LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

合集下载

22-LTE干扰专题-2LTE干扰整治

22-LTE干扰专题-2LTE干扰整治
这类干扰在频域上同样具有明显的分布特征,频域整体均有抬升,中间6个RB(RB4752)抬升更明显。
主要干扰因素:低空大气波导效应、天线挂高过高等原因导致 影响范围:全网大面积
7
LTE干扰特征规律总结散干扰
当GPS出现故障不工作时,会对周边其他小区产生明显的上行干扰,从前期处 理的一个案例发现:该类小区频域100个RB中RB7,RB48-51及RB92呈明显尖峰突 起状,其余RB干扰电平很低。
宽频干扰 干扰源:1、电信FDD阻塞:前期电信使用1860-1880MHz带宽,对TDD造成严重的阻塞
干扰,后更改至1875MHz后阻塞干扰消除; 2、干扰器开启:多个场所如学校、驾校发现开启干扰器造成全频段干扰。
远距离同频干扰 主要因素:低空大气波导效应导致远端基站的下行信号干扰近端的上行信号; 次要因素:天线挂高过高、发射功率过大
LTE干扰特征规律总结 LTE干扰整治经验总结
10
LTE干扰整治经验总结整治概
杂散干扰 干扰源:1、DCS1800:主要是由于天线对打或者隔离度不够导致,目前杂散干扰主要为
同站DCS1800导致; 2、移动1800WLAN:共发现9个由于移动1800WLAN导致的杂散干扰小区,
1800WALN使用频段为1855-1865MHz,这9个小区均与LTE小区天线共平台。
D频段干扰问题分析综述
工信部[2012]436号《工信部关于IMT频率规划事宜的通知》(2012年9月25日)
“2500-2690MHz频段为时分双工(TDD)方式的IMT系统工作频率”
潜在干扰
• 带外干扰——通过后续无委定义共存指标来解决 – 已经大规模部署的WLAN系统与位于低端 2500MHz的D频段TD-LTE系统存在干扰风险 – 卫星无线电测定业务(北斗一代下行),目 前应用情况及具体参数不像,参照FCC规定对 GPS保护要达到-65dBm/MHz,在无保护带情 况下实现困难 – 国内共有10多部的空管近程一次监视雷达 – 100部左右的 S 波段多普勒天气雷达等,且该 频段雷达功率较大

LTE干扰现状、原因分析及解决方案介绍

LTE干扰现状、原因分析及解决方案介绍

LTE 干扰现状、缘由分析及解决方案介绍干扰原理及分类依据干扰产生的起因可以将干扰分为系统内干扰和系统间干扰。

l 系统内干扰:系统内干扰通常为同频干扰。

TD-LTE 系统中,虽然同一个小区内的不同用户不能使用一样频率资源 (多用户 MIMO 除外),但相邻小区可以使用一样的频率资源。

这些在同一系统内使用一样频率资源的设备间将会产生干扰,也称为系统内干扰。

l 系统间干扰:系统间干扰通常为异频干扰。

世上没有完善的无线电放射机和接收机。

科学理论说明抱负滤波器是不行实现的,也就是说无法将信号严格束缚在指定的工作频率内。

因此,放射机在指定信道放射的同时将泄漏局部功率到其他频率,接收机在指定信道接收时也会收到其他频率上的功率,也就产生了系统间干扰。

主要的干扰具体分类如以以下图所示:系统内干扰原理lGPS 失锁干扰:GPS 失锁、星卡故障、GPS 天线故障等缘由导致时钟不同步的A 基站放射信号干扰到了B 基站的上行接收。

l 超远同频干扰:远距离的站点信号经过传播,DwPTS 与被干扰站的UpPTS 对齐,导致干扰站的基站发对被干扰站的基站收的干扰. l 帧失步干扰:帧偏置配置不当、子帧配比不全都等缘由会导致基站间的上下行帧对不齐,导致SiteA 的下行干扰到了SiteB 的上行,形成帧失步干扰。

l 重叠掩盖干扰:A小区和B 小区存在重叠区域(同频邻区必定会存在确定的切换区域),由于两个小区之间的信号不是全都的,不正交,会形成干扰。

l 硬件故障干扰:设备故障是指在设备运行中,设备本身性能下降等造成干扰包括:RRU 故障,RRU 接收链路电路工作特别,产生干扰;天馈系统故障,包括天线通道故障,天线通道RSSI 接收特别等,天馈避雷器老化,质量问题,产生互调信号落入工作带宽内。

系统间干扰原理l 杂散干扰:由于放射机中产生辐射信号重量落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。

l 互调/谐波干扰:不同频率的放射信号形成互调/谐波产物。

LTE网络优化相关经验总结(华为设备)

LTE网络优化相关经验总结(华为设备)
平均速率由1.6Mbps提升至6.8Mbps
参数调整前切换次数
参数调整后切换次数
参数调整前SINR
参数调整后SINR
谢谢!
TDS双模演进站点涉及天线更换的要求施工队必须现场测量 (确认小区编号、测量方位角、俯仰角),如发现设计工参与实 测工参不一致的,需请示网优中心确认再行施工。同时机房按照 新天线型号进行TDS权值更新,保证天线更换前后TDS覆盖的一致 性。
Page 3
TDS升级TDL注意事项(四)
• TDS-TDL双模RF优化协同 双模宏站的TDS与TDL共天馈,整体覆盖情况基本一致,但对部分 小区出现TDL与TDS覆盖目标不同(TDL站点与TDS站点不是全部都 是共址建设)带来的RF调整需求,将会对TDS的覆盖造成影响。
TDS升级TDL注意事项(一)
LTE双模站点改造,因站点硬件发生变化,进而影响到优化方法与流程,后续的优化工作都需 要站在双网的角度出发
变化一:双网共用天线:双模站点天线更换
现网由于TDS天线类型较老,不支持FA或FAD功能,需 要进行更换。
变化二:双 网共用RRU:RRU更换
现网部分RRU(三期以前)需更换至双模RRU
TDS原网
工程改造:更换 天馈或RRU
双模站点开通 升级
双网优化 指标优化流程
监控指标
时间
簇名称
小区语 音话务 量(爱尔
兰)
小区视 频话务 量(爱 尔兰)
小区PS 域流量 (GB)
CS域无 线接通 率(%)
CS域无 线掉话 率(%)
PS域无 线接通 率(%)
PS-域 掉线率
(%)
CS域3G 切换2G 成功率
TDS升级TDL注意事项(五)
• F频段双模宏站RRU的功率配置 双模替换、升级场景下华为建议TDS-TDL功率配置方案采用均

LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

方位角、安装DCS1800滤波器及更换D频段天线的顺序整改。
增加DCS1800 滤波器 21% 调整方位角 7%
按图施工 21%
其他 3%
更换天线位臵 17%
更换为D频段 14% 调整天线平台 17%
22
1、DCS1800杂散干扰的解决方案-按图施工
与设计院会审整改方案时发现存在工程未按设计图纸施工的现象,如宿迁宿城 中豪国际星城LF三个小区均存在上行干扰,现场勘查与DCS1800隔离度仅有 1.2米,与设计图纸不符,已要求按图整改:
龙LF-3小区提升至第一平台
思考:目前宿迁DCS1800暂未发现由于垂直隔离度低导致的杂散干扰,因此在平台 有空余空间的情况可以更换至其他平台。
24
1、DCS1800杂散干扰的解决方案-调整效果
8月10日对3小区更换平台,整改前后指标对比如下:
FTP吞吐率测试 整改前 下载 整改后 宿豫来 龙LF-3 提升 整改前 上传 整改后 提升 RSRP Average SINR 下行吞吐率 RSRP Average SINR 下行吞吐率 下行吞吐率 RSRP Average SINR 上行吞吐率 RSRP Average SINR 上行吞吐率 上行吞吐率 好点 -68 31 60.2 -71 27.3 60.4 0.2 -67 30 9.46 -72 27.3 11.9 2.44 中点 -90 14.75 28.7 -89 15.5 45.7 17 -85 17.3 4.52 -90 15.3 7.91 3.39 差点 -102 5.7 8.6 -99 7.9 29.8 21.2 -97 5.2 1.87 -99 6.7 6.19 4.32
用户 感知
3
系统间干扰-杂散干扰特征

TD—LTE网络优化经验总结

TD—LTE网络优化经验总结

TD—LTE网络优化经验总结【摘要】在现代这个信息化的时代,信息技术的发展迅速,而无线网络的快速发展彻底改变了人与人之间的沟通方式,还有无线网络通过计算机进行操作,使人们的工作更加便捷、快速、高效,进而加快了社会现代化的进程。

然而传统的无线网络技术已经不能够满足现代工作高效、高安全的保障需求,因此对于无线网络通信技术的变革是必然的事情,目前社会科学领域中也对TD-LTE网络进行了优化,并在实际生活工作当中得到很好的应用。

本文将对TD-LTE网络的优化进行进行阐述。

【关键词】TD-LTE网络;优化;方法在现代经济的快速发展中,网络通信技术得到了飞速发展。

而TD-LTE技术由于具有较强的频谱利用效率、网络结构简洁开放、宽带传输灵活以及承载能力强等特点受到人们的青睐。

但是无线网络的发展中各种各样的网络被应用,这些网络在应用的同时也产生了一定的问题,同时也对无线网络的承载力提出了新的要求,因此需要对TD-LTE网络进行优化方能满足现代网络的使用要求。

本文具体阐述了TD-LTE的基本原理,并对目前TD-LTE网络中存在的问题给出了优化方案。

一、TD-LTE网络技术的基本原理TD-SCDMA系统经过长期的改进便产生了TD-LTE(Time Division-Long Term Evolution)网络系统,TD-LTE网络中运用的技术是OFDMA空中接口技术,在TD-LTE网络中通过此技术的运用使无线通信系统的上下行数据传输速率和频谱利用率得到显著的提高,同时还降低了系统的传输时延。

另外运用了OFDMA空中接口技术的TD-LTE网络系统还具有语音、视频点播以等多项功能。

目前,TD-LTE因为其独特的优势在设备制造和电信通信中得到了广泛的应用。

图1 TD-LTE网络系统的基本工作原理图TD-LTE网络系统的基本工作原理如图1所示。

在TD-LTE网络系统中采用的结构是较完全的基站e-Node B结构,此结构具有全新的功能,并且在TD-LTE 网络系统中是连接各节点之间传输的媒介,各节点在系统逻辑层面上的连接接口是X2接口,在系统中通过这样的连接方式使系统内部形成Mesh型网络结构,这种网络结构在系统中的功能是支持UE在整个系统中移动性,通过这样的传输方式和结构类型才保证了用户们在使用移动网络时进行平滑无缝的网络切换。

LTE室分多系统合路干扰分析与整改措施

LTE室分多系统合路干扰分析与整改措施

LTE室分多系统合路干扰分析与整改措施中讯邮电咨询设计院有限公司2014年06月1干扰问题现象 (3)2干扰站点比例 (3)3干扰问题原因.....................3.1互调干扰分析 (3)3.2互调干扰的影响因素 (6)3.3功率容量影响分析 (7)4建议整改措施.....................4.1整改目标 (9)4.2整改方案 (9)4.3其他工作要求 (9)LTE 室分多系统合路干扰分析与整改措施目前,广东联通1800MHz FDD-LTE 室分建设方案大多为合路至原室分系统, 开通后出现了 WCDM 室分底噪异常抬升的干扰问题,严重影响了现网3G 用户。

为 解决此类问题,广东联通网络建设部特制定《LTE 室分多系统合路干扰分析与整 改措施》用于指导LTE 室分工程建设。

1干扰问题现象LTE 室分合路至原系统激活之后, WCDM 室分RTW 有1-5dB 的抬升;LTE 模 拟下行加载100%t ,部分 WCDM 室分RTWP 有 15-20dB 的明显抬升。

