 共种不同的解法.故共有+ =328(个).解题策略: 合理分类与准确分步的策略.7.从10名大学毕业生中选3人担任村长助理, 则甲、乙至少有1人入选, 而丙没有入选的不同选法的总数为()【解析】: 合理分类, 甲、乙全被选中, 有种选法, 甲、乙有一个被选中, 有种不同的选法, 共+ =49种不同的选法.解题策略: (1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略.8.将甲、乙、丙、丁四名学生分到三个不同的班, 每个班至少分到一名学生, 且甲、乙两名学生不能分到同一个班, 则不同分法的总数为()【解析】: 将甲、乙、丙、丁四名学生分成三组, 则共有种不同的分法, 然后三组进行全排列共种不同的方法;最后再把甲、乙分到同一个班的情况排除掉, 共种不同的排法. 所以总的排法为- =30种.注意:这里有一个分组的问题, 即四个元素分成三组有几种不同的分法的问题.解题策略:⑴.正难则反、等价转化的策略⑵.相邻问题捆绑处理的策略⑶.排列、组合混合问题先选后排的策略;解排列组合的应用题要注意以下几点:仔细审题, 判断是排列还是组合问题, 要按元素的性质分类, 按事件发生的过程进行分步. 深入分析, 严密周详, 注意分清是乘还是加, 要防止重复和遗漏, 辩证思维, 多角度分析, 全面考虑.对限制条件较复杂的排列组合问题, 要周密分析, 设计出合理的方案, 把复杂问题分解成若干简单的基本问题后用两个计数原理来解决.由于排列组合问题的答案一般数目较大, 不易直接验证, 因此在检查结果时, 应着重检查所设计的解决方案是否完备, 有无重复和遗漏, 也可采用不同的方法求解.看看结果是否相同, 在对排列组合问题分类时, 分类标准应统一, 否则易出现遗漏和重复.。
《排列组合》知识点总结+典型例题+练习(含答案)
排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。
2025年高考数学一轮复习专题15 排列组合含解析
专题15排列组合易错点一:相邻与不相邻问题处理方法不当致误(相邻问题)相邻问题技巧总结相邻问题1、思路:对于相邻问题,一般采用“捆绑法”解决,即将相邻的元素看做是一个整体,在于其他元素放在一起考虑.如果设计到顺序,则还应考虑相邻元素的顺序问题,再与其他元素放在一起进行计算.2、解题步骤:第一步:把相邻元素看作一个整体(捆绑法),求出排列种数第二步:求出其余元素的排列种数第三步:求出总的排列种数易错提醒:排列组合实际问题主要有相邻问题和不相邻问题。
(1)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列);(2)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间);例、现有8个人排成一排照相,其中甲、乙、丙3人不能相邻的排法有()A .3565A A ⋅种B .()863863A A A -⋅种C .3353A A ⋅种D .()8486A A -种易错分析:本题易出现的错误是把“甲、乙、丙3人不能相邻”理解为“甲、乙、丙3人互不相邻”的情况,使结果中遗漏甲、乙、丙3人中有两人相邻的情况.正解:在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙3人不相邻的方法数,即863863A A A -⋅,故选B .易错警示:处理相邻问题的基本方法是“捆绑法”,即把相邻的若干个特殊元素“捆绑”为一个元素,然后与其余元素全排列,最后“松绑”,将特殊元素在这些位置上全排列.处理不相邻问题的基本方法是“插空法”,即先安排好没有限制条件的元素,然后把有限制条件的元素变式1:加工某种产品需要5道工序,分别为A ,B ,C ,D ,E ,其中工序A ,B 必须相邻,工序C ,D 不能相邻,那么有()种加工方法.A .24B .32C .48D .64解:工序A ,B 必须相邻,可看作一个整体,工序C ,D 不能相邻,所以先对AB ,E 工序进行排序,有222A =种方法,AB 内部排序,有222A =种方法,排好之后有三个空可以把工序C ,D 插入,共236A =种情况,所以一共有22624⨯⨯=种可能性故选:A变式2:中国航天工业迅速发展,取得了辉煌的成就,使我国跻身世界航天大国的行列.中国的目标是到2030年成为主要的太空大国.它通过访问月球,发射火星探测器以及建造自己的空间站,扩大了太空计划.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B 和C 实施时必须相邻,请问实验顺序的编排方法共有()A .24种B .48种C .96种D .144种解:首先将程序B 和C 捆绑在一起,再和除程序A 之外的3个程序进行全排列,最后将程序A 排在第一步或最后一步,根据分步计数原理可得241242224296A A A =⨯⨯=种.故选:C变式3:为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A .10种B .12种C .16种D .24种解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活A++=种方法;动有1种方法,则此时共有22(211)8A=种方法.综合得不同的安如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有222排方案共有10种.故选:A1.2023年杭州亚运会期间,甲、乙、丙3名运动员与5名志愿者站成一排拍照留念,若甲与乙相邻、丙不排在两端,则不同的排法种数有()A .48B .96C .144D .288【详解】由于A ,B 相邻,所以先将A,B 看作一个整体捆绑起来与E,F 进行全排列,然后将C ,D 插入到已排好队的两两之间以及首尾的空隙中即可,故共有322324A A A 144=,故选:C5.2023年5月21日,中国羽毛球队在2023年苏迪曼杯世界羽毛球混合团体锦标赛决赛中以总比分3:0战胜韩国队,实现苏迪曼杯三连冠.甲、乙、丙、丁、戊五名球迷赛后在现场合影留念,其中甲、乙均不能站左端,且甲、丙必须相邻,则不同的站法共有()A .18种B .24种C .30种D .36种【详解】当丙站在左端时,甲、丙必须相邻,其余人全排列,有33A 6=种站法;当丙不站在左端时,从丁、戊两人选一人站左边,再将甲、丙捆绑,与余下的两人全排,有123223A A A 24=种站法,所以一共有62430+=种不同的站法.故选:C6.为配合垃圾分类在学校的全面展开,某学校举办了一次垃圾分类知识比赛活动.高一、高二、高三年级分别有1名、2名、3名同学获一等奖.若将上述获一等奖的6名同学排成一排合影,要求同年级同学排在一起,则不同的排法共有()A .18种B .36种C .72种D .144种【详解】由题意可得12331233A A A A 72=,故选:C7.甲、乙两个家庭周末到附近景区游玩,其中甲家庭有2个大人和2个小孩,乙家庭有2个大人和3个小孩,他们9人在景区门口站成一排照相,要求每个家庭的成员要站在一起,且同一家庭的大人不能相邻,则所有不同站法的种数为()A .144B .864C .1728D .2880【详解】甲家庭的站法有2223A A 12=种,乙家庭的站法有3234A A 72=种,最后将两个家庭的整体全排列,有22A 2=种站法,则所有不同站法的种数为127221728⨯⨯=.故选:C8.某驾校6名学员站成一排拍照留念,要求学员A 和B 不相邻,则不同的排法共有()A .120种B .240种C .360种D .480种【详解】一方面:若要求学员A 和B 相邻,则可以将学员A 和B 捆绑作为一个“元素”,此时一共有5个元素,但注意到学员A 和B 可以互换位置,所以学员A 和B 相邻一共有2525A A 2154321240⋅=⨯⨯⨯⨯⨯⨯=种排法.A.1B.2A B C D四位同学参加圆桌会议,共有【详解】,,,其中,A B两位同学可坐在①②,②③,③④三个位置,并可进行互换位置,有C .如果三名同学选择的社区各不相同,则不同的安排方法共有60种D .如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种【详解】对于A ,如果社区A 必须有同学选择,则不同的安排方法有335461-=(种),故A 正确;对于B ,如果同学甲必须选择社区A ,则不同的安排方法有2525=(种),故B 错误;对于C ,如果三名同学选择的社区各不相同,则不同的安排方法共有54360⨯⨯=(种),故C 正确;对于D ,甲、乙两名同学必须在同一个社区,第一步,将甲、乙视作一个整体,第二步,两个整体挑选社区,则不同的安排方法共有2525=(种),故D 错误.故选:AC.18.在树人中学举行的演讲比赛中,有3名男生,2名女生获得一等奖.