干扰现象如 下图所示: LTE (2干扰站点比例前期专项研究工作主要在广州开展,广州 FDD 规模为560站,其中合路站点 共374站,占比66.8%。

目前已开通LTE 室分168个,其中方案为合路站点111 个;存在干扰站点15个,占比13.5%。

广分LTE 占点互调干扰处理进度0512.xlsx3干扰问题原因3.1互调干扰分析无源互调是射频信号路径中两个或多个射频信号因各种无源器件 (例如天线、 电缆或连接器)的非线性特性引起的混频干扰信号。

在大功率、多信道系统中, 铁磁材料、异种金属焊接点、金属氧化物接点和松散的射频连接器都会产生信号出 丽|艸 1』那:TWIT 打Krn •弑<!丹「丹imwRVini I >5ri 珥口二彳 阪;二則 耳炜欝 Kuna4mim W IK .工■甸 ^MWaz诵电 raj*M 册勺汀U 望皿口』a •十 14WffiKJi 内njiwiR* 斗卜护F*/ tWl!■乙.Artwaam鼻;EMCW刑■SAMH此!«■•曲坠干LWH r 屮 D1F-«IL*■■A 2I 九的混频,其最终结果就是PIM(Passive In termodulatio n)干扰信号互调产物的大小取决于器件的互调抑制度。

lte网络优化报告

lte网络优化报告

LTE网络优化报告概述本报告旨在对LTE(Long Term Evolution)网络进行优化分析,并提出相应的解决方案,以提升网络性能和用户体验。

问题识别在进行网络优化之前,我们首先需要识别出存在的问题。

通过对现有LTE网络的分析,我们发现以下几个主要问题:1.覆盖不足:部分区域的信号覆盖不稳定,导致用户在特定地点和时间无法正常使用网络服务。

2.容量不足:高峰时段,网络负载过重,导致数据传输速度下降,延迟增加,影响用户的上网体验。

3.干扰问题:多个基站之间的干扰导致信号质量下降,进而影响用户的通信质量。

解决方案1. 覆盖优化为了解决覆盖不足的问题,我们可以采取以下措施:•新增基站:在信号覆盖不足的区域建设新的基站,以弥补信号盲点。

•室内覆盖优化:在室内区域增加小基站或分布式天线系统(DAS),提供更稳定的信号覆盖。

2. 容量优化为了提升网络容量,我们可以考虑以下方法:•频谱资源优化:合理分配和利用可用频谱资源,以增加网络容量。

•增加小区数量:根据实际需求,增加小区数量,分散用户负载,提升网络性能。

•引入载波聚合技术:通过将多个频段的载波进行聚合,提高用户的数据传输速度。

3. 干扰优化干扰问题是影响网络性能的重要因素,我们可以采用以下方法来解决干扰问题:•基站定位优化:通过合理设置基站的位置和方向,减少不必要的基站之间干扰。

•功率控制:合理调整基站的发射功率,避免功率过大导致的干扰问题。

•频率规划:合理规划频率资源,减少邻频干扰和自干扰。

测试与评估为了验证网络优化效果,我们可以进行以下测试与评估:1.覆盖测试:在问题区域进行覆盖测试,测试信号强度和覆盖范围是否得到改善。

2.容量测试:在高峰时段进行容量测试,测试数据传输速度和延迟是否得到改善。

3.干扰测试:对问题区域进行干扰测试,测试信号质量和通信质量是否得到改善。

结论通过对LTE网络优化的措施和测试与评估,我们可以得出以下结论:1.通过增加基站数量和室内覆盖优化,解决了覆盖不足的问题,提升了信号覆盖范围和稳定性。

LTE网络干扰优化与整治探讨

LTE网络干扰优化与整治探讨

LTE网络干扰优化与整治探讨发表时间:2020-04-07T15:07:18.193Z 来源:《基层建设》2019年第32期作者:樊健[导读] 摘要:随着移动互联网的迅猛发展,通信质量和用户体验成为了移动通信系统设计的首要目标。

身份证号码:34252919921211XXXX摘要:随着移动互联网的迅猛发展,通信质量和用户体验成为了移动通信系统设计的首要目标。

然而干扰一直是影响通信网络性能的负面因素,对接通率、掉线率都会产生重要影响,严重影响用户感知。

本文从系统内干扰、系统外干扰两个纬度研究探讨解决干扰问题的优化思路和整治方法,从而有效提升用户体验。

关键词:通信质量用户体验系统内系统外1、概述干扰是日常无线网络运维优化中的重点。

本文从系统内干扰、系统外干扰两个维度研究探讨解决干扰问题的优化思路和整治,从而有效提升用户体验。

2、系统内干扰优化2.1 远距离同频干扰优化一.远距离同频干扰原理TDD无线通信系统中,在某种特定的气候、地形、环境条件下,远端基站下行时隙传输距离超过TDD系统上下行保护时隙(GP)的保护距离,干扰到了本地基站上行时隙。

这就是TDD系统特有的“远距离同频干扰”。

在大规模部署的网络中,此类干扰较为普遍,且可能会对本地基站的上行用户随机接入时隙以及上行业务时隙造成干扰,从而影响用户上行随机接入、切换过程以及上行业务时隙。

二.远距离同频干扰规律及优化手段1.远距离同频干扰规律总结(1)频域整体均有抬升,中间6个RB(RB47-52)抬升更明显。

(2)影响范围大,城郊及农村受干扰小区多于市区,夏季雨后天晴稳定天气容易出现,时间段从晚22时持续至次日8时;(3)干扰小区具有明显的方向性,且干扰源不固定。

2.远距离同频干扰优化手段(1)增大Gp的时间长度。

相当于增加了干扰生效的传输距离,可使干扰的功率值进一步减小,但会对基站下行小区的峰值速率和小区容量造成影响。

(2)下倾角自动调整。

由受扰基站定位出施扰基站后,如果通过X2接口信息交互确认为施扰基站下倾角设置的问题,可加大施扰基站的下倾角角度。

LTE网络优化分析报告

LTE网络优化分析报告

LTE网络优化分析报告一、引言随着无线通信技术的快速发展,LTE(Long Term Evolution)成为了目前最主流的无线通信技术之一、在大量LTE网络的部署和应用中,网络优化成为了提高网络质量和用户体验的关键。