现将获得一等奖的学生排成一排合影,则()A .3名男生排在一起,有6种不同排法B .2名女生排在一起,有48种不同排法C .3名男生均不相邻,有12种不同排法D .女生不站在两端,有108种不同排法【详解】解:由题意得:对于选项A :3名男生排在一起,先让3个男生全排后再作为一个整体和2个女生做一个全排,共有3333A A 36⋅=种,A 错误;对于选项B :2名女生排在一起,先让2个女生全排后再作为一个整体和3个男生做一个全排,共有2424A A 48⋅=种,B 正确;对于选项C :3名男生均不相邻,先让3个男生全排后,中间留出两个空位让女生进行插空,共有2323A A 12⋅=种,C 正确;对于选项D :女生不站在两端,先从三个男生种选出两个进行全排后放在两端,共有2232C A 6⋅=种,然后将剩下的3人进行全排后放中间,共有223323C A A 36⋅⋅=种,D 错误.故选:BC19.甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是()A .如果甲,乙必须相邻且乙在甲的右边,那么不同的排法有24种B .最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .甲乙不相邻的排法种数为72种D .甲乙丙按从左到右的顺序排列的排法有40种【详解】A 选项,将甲与乙捆绑,看做一个整体,与其他三人站成一排,故有44A 24=种,A 正确;B 选项,若最左端排甲,此时其余四人可进行全排列,故有44A 24=种,易错点二:“捆绑法”中忽略了“内部排列”或“整体列”(不相邻问题)1.思路:对于不相邻问题一般采用“插空法”解决,即先将无要求的元素进行全排列,然后将要求不相邻的元素插入到已排列的元素之间,最后进行计算即可2.解题步骤:①先考虑不受限制的元素的排列种数②再将不相邻的元素插入到已排列元素的空当种(插空法),求出排列种数③求出总的排列种数易错提醒:处理相邻问题的基本方法是“捆绑法”,即把相邻的若干个特殊元素“捆绑”为一个元素,然后与其余元素全排列,最后“松绑”,将特殊元素在这些位置上全排列.处理不相邻问题的基本方法是“插空法”,即先安排好没有限制条件的元素,然后把有限制条件的元素按要求插入到排好的元素之间.但应该注意插入的元素之间如果也有顺序,应先进行排列.例、有3名男生,4名女生,在下列不同条件下,求不同的排列方法的总数.(1)全体排成一行,其中男、女生各站在一起;(2)全体排成一行,其中男生必须排在一起.错解:(1)男、女生各站在一起,先把男女生各看成一个整体,分别全排列,所以共有3434A A 144⨯=种排法;(2)将男生看成一个整体,与女生进行全排列即可,所以共有55A 120=种排法.错因分析:解决此类问题时将“在一起”的进行“捆绑”,与其他元素进行排列即可.错解中(1)忽略了将男女生所看成的两个整体进行排列,即忽略了“整体排列”;(2)忽略了将男生进行排列,即忽略了“内部排列”.正解:(1)男、女生各站在一起,先把男女生各看成一个整体,分别全排列,最后两个整体全排列①,所以共有342342A A A 288⨯⨯=种排法;(2)将男生看成一个整体,先进行内部排列,再与女生进行全排列即可②,所以共有3535A A 720⨯=种排法.变式1:为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A .10种B .12种C .16种D .24种解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有22(211)8A ++=种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有222A =种方法.综合得不同的安排方案共有10种.故选:A变式2:甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A .15B .14C .13D .512解:甲,乙、丙、丁、戊共5人随机地排成一行有55120A =种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有222223223224A A A =⨯⨯⨯=种方法,所以甲、乙相邻,丙、丁不相邻的概率为2411205=,故选:A 变式3:某地元旦汇演有2男3女共5名主持人站成一排,则舞台站位时男女间隔的不同排法共有()A .12种B .24种C .72种D .120种解:先排列2名男生共有22A 种排法,再将3名女生插入到3名男生所形成的空隙中,共有33A 种排法,所以舞台站位时男女间隔的不同排法共有232312A A =种排法,故选:A.1.4名男生和3名女生排队(排成一排)照相,下列说法正确的是()A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法D .若甲不站最左边,乙不站最右边,那么一共有7676A 2A -种排法【答案】AC【分析】分别利用捆绑法、插空法、优先安排特殊元素法、间接法依次求解.【详解】选项A ,利用捆绑法,将3名女生看成一个整体,其排列方式有33A 种,加上4名男生一共有5个个体,则有55A 种排列方式,则由乘法原理可知一共有5335A A 种排法,故A 正确;选项B ,利用插空法,4名男生排成一排形成5个空,其排列方式有44A 种,再将3名女生插入空中,有35A 种排列方式,则由乘法原理可知一共有4345A A 种排法,故B 不正确;选项C ,利用优先安排特殊元素法,甲不站最中间,甲先从除中间之外的6个位置选一个,其选择方式有16C 种,再将剩余的6人全排列,有66A 种排列方式,则由乘法原理可知一共有1666C A 种排法,故C 正确;选项D ,利用间接法,3人站成一排共有77A 种排法,若甲站最左边有66A 种排法,乙站最右边有66A 种排法,甲站最左边且乙站最右边有55A 种排法,所以甲不站最左边,乙不站最右边,那么一共有765765A 2A A -+种排法,故D 不正确;故选:AC.2.某校文艺汇演共6个节目,其中歌唱类节目3个,舞蹈类节目2个,语言类节目1个,则下列说法正确的是()A .若以歌唱类节目开场,则有360种不同的出场顺序B .若舞蹈类节目相邻,则有120种出场顺序C .若舞蹈类节目不相邻,则有240种不同的出场顺序D .从中挑选2个不同类型的节目参加市艺术节,则有11种不同的选法【答案】AD【分析】根据全排列、捆绑法、插空法,结合分步与分类计数原理依次分析选项,即可判断.【详解】A :从3个歌唱节目选1个作为开场,有13C =3种方法,后面的5个节目全排列,所以符合题意的方法共有553A 360=种,故A 正确;B :将2个舞蹈节目捆绑在一起,有22A 2=种方法,再与其余4个节目全排列,所以符合题意的方法共有552A 240=,故B 错误;C :除了2个舞蹈节目以外的4个节目全排列,有44A 24=种,再由4个节目组成的5个空插入2个舞蹈节目,所以符合题意的方法有2524A 480=种,故C 错误;D :符合题意的情况可能是1个歌唱1个舞蹈、1个歌唱1个语言、1个舞蹈1个语言,所以不同的选法共111111323121C C C C C C 11++=种,故D 正确.故选:AD.3.现将8把椅子排成一排,4位同学随机就座,则下列说法中正确的是()A .4个空位全都相邻的坐法有120种B .4个空位中只有3个相邻的坐法有240种C .4个空位均不相邻的坐法有120种D .4个空位中至多有2个相邻的坐法有900种【详解】对于A ,将四个空位当成一个整体,全部的坐法:55A 120=种,故A 对;对于B ,先排4个学生44A ,然后将三个相邻的空位当成一个整体,和另一个空位插入5个学生中有25A 种方法,所以一共有4245480A A =种,故B 错;对于C ,先排4个学生44A ,4个空位是一样的,然后将4个空位插入4个学生形成的5个空位中有45C 种,所以一共有4445A C 120=,故C 对;对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有120种,空位两个两个相邻的有:4245A C 240=,空位只有两个相邻的有412454A C C 720=,所以一共有1202407201080++=种,故D 错;故选:AC.4.