本报告将对LTE网络优化进行分析,并提出相应的优化方案。

二、问题分析1.资源分配不均:LTE网络中,基站通过资源分配矩阵来为用户分配信道资源。

然而在实际应用中,由于网络负载不均、信道干扰等原因,导致资源分配不均的现象较为常见。

2.切换失败率过高:LTE网络中,切换是指用户从一个基站切换到另一个基站,以提供更好的信号覆盖和服务质量。

然而在实际应用中,切换失败率过高的问题也是一个常见的网络优化问题。

3.上行干扰较大:LTE网络中,上行干扰是一种常见的问题,主要由于不同基站之间的干扰和短码冲突而引起。

三、优化方案1.资源分配优化:针对资源分配不均的问题,可以通过优化资源分配算法来实现资源的均衡分配。

可以采用动态资源分配的方式,根据网络负载和信道质量等因素来决定分配给用户的资源。

2.切换优化:为了解决切换失败率过高的问题,可以采取以下方案:1)改善切换触发条件:调整切换触发条件,确保只在必要的情况下触发切换,避免不必要的切换导致切换失败。

2)优化切换参数:调整切换参数,使得切换过程更加稳定和可靠。

可以通过测试和实验确定最佳的切换参数配置。

3.上行干扰抑制:为了降低上行干扰,可以采取以下措施:1)减小基站之间的干扰:调整基站的覆盖范围和功率分配,减小基站之间的干扰。

可以通过合理部署基站和优化功率控制策略来实现。

2)解决短码冲突问题:针对短码冲突,可以通过重新规划短码分配,避免不同用户之间的短码冲突,从而降低上行干扰。

四、实施方案1.资源分配优化方案:建立资源分配优化模型,通过网络实时监测和调整资源分配矩阵,以达到资源分配均衡的目的。

2.切换优化方案:建立切换优化策略,包括调整切换触发条件和优化切换参数。

LTE网络优化思路及总结

LTE网络优化思路及总结

LTE网络优化思路及总结随着移动通信技术的快速发展,LTE网络已经成为主流的无线通信网络。

然而,网络性能的不断追求和用户体验的提升要求我们进行LTE网络的优化。

本文将从网络优化思路和总结两个方面进行探讨。

首先,我们需要明确LTE网络的优化目标,包括:提高网络容量,提高网络覆盖,降低网络延迟,优化网络速率和提高信道质量。

在实施LTE 网络优化时,需要采取以下几个方面的思路。

一、网络规划优化网络规划是网络优化的基础,要充分利用现有资源,合理规划网络的基站、频段、天线等资源分布,避免网络拥塞和覆盖不足的问题。

在网络规划的过程中,要确保网络的容量和覆盖能够满足用户的需求。

二、基站参数优化基站参数优化是LTE网络优化的核心内容之一、通过调整LTE网络中的基站参数,如功率控制参数、天线倾斜角度、小区间隔等,可以达到提高网络容量和覆盖的目的。

同时,还可以通过调整邻区关系和小区间干扰等参数来优化信号质量,提高网络速率和降低网络延迟。

三、运动台优化运动台是LTE网络中一个重要的优化对象。

通过控制运动台的速度、发送功率和接收敏感度等参数,可以有效降低网络干扰,减少功率消耗,提高网络容量和覆盖。

此外,对于高速移动用户,还可以采用基站切换、载波聚合等技术来提高网络速率和降低延迟。

四、信道质量优化信道质量是决定网络性能的一个关键因素。

通过优化信道质量,可以提高网络速率和降低网络延迟。

优化信道质量的方法包括信道估计、信道编码、信道调制、信道编码率选择等。

通过采用更高效的信道编码算法和调制方式,可以提高网络的吞吐量,同时通过合理选择编码率可以降低网络延迟。

最后,对于LTE网络优化的总结如下:一、网络优化是一个综合性的任务,需要从网络规划、基站参数调整、运动台控制和信道质量优化等多个方面进行思考。

二、在网络优化过程中,需要确保网络的容量和覆盖能够满足用户的需求,同时保证网络的速率和信道质量处于一个较高的水平。

三、通过合理调整基站参数、控制运动台、优化信道质量等手段,可以提高LTE网络的性能,提升用户的体验。

LTE覆盖干扰分析及优化

LTE覆盖干扰分析及优化

LTE覆盖干扰分析及优化文章主要研究LTE覆盖干扰优化思路,通过弱覆盖优化、模三干扰分析、重叠覆盖率优化、网络拓扑结构优化、邻区优化,改善LTE干扰水平,提升4G 网络质量。

标签:FDD-LTE;覆盖;干扰;优化;模三;邻区漏配1 概述LTE采用同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,频谱效率高,但是相邻小区在小区的交界处由于使用了相同的频谱资源,则容易产生较强的小区间干扰。

2 干扰分类根据干扰产生的原因,LTE干扰可分为系统内干扰、系统间干扰和外部干扰三个部分:(1)系统内干扰:主要指LTE系统内因邻区数据配置错误、PCI越区覆盖、重叠覆盖等带来的小区与小区之间的干扰;对于LTE而言,系统内干扰还可能存在交叉时隙干扰,GPS失步干扰,超远覆盖干扰等。

(2)系统间干扰:主要指LTE与其他不同系统之间因隔离度、互调等问题造成的系统与系统之间的干扰。

(3)外部干扰:通常为非通信系统的未知干扰源。

2.1 系统内干扰OFDM技术,LTE系统较好的解决了小区内同频干扰,但存在较严重的小区间同频干扰。

造成邻区同频干扰的主要原因是:(1)邻区漏配无法切换导致的邻区干扰;(2)PCI冲突、PCI模三冲突导致RS在频域上的干扰;(3)重叠覆盖区域过大导致的邻区干扰;(4)越区覆盖导致的干扰。

2.2 系统间干扰当LTE和GSM900、DCS1800、WCDMA2100、CDMA800、TD SCDMA(A频段、E频段)共存时,这些系统和LTE之间都有可能产生相互干扰。