有甲、乙、丙、丁、戊五位同学,下列说法正确的是().A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲、乙、丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有36种【详解】对于A ,将甲乙捆绑有22A 种方法,若戊在丙丁之间有22A 排法,丙丁戊排好之后用插空法插入甲乙,有14A 种方法;若丙丁相邻,戊在左右两边有2122A A 种排法,但甲乙必须插在丙丁之间,一共有212222A A A 种排法,所以总的排法有221212224222A A A A A A 24+= ,故A 错误;对于B ,若甲在最左端,有44A 24=种排法,若乙在最左端,先排甲有13A 3=种排法,再排剩下的3人有33A 6=,所以总共有243642+⨯=种排法,正确;对于C ,先将甲乙丙按照从左至右排好,采用插空法,先插丁有14A 种,再插戊有15A 种,总共有1145A A 20= 种,正确;对于D ,先分组,将甲乙丙丁分成3组有24C 种分法,再将分好的3组安排在3个社区有33A 种方法,共有2343C A 36= 种方法,正确;故选:BCD.5.现将9把椅子排成一排,5位同学随机就座,则下列说法中正确的是()A .4个空位全都相邻的坐法有720种B .4个空位中只有3个相邻的坐法有1800种C .4个空位均不相邻的坐法有1800种D .4个空位中至多有2个相邻的坐法有9000种【详解】对于A,将四个空位当成一个整体,全部的坐法:66A 720=,故A 对;对于B ,先排5个学生55A ,然后将三个相邻的空位当成一个整体,和另一个空位插入5个学生中有26A 中方法,所以一共有5256A A 3600=种,故B 错;对于C ,先排5个学生55A ,4个空位是一样的,然后将4个空位插入5个学生中有46C 种,所以一共有5456A C 1800=,故C 对;对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有1800种,空位两个两个相邻的有:5256A C 1800=,空位只有两个相邻的有521564A C C 7200=,所以一共有18001800720010800++=种,故D 错;故选:AC6.现有3位歌手和4名粉丝站成一排,要求任意两位歌手都不相邻,则不同的排法种数可以表示为()A .731424735454A A A A A A --B .4343A A C .7314222473543254A A A A C A A A --D .4345A A 【详解】第一种排法:分2步进行:①将4名粉丝站成一排,有44A 种排法;②4人排好后,有5个空位可选,在其中任选3个,安排三名歌手,有35A 种情况.则有4345A A 种排法,第二种排法:先计算3位歌手站一起,此时3位歌手看做一个整体,有314354A A A 种排法,再计算恰好有2位歌手站一起,此时2位歌手看做一个整体,与另外一个歌手不相邻,有22243254C A A A 种排法,则歌手不相邻有3142224354773254A A A C A A A A --种排法.故选:CD7.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是()A .某学生从中选2门课程学习,共有15种选法B .课程“乐”“射”排在不相邻的两周,共有240种排法C .课程“御”“书”“数”排在相邻的三周,共有144种排法D .课程“礼”不排在第一周,也不排在最后一周,共有480种排法【答案】ACD【分析】根据给定条件利用组合知识可以判断A 正确;不相邻问题利用插空法可以判断B 错误;相邻问题利用捆绑法可以判断C 正确;利用特殊位置法可以判断D 正确.【详解】对于A ,从六门课程中选两门的不同选法有2615C =种,A 正确;对于B ,先排“礼”、“御”、“书”、“数”,再用插空法排“乐”“射”,不同排法共有4245480A A =种,B 错误;对于C ,“御”“书”“数”排在相邻的三周,可将“御”“书”“数”视为一个元素,不同排法共有3434A A 144=种,C正确;对于D ,从中间四周中任取一周排“礼”,再排其它五门体验课程共有554A 480=种,D 正确.故选:ACD.8.有甲、乙、丙等6名同学,则说法正确的是()A .6人站成一排,甲、乙两人不相邻,则不同的排法种数为480B .6人站成一排,甲、乙、丙按从左到右的顺序站位,则不同的站法种数为240C .6名同学平均分成三组到A 、B 、C 工厂参观(每个工厂都有人),则有90种不同的安排方法D .6名同学分成三组参加不同的活动,甲、乙、丙在一起,则不同的分组方法有6种【详解】A 选项,6人站成一排,甲、乙两人不相邻,先将除甲、乙外的4人进行全排列,有44A 24=种排0.618339….小王酷爱数学,他选了其中的6,1,8,3,3,9这六个数字组成了手机开机密码,如果两个3不相邻,则小王可以设置的不同密码个数为()A .180B .210C .240D .360【详解】先把6,1,8,9排列,然后选两个空档插入3,总方法为4245A C 240=.故选:C .易错点三:忽视排列数、组合数公式的隐含条件(排列组合综合)1.两个重要公式(1)排列数公式()()()()()n m N m n m n n n n m n n A m n ≤∈+---=-=*且,,!!121 .(2)组合数公式()()()()()nm N m n m m n n n n m n m n C m n ≤∈+---=-=*且,,!!!!121 2、要点:()()()!m m n n n n C mn121+---= 一般用于计算,而()!!!m n m n C m n -=和m m mn mn A A C =一般用于证明、解方程(不等式).重点:三个重要性质和定理组合数性质(1)对称性:()n m N m n C A A C m n n m mm n m n≤∈==*-且,,;组合意义:从n 个不同的元素中任取m 个元素,则mn C .从n 个不同的元素中任取m 个元素后只剩下m n -个元素了,则从n 个不同的元素中任取m 个元素与从n 个不同的元素中任取m n -个元素是等效的.则mn nC -,故mn nm n C C -=.等式特点:等号两边组合数的下标相同,上标之和等于下标.应用:①简化计算,当2n m >时,通常将计算m n C 转化为计算mn n C -,如561236783858=⨯⨯⨯⨯==C C ②列等式:由y n x n C C =,可得y x =或n y x =+,如xC C 838=,则x =3或83=+x 故3=x 或5=x .(2)()n m Nm n C C C m nm n m n ≤∈+=*-+且,,11;组合意义:从()1+n 个不同的元素中任取m 个元素,则mn C 1+.对于某一元素,只存在着取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中任取()1-m 个元素,所以共有1-m nC 种,如果不取这一元素,则需从剩下的n 个元素中任取m 个元素,所以共有mn C ,根据分类加法原理:11-++=m nmn mn C C C .等式特点:下标相同而上标相差1的两个组合数之和,等于下标比原下标多1而上标与较大的相同的一个组合数.应用:恒等变形常见的组合恒等式:1-1m n mn C m m n C +-=,m n m n C m n n C 1--=,11--=m n mnC mn C 1121++++=++++r n r n r r r r r r C C C C C ,rn m r n m n r m n r m n r m C C C C C C C C C +--=++++022110 .(3)10=n C .重点:三个重要性质和定理组合数性质(1)对称性:()n m N m n C A A C m n n m mmn m n≤∈==*-且,,;组合意义:从n 个不同的元素中任取m 个元素,则mn C .从n 个不同的元素中任取m 个元素后只剩下m n -个元素了,则从n 个不同的元素中任取m 个元素与从n 个不同的元素中任取m n -个元素是等效的.则mn nC -,故mn nm n C C -=.等式特点:等号两边组合数的下标相同,上标之和等于下标.应用:①简化计算,当2n m >时,通常将计算m n C 转化为计算mn n C -,如561236783858=⨯⨯⨯⨯==C C ②列等式:由y n x n C C =,可得y x =或n y x =+,如xC C 838=,则x =3或83=+x 故3=x 或5=x .(3)()n m Nm n C C C m nm n m n ≤∈+=*-+且,,11;组合意义:从()1+n 个不同的元素中任取m 个元素,则mn C 1+.对于某一元素,只存在着取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中任取()1-m 个元素,所以共有1-m nC 种,如果不取这一元素,则需从剩下的n 个元素中任取m 个元素,所以共有mn C ,根据分类加法原理:11-++=m nmn mn C C C .等式特点:下标相同而上标相差1的两个组合数之和,等于下标比原下标多1而上标与较大的相同的一个组合数.应用:恒等变形常见的组合恒等式:1-1m n mn C m m n C +-=,m n m n C m n n C 1--=,11--=m n mnC mn C 1121++++=++++r n r n r r r r r r C C C C C ,rn m r n m n r m n r m n r m C C C C C C C C C +--=++++022110 .(3)10=n C .易错提醒:解排列、组合的综合问题要注意以下几点(1)元素是否有序是区分排列与组合的基本方法,无序的问题是组合问题,有序的问题是排列问题.(2)对于有限多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合的综合问题的一般方法.例、解不等式288A 6A x x -<.【错解】由排列数公式得8!8!6(8)!(10)!x x <⨯--,化简得x2-19x +84<0,解之得7<x<12.因为x ∈N*,所以x =8,9,10,11.【错因】在排列数公式A 中,隐含条件m≤n ,m ∈N*,n ∈N*,错解中没有考虑到x -2>0,8≥x ,导致错误.【正解】由288A 6A x x -<,得8!8!6(8)!(10)!x x <⨯--,化简得x2-19x +84<0,解之得7<x<12,①又所以2<x≤8,②由①②及x ∈N*得x =8.【答案】x =8.变式1.若37C C n n =,则n 的值为()A .7B .8C .9D .10解:因为37C C n n =,则由组合数的性质有37n +=,即10n =,所以n 的值为10.故选:D变式2.计算34C +35C +36C +L +32015C 的值为()A .42015CB .32015C C .42016C -1D .52015C -1解:33334333344562015445620154C C C C C C C C C C ++++=+++++- 4333455620154C C C C C =++++- 434420152015420161C C C C =+-=-.故选:C.变式3.若整数x 满足232551616C C x x x +++=,则x 的值为()A .1B .1-C .1或1-D .1或3解:由题可知23255x x x ++=+或()()2325516x x x ++++=,整理得2230x x --=或2890x x +-=,解得3x =或1x =-或1x =或9x =-.又20321605516x x x ⎧≤++≤⎨≤+≤⎩,所以只有1x =-和1x =满足条件,故x 的值为1或1-.故选:C1.()(2)(3)(4)(15)N ,15x x x x x x +----∈> 可表示为()A .132A x -B .142A x -C .1315A x -D .1415A x -【答案】B【分析】根据排列数的定义可得出答案.易错点四:实际问题不清楚导致计算重复或者遗漏致误(加法与乘法原理)正难则反问题技巧总结正难则反排除处理:对于正面不好解决的排列、组合问题,考虑反面(取补集的思想),一般在题目中有字眼“至多、至少”等体现。
(完整版)排列组合问题经典题型解析含答案.doc
排列组合问题经典题型与通用方法1. 相邻问题捆绑法 : 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .例 1.A,B,C, D, E五人并排站成一排,如果A, B必须相邻且 B 在 A 的右边,则不同的排法有()A 、 60 种B 、 48 种 C、 36 种D、 24 种2. 相离问题插空排 : 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例 2. 七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A 、 1440 种B 、 3600 种C 、 4820 种D 、 4800 种3. 定序问题缩倍法 : 在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 .例 3.A,B,C,D,E 五人并排站成一排, 如果 B 必须站在 A 的右边( A, B可以不相邻)那么不同的排法有 ()A 、 24 种B 、 60 种C 、 90 种 D、 120 种4. 标号排位问题分步法 : 把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成 .例 4. 将数字 1,2,3,4 填入标号为 1, 2,3,4 的四个方格里,每格填一个数,则每个方格的标号与所填 数字均不相同的填法有( ) A 、 6 种 B 、 9 种 C 、 11 种 D 、 23 种5. 有序分配问题逐分法 : 有序分配问题指把元素分成若干组,可用逐步下量分组法 . 例 5. ( 1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务, 不同的选法种数是( ) A 、 1260 种 B 、 2025 种 C、 2520 种 D、 5040 种( 2) 12 名同学分别到三个不同的路口进行流量的调查,若每个路口4 人,则不同的分配方案有( )A 、 C 124C 84C 44 种B 、 3C 124C 84 C 44 种 C 、 C 124C 84 A 33 种 DC 124 C 84C 44、A 33种6. 全员分配问题分组法 :例 6. ( 1)4 名优秀学生全部保送到3 所学校去,每所学校至少去一名,则不同的保送方案有多少种?( 2)5 本不同的书,全部分给4 个学生,每个学生至少一本,不同的分法种数为()A 、 480 种B、 240 种C、120 种D、 96 种第 1 页 共 9 页7.名分配隔板法 :例 7: 10 个三好学生名分到7 个班,每个班至少一个名,有多少种不同分配方案?8. 限制条件的分配分法:例8. 某高校从某系的 10 名秀生中 4 人分到西部四城市参加中国西部开建,其中甲同学不到川,乙不到西宁,共有多少种不同派遣方案?9.多元分法:元素多,取出的情况也多种,可按果要求分成不相容的几情况分数再相加。
排列组合题集(含详细答案)
排列组合题集一、解决排列、组合问题常用方法:两个原理、优限法、排除法、捆绑法(视一法)、插空法、隔板法、等可能法、固定模型、树图法等,但最基础的是“两个原理”.二、排列、组合问题大体分以下几个类型类型一:排队问题例1:7人站成一排,求满足下列条件的不同站法:(1)甲不站排头,乙不站排尾____________________(2)甲、乙两人不站两端________________________ (3)甲、乙两人相邻____________________________(4)甲、乙两人不相邻________________________ (5)甲、乙之间隔着2人______________________(6)甲在乙的左边____________________________ (7)若7人顺序不变,再加入3个人,要求保持原先7人顺序不变________________(8)若7人中有4男生,3女生,男、女生相间隔排列________(9)7人站成前后两排,前排3人,后排4人的站法____________(10)甲站中间______ _____(11)7人中现需改变3人所站位置,则不同排法____________ (12)若7人身高各不相同,则按照从高到低的站法________________(13)甲、乙、丙3人中从左向右看由高到底(3人身高不同)的站法________(14)若甲、乙两人去坐标号为1,2,3,4,5,6,7的七把椅子,要求每人两边都有空位的坐法_____ 类型二:分组与分配问题例2:将6本不同的书,若按如下方式来分,则不同分法种数有:(1)平均分成3堆,每堆2本______________________(2)分给甲、乙、丙3人,每人2本________________ (3)分成3堆,每堆本数分别是1,2,3,____________(4)分给甲1本,乙2本,丙3本________ __ (5)分给3人,1人1本,1人2本,1人3本________________(6)分给甲、乙、丙3人,每人至少1本____________________(7)若将6本不同书放到5个不同盒子里,有________种不同放法(8)若将6本不同书放到5个不同盒子里,每个盒子至少1本,则有_____种不同放法。
排列组合知识点总结+典型例题及答案解析