这些干扰主要有以下几类:(1)邻频干扰:如果不同的系统工作在相邻的频率,由于发射机的邻道泄漏和接收机邻道选择性的性能的限制,就会发生邻道干扰;(2)杂散干扰:由干扰源在被干扰接收机工作频段产生的噪声,使被干扰接收机的信噪比恶化;(3)互调干扰:种类包括多干扰源形成的互调、发射分量与干扰源形成的互调和交调干扰;(4)阻塞干扰:阻塞干扰并不是落在被干扰系统接收带内的,但由于干扰信号过强,超出了接收机的线性范围,导致接收机饱和而无法工作。

LTE干扰处理分析

LTE干扰处理分析

LTE干扰处理分析LTE(Long Term Evolution)是一种高速无线通信技术,广泛应用于4G移动通信系统中。

然而,在实际应用中,LTE信号的传输可能会受到各种干扰,从而影响通信质量和性能。

为了解决这个问题,必须进行干扰处理的分析。

首先,我们来分析一下可能导致LTE信号干扰的原因。

LTE信号在传输过程中容易受到同频干扰和邻频干扰的影响。

同频干扰指的是不同LTE基站之间频率资源的冲突,当多个基站在相同频率上工作时,信号会相互干扰。

邻频干扰是指邻近频段的信号对LTE信号的影响,例如邻近的WiFi信号或其他无线通信系统的信号。

针对同频干扰问题,有几种常见的干扰处理方法。

一种是通过改进天线设计和布局来减小同频干扰。

例如,可以采用不同方向的天线,使得信号在特定方向上干扰最小化。

另一种方法是增加基站的解调复杂度,在接收端使用更加复杂的信号处理算法,提高信号的建模和估计能力,从而减小同频干扰。

对于邻频干扰问题,一种常见的解决方法是采用频谱规划和频谱监测技术。

通过将LTE系统的频段与其他无线通信系统的频段进行合理的划分,可以尽量减小邻频干扰的可能性。

此外,频谱监测技术可以实时监测周围环境中的邻近信号强度和频率使用情况,及时调整LTE系统的工作频段,避免与其他系统的频段产生冲突。

除了同频干扰和邻频干扰外,LTE信号还可能受到其他干扰的影响,例如多径衰落、多用户干扰和自身信号质量问题。

多径衰落是由于信号在传播过程中经历多个路径,抵达接收端时产生干扰。

为了处理这个问题,可以采用多天线传输技术,例如MIMO(Multiple-Input Multiple-Output)技术,以减小多径干扰的影响。

多用户干扰是指当多个用户同时使用LTE系统时,由于资源分配不合理或者用户间距离过近而产生互相干扰的问题。

为了解决这个问题,可以考虑合理的资源调度和功率控制策略,避免用户之间的干扰。

自身信号质量问题是指LTE系统自身的信号质量不佳,例如信号衰减或者过强的干扰。

TD-LTE干扰问题特征规律总结及整改经验总结

TD-LTE干扰问题特征规律总结及整改经验总结

➤主要干扰源:GSM900:2f1、f1+f2,DCS1800:2f1-f2 且自身互调性能较差。 ➤影响范围:单个小区。
3、系统内干扰分析 1、远距离同频干扰特征
远距离同频干扰概述: TDD 无线通信系统中, 在某种特定的气候、 地形、 环境条件下, 远端基站下行时隙传输距离超过 TDD 系统上下行保护时隙(GP)的保护距离,干扰到了本 地基站上行时隙。这就是 TDD 系统特有的“远距离同频干扰”。在大规模部署的网络中,此 类干扰较为普遍, 且可能会对本地基站的上行用户随机接入时隙以及上行业务时隙造成干扰, 从而影响用户上行随机接入、切换过程以及上行业务时隙。 这类干扰在频域上同样具有明显的分布特征,频域整体均有抬升,中间的 6 个 RB (RB47-52)抬升更明显。
DCS1800 滤波器及更换 D 频段天线的顺序整改。 ➤排查流程: 通过对杂散干扰源的排查及整改,梳理出 LTE 杂散干扰排查流程:
➤经验总结: 1、各厂家 DCS1800 设备杂散性能统计

对于我公司/联通杂散较差的 DCS1800 设备如果与 F 频段共站,即使 DCS1800 不使 用 1850M 以上频点,也会对共站的 F 频段设备产生杂散干扰,影响 RB 视隔离度等因 素决定。
➤扫频仪:电信 FDD-LTE 使用了 1880MHz,图为 JDSU 扫频仪在某小区(移动电信 共址站点)现场捕获的频率使用信息,可以清晰看出 1860-1880MHz 的存在 FDD-LTE 信 号。 ➤测试手机:利用电信 SIM 卡和 4G 终端对此处疑似信号进行测试,发现电信 LTE 信 号如下:TDD2530~2550MHzband41,FDD 下行 1850~1870Mhz,1860~ 1880MHzband3。

LTE网络优化分析报告

LTE网络优化分析报告

LTE网络优化分析报告一、引言LTE(Long Term Evolution)是第四代无线通信技术,具有高速率、低时延、分组交换以及平坦的IP体系等优势,已经成为全球主流的移动通信网络技术。

然而,在LTE网络部署和运营过程中,仍然面临一些网络质量问题和优化挑战。

本报告针对LTE网络的优化进行了深入分析和研究,总结出可行的优化方案和建议,以提升网络性能和用户体验。

二、网络问题分析1.LTE网络覆盖问题:在实际应用中,LTE网络的覆盖范围存在一定的限制,尤其是在室内和复杂地理环境下容易出现盲区和弱覆盖区域。

2.LTE网络干扰问题:不同频段之间和相邻基站之间的干扰是LTE网络中一个主要的质量问题。

另外,周围的信号干扰,如电力线干扰和室内杂散干扰也会影响网络性能。

3.LTE网络容量问题:随着用户数量和用户对数据流量需求的增加,LTE网络容量可能成为限制网络性能和用户满意度的一个瓶颈。

高速率用户和热点区域的需求更加迫切。

4.LTE网络切换问题:在LTE网络中,切换是保证用户业务连续性和网络质量的关键。

网络切换过程中可能存在瞬时中断和延迟等问题。

三、优化方案和建议1.LTE覆盖优化方案:-合理规划增加基站覆盖,特别是在人口密集区、室内和边缘区域等盲区和弱覆盖区域。

- 利用Sector Splitting和MIMO等技术,提升基站的覆盖范围和容量。

- 利用Femtocell和Picocell等微型基站技术,增强室内覆盖和边缘区域覆盖效果。

2.干扰优化方案:-通过频率选择、频率规划和功率分配等手段,减小同一频段或相邻基站之间的干扰。

-引入干扰消除和干扰对消等技术,减小外部信号和杂散的影响。

3.容量优化方案:-通过增加基站数量、增加信道带宽和将MIMO技术用于高容量覆盖区域,提升LTE网络的容量。

- 对于高速率用户和热点区域,可以采用Small Cell、Carrier Aggregation等技术,增加网络的处理能力。

【最佳实践原创】双鸭山处理电信FDD干扰导致高掉线经验总结

【最佳实践原创】双鸭山处理电信FDD干扰导致高掉线经验总结

双鸭山处理电信FDD干扰导致高掉线经验总结双鸭山网络部无线室2015年4月14日随着4G LTE网络的快速发展和逐步建设,特别是近年来数据业务的爆发,对网络的覆盖和容量要求越来越高,各种制式的无线网络相互掺杂,网络底噪不断抬升,干扰问题复杂多变,形势严峻,严重影响了用户体验。

目前TD-LTE 频段都存在较为复杂的干扰问题,如果不妥善解决,将严重影响TD-LTE 网络的建设步伐和运营质量。

本文旨在阐述无线网络干扰处理思路,通过现有资源进行逐一排查,使得一线工作人员快速、准确、便捷地掌握干扰的原理及排查的方法,更好地支撑LTE网络干扰问题的定位解决。

二.优化思路2015年4月初,双鸭山市移动LTE网络突增不明强干扰,导致全网指标呈现整体恶化趋势,为此领导高度重视,专门成立移动干扰排查小组,确定干扰来源。

通过3天的攻坚克难,最终锁定电信FDD-LTE的干扰源;排查思路如下:2015年4月初,我们发现双鸭山市移动LTE网络指标呈现整体恶化趋势,干扰问题凸显,尤其是对接通率、掉线率等指标影响颇大;以YFB019_B42_双集贤第二砖厂-HLH站点的话统数据分析为例:无线接通率通过话统分析,YFB019_B42_双集贤第二砖厂-HLH-1小区日平均RRC失败7200次,RAB失败850次,3小区日平均RRC失败430次,RAB失败150次;平均接通率在65%左右;无线接通率指标如下:1)YFB019_B42_双集贤第二砖厂-HLH-1小区周接通指标走势2)YFB019_B42_双集贤第二砖厂-HLH-3小区周接通指标走势无线掉线率通过话统分析,YFB019_B42_双集贤第二砖厂-HLH- 1小区日平均掉线300次,3小区日平均掉线80次;平均掉线率2.5%左右;无线掉线率指标如下:1)YFB019_B42_双集贤第二砖厂-HLH-1小区周掉线指标走势2)YFB019_B42_双集贤第二砖厂-HLH-3小区周掉线指标走势小结:通过话统指标,结合现网告警、邻区、参数、传输、路测等手段排查均无异常;通过干扰检测监控,发现突发的恶化小区均存在较强的干扰。

LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)【动态模板】

LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)【动态模板】
添加标题
年度工作概述
工作完成情况
项目成果展示
工作不足之处
明内容这 里可以添加主要内容这里 可以添加主要内容这里可 以添加主要内容
这里可以添加主要内容这 里可以添加主要内容这里 可以添加主要内容这里可 以添加主要内容
20XX年X月,我们的工作简述
这里可以添加主要内容这 里可以添加主要内容这里 可以添加主要内容这里可 以添加主要内容 这里可以添加主要内容这 里可以添加主要内容这里 可以添加主要内容这里可 以添加主要内容
LOGO
添加公司名称 Company Name
工作总结暨新年计划PPT模板
LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)【动态模板】
2019
汇报人:××× 编号: 876852
前言
QIAN YAN
回顾这一年的工作,在取得成绩的同时,我们也找到了工作 中的不足和问题,主要反映于xx及xxx的风格、定型还有待 进一步探索,尤其是网上的公司产品库充分体现我们xxxxx 和我们这个平台能为客户提供良好的商机和快捷方便的信息、 导航的功能发挥。展望新的一年,我们将继续努力,力争各 项工作更上一个新台阶。
添加文字内容 7月份 8月份 9月份 10月份 11月份 12月份
5月份 6月份
单击此处添加标题内容
在这里添加 你的文字内 容或者在此 处插入图片
在这里添加 你的文字内 容或者在此 处插入图片
在这里添加 你的文字内 容或者在此 处插入图片
总结:LTE网络优化-年度工作概述 干扰问题处理 (干扰特征规律总结及整改 工作完成情况 项目成果展示 工作不足之处 明年工作计划 经验总结)【动态模板】
• 内容123 • LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)【动态 模板】LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结) 【动态模板】LTE网络优化-干扰问题处理(干扰特征规律总结及整改经 验总结)【动态模板】LTE网络优化-干扰问题处理(干扰特征规律总结及 整改经验总结)【动态模板】 • LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)【动态 模板】LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结) 【动态模板】LTE网络优化-干扰问题处理(干扰特征规律总结及整改经 验总结)【动态模板】 955087

TD-LTE网格优化经验总结报告(经典)

TD-LTE网格优化经验总结报告(经典)