2.!①;②;③;④[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2 28步,那么共有C=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有213种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C种分法,然132后再分到两部门去共有C A种方法,第三步只需将其他3人分成两组,一组1人另一组213人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C种13213方法,由分步乘法计数原理共有2C A C=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36123[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C·A=12个;1233②所得空间直角坐标系中的点的坐标中含有1个1的有C·A+A=18个;13③所得空间直角坐标系中的点的坐标中含有2个1的有C=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144213223[解析] 分两类:若1与3相邻,有A·C A A=72(个),若1与3不相邻有33A·A=36(个)个不同场馆去,的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选。
2024年高考数学专项复习排列组合12种题型归纳(解析版)
排列组合12种题型归纳1.排列与组合的概念名称定义区别排列从n 个不同元素中取出m (m ≤n )个元素按照一定的顺序排成一列排列有序,组合无序组合合成一组2.排列数与组合数定义计算公式性质联系排列数从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数.用符号“A m n ”表示A m n =n (n -1)(n -2)…(n -m +1)=n !(n -m )!(n ,m ∈N *,且m ≤n )(1)A n n =n !;(2)0!=1C m n =A m nm !组合数从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号“C m n ”表示C m n =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(n ,m ∈N *,且m ≤n )(1)C n n =C 0n =1;(2)C m n =C n -m n ;(3)C m n +1=C mn +C m -1n【题型一】人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:2024年高考数学专项复习排列组合12种题型归纳(解析版)【变式演练】1.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A.30B.36C.60D.722.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.144B.120C.72D.483.2021年4月15日,是第六个全民国家安全教育日,教育厅组织宣讲团到某市的六个不同高校进行国家安全知识的宣讲,时间顺序要求是:高校甲必须排在第二或第三个,且高校甲宣讲结束后需立即到高校丁宣讲,高校乙、高校丙的宣讲顺序不能相邻,则不同的宣讲顺序共有()A.28种B.32种C.36种D.44种【题型二】人坐座位模型2:染色(平面)【典例分析】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则A、C区域颜色不相同的概率是A.1/7 b.2/7 c.3/7 D.4/7【变式演练】1.正方体六个面上分别标有A、B、C、D、E、F六个字母,现用5种不同的颜色给此正方体六个面染色,要求有公共棱的面不能染同一种颜色,则不同的染色方案有()种.A.420B.600C.720D.7802.如图,某伞厂生产的太阳伞的伞篷是由太阳光的七种颜色组成,七种颜色分别涂在伞篷的八个区域内,且恰有一种颜色涂在相对区域内,则不同颜色图案的此类太阳伞最多有().A .40320种B .5040种C .20160种D .2520种3.如图,用四种不同的颜色给图中的A ,B ,C ,D ,E ,F ,G 七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A .192B .336C .600D .以上答案均不对【题型三】人坐座位模型3:染色(空间):【典例分析】如图所示的几何体由三棱锥P ABC -与三棱柱111ABC A B C -组合而成,现用3种不同颜色对这个几何体的表面涂色(底面111A B C 不涂色),要求相邻的面均不同色,则不同的涂色方案共有()A .6种B .9种C .12种D .36种【变式演练】1.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法种数是()A.420B.210C.70D.352.在如图所示的十一面体ABCDEFGHI中,用3种不同颜色给这个几何体各个顶点染色,每个顶点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为__________.3.用五种不同颜色给三棱台ABC DEF的六个顶点染色,要求每个点染一种颜色,且每条棱的两个端点染不同颜色.则不同的染色方法有___________种.【题型四】书架插书模型【典例分析】有12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.168B.260C.840D.560【变式演练】A aB bC cD d1.从A,B,C,D,a,b,c,d中任选5个字母排成一排,要求按字母先后顺序排列(即按(),(),(),()先后顺序,但大小写可以交换位置,如AaBc或aABc都可以),这样的情况有__________种.(用数字作答)2..在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法3.书架上有排好顺序的6本书,如果保持这6本书的相对顺序不变,再放上3本书,则不同的放法共有().A.210种B.252种C.504种D.505种【题型五】球放盒子模型1:球不同,盒子也不同【典例分析】已知有5个不同的小球,现将这5个球全部放入到标有编号1、2、3、4、5的五个盒子中,若装有小球的盒子的编号之和恰为11,则不同的放球方法种数为()A.150B.240C.390D.1440【变式演练】1.将5个不同的小球放入3个不同的盒子,每个盒子至少1个球,至多2个球,则不同的放法种数有()A.30种B.90种C.180种D.270种2.将编号分别为1,2,3,4,5的5个小球分别放入3个不同的盒子中,每个盒子都不空,则每个盒子中所放小球的编号奇偶性均不相同的概率为A.17B.16C.625D.7243.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法种数为()A.15B.30C.20D.42【题型六】球放盒子模型2:球相同,盒子不同【典例分析】把1995个不加区别的小球分别放在10个不同的盒子里,使得第i 个盒子中至少有i 个球(1,2,...,10i ),则不同放法的总数是A .101940C B .91940C C .101949C D .91949C 【变式演练】1.将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法种数为()A .22B .25C .20D .482.把20个相同的小球装入编号分别为①②③④的4个盒子里,要求①②号盒每盒至少3个球,③④号盒每盒至少4个球,共有种方法.A .39C B .319C C .3494C AD .143205C C 3.将7个相同的小球放入A ,B ,C 三个盒子,每个盒子至少放一球,共有()种不同的放法.A .60种B .36种C .30种D .15种【题型七】相同元素排列模型1:数字化法【典例分析】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓才加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9【变式演练】1.一只小蜜蜂位于数轴上的原点处,小蜜蜂每一次具有只向左或只向右飞行一个单位或者两个单位距离的能力,且每次飞行至少一个单位.若小蜜蜂经过5次飞行后,停在数轴上实数3位于的点处,则小蜜蜂不同的飞行方式有多少种?A .5B .25C .55D .752.跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格子外跳到第8个格子的方法种数为A .8种B .13种C .21种D .34种3.如图所示,甲、乙两人同时出发,甲从点A 到B ,乙从点C 到D ,且每人每次都只能向上或向右走一格.