X X市T D-L T E网络网格X区域网络优化经验阶段报告1目录目录 (2)1.TDL优化思路综述 (3)2.TDL优化方法 (3)2.1覆盖优化 (3)2.1.1覆盖空洞及弱覆盖 (9)2.1.2重叠覆盖 (9)2.2干扰优化 (11)2.2.1干扰优化思路 (11)2.2.2干扰的排查方法 (12)2.3参数优化 (13)2.3.1调度次数是否饱满 (13)2.3.2是否处于双流 (14)2.3.3终端侧下BLER是否比较高 (14)2.3.4是否下行调度MCS等级较低且终端侧bler为0 (15)2.3.5邻区优化 (15)2.3.5PCI优化 (16)2.4精品区域快速插花组网方案 (16)2.4.1网络状况要求 (16)2.4.2插花组网相关参数及算法简介 (16)2.4.3快速插花组网配置方法 (17)1.TDL优化思路综述TD-LTE的优化主要集中在两个重点:增强覆盖和控制干扰,对应的优化对象为RSRP 和SINR。

TD-LTE现阶段集团未给出KPI指标,在网络优化中应该关注的目标主要有:✓RSRP✓SINR✓平均吞吐量-上行/下行(Mbps)✓切换成功率✓开机附着成功率✓连接建立成功率✓掉线率✓寻呼成功率在TD-LTE组网初期,首先要完成无线网络环境的优化,后续可开展系统容量的优化;在网络整体优化基本完成的情况下,可以针对具体问题点开展优化工作。

2.TDL优化方法2.1覆盖优化【覆盖问题概述】良好的无线覆盖是保障移动通信网络质量和指标的前提,结合合理的参数配置才能得到一个高性能的无线网络。

TD-LTE网络一般采用同频组网,同频干扰严重,良好的覆盖和干扰控制对网络性能意义重大。

移动通信网络中涉及到的覆盖问题主要表现为四个方面:覆盖空洞、弱覆盖、越区覆盖和导频污染。

无线网络覆盖问题产生的原因主要有如下五类:(1)无线网络规划准确性。

无线网络规划直接决定了后期覆盖优化的工作量和未来网络所能达到的最佳性能。

LTE的干扰及抗干扰解决方案

LTE的干扰及抗干扰解决方案

LTE的干扰及抗干扰解决方案【摘要】:文章首先简要介绍了LTE及其干扰技术,并指出小区间干扰协调技术(ICIC)是目前业界最为重视同时也是相对研究成熟度最高的一种抗干扰技术。

文章主要分析了三种小区干扰协调技术:带优先级的Reuse-1方案、SFR方案(软频率复用)、FFR方案(部分频率复用)。

【关键词】:LTE;干扰;小区干扰协调;频带;吞吐量1. 前言LTE系统中,由于一个小区可以使用整个系统频带,不可避免的有小区间干扰,特别是在小区边缘地带,性能受小区间干扰影响较大,对于运营商来说,无线接入技术和接入网络最重要的性能指标是频谱利用率和业务QoS保障。

为了达到高的频谱效率,在部署网络时要尽可能使频率复用因子接近1。

为了提供令人满意的服务,需要保证用户,特别是小区边缘用户的QoS。

对于采用OFDM技术的LTE系统来说,由于其物理层技术自身没有小区间干扰抑制的机制,如果采用频率复用因子为1,会导致小区间的干扰水平增大,特别是位于小区边缘用户的性能会受到极大损失。