则甲、乙的行走路线没有公共点的概率为().A .37B .57C .514D .1321【题型八】相同元素排列模型2:空车位停车等【典例分析】1.某单位有8个连在一起的车位,现有4辆不同型号的车需要停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为()A.240B.360C.480D.7202.马路上有编号为1,2,3,4,5,6,7,8,9的9盏路灯,为节约用电,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,满足条件的关灯办法有种【变式演练】1.某公共汽车站有6个候车位排成一排,甲、乙、丙三个乘客在该汽车站等候228路公交车的到来,由于市内堵车,228路公交车一直没到站,三人决定在座位上候车,且每人只能坐一个位置,则恰好有2个连续空座位的候车方式的种数是A.48B.54C.72D.842.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有_________种.3.地面上有并排的七个汽车位,现有红、白、黄、黑四辆不同的汽车同时倒车入库.当停车完毕后,恰有两个连续的空车位,且红、白两车互不相邻的情况有________种.【题型九】相同元素排列模型3:上楼梯等【典例分析】欲登上第10级楼梯,如果规定每步只能跨上一级或两级,则不同的走法共有A.34种B.55种C.89种D.144种【变式演练】1.斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、…..,在数学上,斐波那契数列以如下被递推的方法定义:()11f =,()21f =,()()()()122,f n f n f n n n N *=-+-≥∈.这种递推方法适合研究生活中很多问题.比如:一六八中学食堂一楼到二楼有15个台阶,某同学一步可以跨一个或者两个台阶,则他到二楼就餐有()种上楼方法.A .377B .610C .987D .15972.从一楼到二楼共有12级台阶,可以一步迈一级也可以一步迈两级,要求8步走完,则从一楼到二楼共有走法.A .12B .8C .70D .663.某人从上一层到二层需跨10级台阶.他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步,最多能跨3级台阶,称为三阶步.从一层上到二层他总共跨了6步,而且任何相邻两步均不同阶.则他从一层到二层可能的不同过程共有()种.A .6B .8C .10D .122010年全国高中数学联赛山东赛区预赛试题【题型十】多事件限制重叠型【典例分析】班班会准备从含甲、乙、丙的7名学生中选取4人发言,要求甲、乙两人至少有一个发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为A .217B .316C .326D .328【变式演练】1.某同学计划用他姓名的首字母,T X ,身份证的后4位数字(4位数字都不同)以及3个符号,,αβθ设置一个六位的密码.若,T X 必选,且符号不能超过两个,数字不能放在首位和末位,字母和数字的相对顺序不变,则他可设置的密码的种数为()A .864B .1009C .1225D .14412.2019年11月19日至20日,北京师范大学出版集团携手北师大版数学教材编写组在广东省珠海市联合举办了以“新课程,我们都是追梦人”为主题的北师大版中小学数学教材交流研讨会,会议期间举办了一场“互动沙龙”,要求从6位男嘉宾,2位女嘉宾中随机选出4位嘉宾进行现场演讲,且女嘉宾至少要选中1位,如果2位女嘉宾同时被选中,她们的演讲顺序不能相邻,那么不同演讲顺序的种数是()A .1860B .1320C .1140D .10203.有2辆不同的红色车和2辆不同的黑色车要停放在如图所示的六个车位中的四个内,要求相同颜色的车不在同一行也不在同一列,则共有______种不同的停放方法.(用数字作答)【题型十一】多重限制分类讨论【典例分析】高一新生小崔第一次进入图书馆时看到了馆内楼梯(图1),她准备每次走1级或2级楼梯去二楼,并在心中默默计算这样走完25级楼梯大概有多少种不同的走法,可是当她走上去后发现(图2)原来在13级处有一宽度达1.5米的平台,这样原来的走楼梯方案需要调整,请问,对于剩下的15级()123+楼梯按分2段的走法与原来一次性走15级的走法相比较少了______种.【变式演练】1.市内某公共汽车站有7个候车位(成一排),现有甲,乙,丙,丁,戊5名同学随机坐在某个座位上候车,则甲,乙相邻且丙,丁不相邻的不同的坐法种数为______;(用数字作答)3位同学相邻,另2位同学也相邻,但5位同学不能坐在一起的不同的坐法种数为______.(用数字作答)2.2021年某地电视台春晚的戏曲节目,准备了经典京剧、豫剧、越剧、粤剧、黄梅戏、评剧6个剧种的各一个片段.对这6个剧种的演出顺序有如下要求:京剧必须排在前三,且越剧、粤剧必须排在一起,则该戏曲节目演出顺序共有()种.A .120B .156C .188D .2403.甲、乙、丙、丁等六名退休老党员相约去观看党史舞台剧《星火》.《星火》的票价为50元/人,每人限购一张票.甲、乙、丙三人各带了一张50元钞,其余三人各带了一张100元钞.他们六人排成一列到售票处买票,而售票处一开始没有准备50元零钱,那么他们六人共有多少种不同排队顺序能使购票时售票处不出现找不出钱的状态.()A .720B .360C .180D .90【题型十二】综合应用【典例分析】设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需Ti 分钟,假设Ti 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少()A .从Ti 中最大的开始,按由大到小的顺序排队B .从Ti 中最小的开始,按由小到大的顺序排队C .从靠近Ti 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变【变式演练】1.由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是()A .120B .112C .110D .162.设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为()A .32B .56C .72D .843.为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为()A.34B.23C.56D.12【经典题专练】1.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则,A C区域涂色不相同的概率为()A.17B.27C.37D.472.将一个四棱锥S ABCD的每个顶点染上一种颜色,并使同一条棱的两端异色,如果只有5种颜色可供使用,则不同的染色方法的总数是A.540B.480C.420D.3603.清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共有10人进入决赛,其中高一年级3人,高二年级3人,高三年级4人,现采用抽签方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级3人不相邻的概率为()A.512B.712C.914D.5144.10名同学合影,站成前排4人后排6人,现摄影师要从后排6人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A .2263C A B .2666C A C .2266C AD .2265C A 5.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A .90B .135C .270D .3606.现有9个相同的球要放到3个不同的盒子里,每个盒子至少一个球,各盒子中球的个数互不相同,则不同放法的种数是()A .28B .24C .18D .167.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为A .16B .18C .32D .728.校园某处并排连续有6个停车位,现有3辆汽车需要停放,为了方便司机上下车,规定:当有汽车相邻停放时,车头必须同向;当车没有相邻时,车头朝向不限,则不同的停车方法共有__________种.(用数学作答)9.如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是()A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有64种C .甲、乙两人在2A 处相遇的概率为81400D .甲、乙两人相遇的概率为1210.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.11.2020年疫情期间,某县中心医院分三批共派出6位年龄互不相同的医务人员支援武汉六个不同的方舱医院,每个方舱医院分配一人.第一批派出一名医务人员的年龄为1P ,第二批派出两名医务人员的年龄最大者为2P ,第三批派出三名医务人员的年龄最大者为3P ,则满足123P P P <<的分配方案的概率为()A .13B .23C .120D .3412.如图,在某海岸P 的附近有三个岛屿Q ,R ,S ,计划建立三座独立大桥,将这四个地方连起来,每座桥只连接两个地方,且不出现立体交叉形式,则不同的连接方式有().A .24种B .20种C .16种D .12种13.现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是()A .每人都安排一项工作的不同方法数为54B .每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为4154A C C .如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为()3122352533C CC C A +D .每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是1232334333C C A C A +14.罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,它的产生标志着一种古代文明的进步.罗马数字的表示法如下:数字123456789形式ⅠⅡⅢⅣⅤⅥⅦⅧⅨ其中“Ⅰ”需要1根火柴,“Ⅴ”与“X”需要2根火柴,若为0,则用空位表示.(如123表示为,405表示为)如果把6根火柴以适当的方式全部放入下面的表格中,那么可以表示的不同的三位数的个数为()A .87B .95C .100D .10315.如图为33⨯的网格图,甲、乙两人均从A 出发去B 地,每次只能向上或向右走一格,并且乙到达任何一个位置(网格交点处)时向右走过的格数不少于向上走过的格数,记甲、乙两人所走路径的条数分别为M、 的值为()N,则M NA.10B.14C.15D.16排列组合12种题型归纳1.排列与组合的概念名称定义区别排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列排列有序,组合无序组合合成一组2.排列数与组合数定义计算公式性质联系排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.用符号“A m n”表示A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(n,m∈N*,且m≤n)(1)A n n=n!;(2)0!=1C m n=A m nm!组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号“C m n”表示C m n=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(n,m∈N*,且m≤n)(1)C n n=C0n=1;(2)C m n=C n-m n;(3)C m n+1=C m n+C m-1n【题型一】人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:解答(1):先捆绑俩女生,再排列捆绑女生,然后排列四个男生,两个“女生”插孔即可,2242 3245 C A A A(2)分类讨论24422422243445224542451; (2); (3)2C A A A A A C A A A ()都不相邻:A 两队各自相邻:一对两人相邻:!【方法技巧】人坐座位模型:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。
(完整版)排列组合问题经典题型解析含答案
排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A、1260种B、2025种C、2520种D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种 B、240种 C、120种 D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合专题复习及经典例题详解1. 学习目标掌握排列、组合问题的解题策略2.重点(1)特殊元素优先安排的策略:(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略.3.难点综合运用解题策略解决问题.4.学习过程:(1)知识梳理1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ⨯⨯⨯=...21种不同的方法.特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏.3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列.4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示.5.排列数公式:)、(+∈≤-=+---=N m n n m m n n m n n n n P m n ,)!(!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒:规定0!=16.组合:从n 个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n 个不同元素中取m 个不同元素的一个组合.7.组合数:从n 个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数,用符号mn C 表示. 8.组合数公式:)!(!!!)1)...(2)(1(m n m n m m n n n n P P C m m m n m n-=+---== 组合数的两个性质:①m n n m n C C -= ;②11-++=m n m n m n C C C特别提醒:排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.【解析】:(1)方法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有14P 种站法,然后其余5人在另外5个位置上作全排列有55P 种站法,根据分步乘法计数原理,共有站法:)(4805514种=P P 方法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有25P 种站法,然后中间4人有44P 种站法,根据分步乘法计数原理,共有站法:(种)4804425=P P 方法三:若对甲没有限制条件共有66P 种站法,甲在两端共有552P 种站法,从总数中减去这两种情况的排列数,即共有站法:)(48025566种=-P P (2)方法一:先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有55P 种站法,再把甲、乙进行全排列,有22P 种站法,根据分步乘法计数原理,共有)(2402255种=P P 方法二:先把甲、乙以外的4个人作全排列,有44P 种站法,再在5个空档中选出一个供甲、乙放入,有15P 种方法,最后让甲、乙全排列,有22P 种方法,共有)(240221544种=P P P(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有44P 种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有25P 种站法,故共有站法为(种)4802544=P P 此外,也可用“间接法”,6个人全排列有66P 种站法,由(2)知甲、乙相邻有2402255=P P 种站法,所以不相邻的站法有)(480240720225566种=-=-P P P .(4)方法一:先将甲、乙以外的4个人作全排列,有44P 种,然后将甲、乙按条件插入站队,有223P 种,故共有(种))(14432244=⨯P P 站法.方法二:先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有24P 种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有33P 种方法,最后对甲、乙进行排列,有22P 种方法,故共有(种)144223324=P P P 站法. (5)方法一:首先考虑特殊元素,甲、乙先站两端,有22P 种,再让其他4人在中间位置作全排列,有44P 种,根据分步乘法计数原理,共有(种)484422=P P 站法.方法二:首先考虑两端两个特殊位置,甲、乙去站有22P 种站法,然后考虑中间4个位置,由剩下的4人去站,有44P 种站法,由分步乘法计数原理共有(种)484422=P P 站法.(6)方法一:甲在左端的站法有55P 种,乙在右端的站法有55P 种,甲在左端而且乙在右端的站法有44P 种,故甲不站左端、乙不站右端共有66P -255P +44P =504(种)站法.方法二:以元素甲分类可分为两类:①甲站右端有55P 种站法,②甲在中间4个位置之一,而乙又不在右端有441414P P P 种,故共有55P +441414P P P =504(种)站法.考点二:组合问题 例2. 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.【解析】:(1)选法为(种)1202436=C C .(2)方法一:至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类计数原理可得总选法数为(种)2461644263436244614=+++C C C C C C C C .方法二:因“至少1名女运动员”的反面为“全是男运动员”,故可用间接法求解. 从10人中任选5人有510C 种选法,其中全是男运动员的选法有56C 种.所以“至少有1名女运动员”的选法(种)24656510=-C C . (3)方法一:可分类求解:“只有男队长”的选法为48C ;“只有女队长”的选法为48C ;“男、女队长都入选”的选法为38C ;所以共有248C +38C =196(种)选法.方法二:间接法:从10人中任选5人有510C 种选法.其中不选队长的方法有58C 种.所以“至少1名队长”的选法为510C -58C =196种.(4)当有女队长时,其他人任意选,共有49C 种选法;不选女队长时,必选男队长,共有48C 种选法,而且其中不含女运动员的选法有45C 种,所以不选女队长时的选法共有4548C C -种选法.所以既有队长又有女运动员的选法共有191)(454849=-+C C C 种. 考点三:综合问题例3.4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?【解析】:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有种14422132414=P C C C ;(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也就是说另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有24C 种方法;4个球放进2个盒子可分成(3,1)、(2,2)两类: 第一类有序不均匀分组有8221134=P C C 种方法;第二类有序均匀分组有622222224=⨯P P C C 种方法. 故共有842222222422113424=⨯+)(P P C C P C C C 种. 当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )A.70 种B.80种C.100 种D.140 种【解析】:分为2男1女,和1男2女两大类,共有7024151425=+C C C C 种.解题策略:合理分类与准确分步的策略.2.2020年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事司机、导游、翻译、礼仪四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A.48 种B.12种C.18种D.36种【解析】:合理分类,通过分析分为(1)小张和小赵恰有1人入选,先从两人中选1人,然后把这个人在前两项工作中安排一个,最后剩余的三人进行全排列有24331212=P C C 种选法.(2)小张和小赵都入选,首先安排这两个人做前两项工作有222=P 种方法,然后在剩余的3人中选2人做后两项工作,有633=P 种方法.故共有363322331212=+P P P C C 种选法. 解题策略:①.特殊元素优先安排的策略.②.合理分类与准确分步的策略.③.排列、组合混合问题先选后排的策略.3.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.48B.12C.180D.162【解析】:分为两大类:(1)含有0,分步:①从另外两个偶数中选一个,有12C 种方法,②.从3个奇数中选两个,有23C 种方法;③.给0安排一个位置,只能在个、十、百位上选,有13C 种方法;④.其他的3个数字进行全排列,有33P 种排法,根据乘法原理共有10833132312=P C C C 种方法.(2)不含0,分步:①偶数必然是2和4 ;②奇数有23C 种不同的选法,③然后把4个元素全排列,共44P 种排法,不含0 的排法有724423=P C 种.根据加法原理把两部分加一块得108+72=180个4.甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种【解析】:4人中恰有1名女同学的情况分为两种,即这1名女同学或来自甲组,或来自乙组,则所有不同的选法共有345121625261315=+C C C C C C 种选法.解题策略:合理分类与准确分步的策略.5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6B.12C.30D.36【解析】:法一:甲、乙所选的课程中至少有1门不相同的选法可以分为两类:⑴.甲、乙所选的课程中2门均不相同,甲先从4门中任选2门,乙选取剩下的2门,有62224=C C 种.⑵.甲、乙所选的课程中有且只有1门相同,分为2步:①从4门中先任选一门作为相同的课程,有414=C 种选法,②甲从剩余的3门中任选1门,乙从最后剩余的2门中任选1门,有61213=C C 种选法,由分步计数原理此时共有24121314=C C C 种. 最后由分类计数原理,甲、乙所选的课程中至少有1门不相同的选法共有6+24=30种. 故选C .法二:可以先让甲、乙任意选择两门,有362424=C C 种方法,然后再把两个人全相同的情况去掉,两个人全相同,可以将甲与乙看成为同一个人,从4门中任选两门有624=C 种选法,所以至少有一门不相同的选法为30242424=-C C C 种不同的选法. 解题策略:正难则反,等价转化的策略.6.用0 到9 这10 个 数字,可以组成没有重复数字的三位偶数的个数为 ( )A.324B.328C.360 D .648【解析】:第一类个位是0,共29P 种不同的排法;第二类个位不是0,共181814C C C 种不同的解法.故共有29P +181814C C C =328(个).解题策略:合理分类与准确分步的策略.7.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的总数为( )A.85B.56C.49D.28【解析】:合理分类,甲、乙全被选中,有1722C C 种选法,甲、乙有一个被选中,有2712C C 种不同的选法,共1722C C +2712C C =49种不同的选法.解题策略:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略.8.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为( )A.4B.18C.24D.30【解析】:将甲、乙、丙、丁四名学生分成三组,则共有24C 种不同的分法,然后三组进行全排列共33P 种不同的方法;最后再把甲、乙分到同一个班的情况排除掉,共33P 种不同的排法.所以总的排法为24C 33P -33P =30种. 注意:这里有一个分组的问题,即四个元素分成三组有几种不同的分法的问题.解题策略:⑴.正难则反、等价转化的策略⑵.相邻问题捆绑处理的策略⑶.排列、组合混合问题先选后排的策略;解排列组合的应用题要注意以下几点:仔细审题,判断是排列还是组合问题,要按元素的性质分类,按事件发生的过程进行分步.深入分析,严密周详,注意分清是乘还是加,要防止重复和遗漏,辩证思维,多角度分析,全面考虑.对限制条件较复杂的排列组合问题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后用两个计数原理来解决.由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决方案是否完备,有无重复和遗漏,也可采用不同的方法求解.看看结果是否相同,在对排列组合问题分类时,分类标准应统一,否则易出现遗漏和重复.。