为提高小区边缘的数据速率,提高系统的频谱利用率,必须有效减轻小区间干扰。

2. LTE及其抗干扰技术LTE是一个基于OFDM技术的系统,OFDM技术的原理是将高速数据分成并行的低速数据,然后在一组正交的子载波上传输。

通过在每个OFDM符号中加入保护时间,只要保护时间大于多径时延,则一个符号的多径分量就不会干扰相邻符号,这样可以消除符号间干扰(ISI)。

为了保证子载波之间的正交性,OFDM符号可以在保护时间内发送循环前缀(CP)。

CP是将OFDM符号尾部的信号搬移到头部构成的,这样就可保证每个子载波的完整性,进而保证其正交性,就不会造成子载波间的干扰。

实际系统内由于子载波频率和相位的偏移等因素会造成子信道间的干扰,但是可以在物理层采用先进的信号处理技术使这种干扰降到最低。

因此,小区内干扰可以忽略不计,影响系统性能的干扰主要为小区间干扰(ICI)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方位角、安装DCS1800滤波器及更换D频段天线的顺序整改。
增加DCS1800 滤波器 21% 调整方位角 7%
按图施工 21%
其他 3%
更换天线位臵 17%
更换为D频段 14% 调整天线平台 17%
22
1、DCS1800杂散干扰的解决方案-按图施工
与设计院会审整改方案时发现存在工程未按设计图纸施工的现象,如宿迁宿城 中豪国际星城LF三个小区均存在上行干扰,现场勘查与DCS1800隔离度仅有 1.2米,与设计图纸不符,已要求按图整改:
南通麦客隆C PRB干扰对比
0 -20 1 4 7 1013161922252831343740434649525558616467707376798285889194 -40 -60 -80 -100 -120 -140 关闭电信FDDLTE前 关闭电信FDDLTE后
12
1、电信FDD-LTE阻塞干扰
思考:现网未按图施工的站点绝不仅有这一个站点,为什么站点建设时不按图施 工?后期单验为什么未发现?为什么会通过验收?
23
1、DCS1800杂散干扰的解决方案-调整天线平台
宿迁宿豫来龙LF-3小区后台指标统计存在较强的上行干扰,现场勘查发现L3小 区与DCS1800隔离度较小导致:
整改方案:现场发现宿宿豫来龙LF-2小区在第一平台,而1、3小区在第二平台,与 结合设计图纸对比一致,同时发现在第一平台240度方向上有空抱杆,建议将宿豫来
影响范围:单个小区
4
系统间干扰-宽频干扰特征
宽频干扰主要是阻塞干扰和设备故障等造成。 频域100个RB的典型特征为绝大部分RB均受到强干扰。
主要干扰源:电信联通FDD使用1880MHz频段,自身接收机性能较差;设备 故障等
影响范围:单个小区
5
系统间干扰-互调/谐波干扰特征
这两种干扰在频域上表现为某个或者某几个RB呈尖峰突起状,未受干扰RB底 噪很低:
主要干扰源:GSM900:2f1、f1+f2,DCS1800:2f1-f2且自身互调性能较差 影响范围:单个小区
6
系统内干扰-远距离同频干扰
远距离同频干扰概述: TDD无线通信系统中,在某种特定的气候、地形、环境条件下, 远端基站下行时隙传输距离超过TDD系统上下行保护时隙(GP)的保护距离,干扰到了本
★★★★☆ ★★★★★ ★★★★★ ★★☆☆☆ ★★★★☆ ★★★★☆
无线 接通 率
DCS1800、FDD ★★★★★ ★★☆☆☆ 、小灵通
上行 吞吐 率
系统 阻塞干扰 全频段抬升 单个站点 DCS1800、FDD ★★★★★ ★★★★☆ 间干 扰 互调/谐 GSM900、 几个RB尖峰突起 单个站点 ★★★☆☆ ★★★☆☆ 波干扰 DCS1800 其他干扰 暂无 单个站点 TDS、其他干扰源 ★★☆☆☆ ★★★★☆
整改方案及效果:
现场将TD-L小区天线位臵更换到离电信LTE天线5米左右的位臵,发现干扰明显降低
14
3、联通FDD-LTE杂散干扰
同样,联通FDD由于天线隔离度不够也会造成杂散干扰
联通FDD-LTE杂散干扰: 根据OMC后台干扰检测监控发现新城大厦L_1小区干扰情况较严重,从现场天线分布可 以看出:移动1800与移动TD-L天线垂直隔离度为0,水平隔离度约3米左右,移动TD-L天线与 联通FDD天线垂直隔离度为0,水平隔离度约50cm左右
LTE网络优化-干扰问题特征规
律总结及整改经验总结
目录
LTE干扰特征规律总结 LTE干扰整治经验总结
2
LTE干扰分类
LTE干扰分为系统内干扰和系统间干扰,系统间干扰包括杂散干扰、阻塞干扰、互调/
谐波干扰等,系统内干扰包括远距离同频干扰、GPS故障、数据配臵错误等。LTE干扰
会导致无线接通率、掉线率的下降,严重影响用户感知,对此,省公司牵头从频域100 个RB分布规律上总结各类干扰的特征。
龙LF-3小区提升至第一平台
思考:目前宿迁DCS1800暂未发现由于垂直隔离度低导致的杂散干扰,因此在平台 有空余空间的情况可以更换至其他平台。
24
1、DCS1800杂散干扰的解决方案-调整效果
8月10日对3小区更换平台,整改前后指标对比如下:
FTP吞吐率测试 整改前 下载 整改后 宿豫来 龙LF-3 提升 整改前 上传 整改后 提升 RSRP Average SINR 下行吞吐率 RSRP Average SINR 下行吞吐率 下行吞吐率 RSRP Average SINR 上行吞吐率 RSRP Average SINR 上行吞吐率 上行吞吐率 好点 -68 31 60.2 -71 27.3 60.4 0.2 -67 30 9.46 -72 27.3 11.9 2.44 中点 -90 14.75 28.7 -89 15.5 45.7 17 -85 17.3 4.52 -90 15.3 7.91 3.39 差点 -102 5.7 8.6 -99 7.9 29.8 21.2 -97 5.2 1.87 -99 6.7 6.19 4.32
对现网9个LTE干扰小区通过闭塞排除DCS1800小区导致因素后,发现该部分小区均存在
共平台的卡特1800 WLAN(即OFDM)小区,水平隔离度2~3米,覆盖方向存在交叉。
如上左图所示为存在干扰的LTE小区,现场勘查发现OFDM小区天线与LTE共平台,且与 3小区几乎对打,干扰较为严重。对比共站不存在干扰的其他OFDM小区,发现均未与 LTE小区共平台。
现场测试情况: 在新城大厦L_1小区天线口扫频频段1800Mhz-1900Mhz,测试发现除了TD-LTE的F频段 1880 Mhz -1900Mhz电平明显整体高于底噪,FDD频段1840Mhz-1860Mhz电平整体较高, 1860-1880Mhz底噪有所抬升。
15
3、联通FDD-LTE杂散干扰
现场扫频情况: 现场测试情况如下图所示,通过现场扫 频,发现信号由移动TDD天线右侧友商美化 罩内天线输出,结合天线所支持的频段 (1710~2170Mhz)和连接天线的RRU类型 (RRUS 12-B3),判断为联通LTE天线 路测指标:
在楼顶天面的天线旁对新城大厦L_1小区 进行了测试,RSRP值-60dBm,SINR值 22db,下载速率10Mbps左右。
地基站上行时隙。这就是TDD系统特有的“远距离同频干扰”。在大规模部署的网络中,
此类干扰较为普遍,且可能会对本地基站的上行用户随机接入时隙以及上行业务时隙造成 干扰,从而影响用户上行随机接入、切换过程以及上行业务时隙。 这类干扰在频域上同样具有明显的分布特征,频域整体均有抬升,中间6个RB(RB4752)抬升更明显。
主要干扰因素:低空大气波导效应、天线挂高过高等原因导致 影响范围:全网大面积
7
系统内干扰-GPS故障
当GPS出现故障不工作时,会对周边其他小区产生明显的上行干扰,从前期处 理的一个案例发现:该类小区频域100个RB中RB7,RB48-51及RB92呈明显尖峰突 起状,其余RB干扰电平很低。
如上左图所示,红色圆圈项里风景区为新建站,LTE的时钟源是级联TD侧的GPS,
由于GPS故障导致,干扰最大时段影响周边25km范围内300多个小区。
影响范围:该站为圆心周边多个小区
8
目录
LTE干扰特征规律总结 LTE干扰整治经验总结
9
LTE干扰整治概述
杂散干扰 干扰源:1、DCS1800ห้องสมุดไป่ตู้主要是由于天线对打或者隔离度不够导致,目前杂散干扰主要为
同站DCS1800导致; 2、移动1800WLAN:共发现9个由于移动1800WLAN导致的杂散干扰小区, 1800WALN使用频段为1855-1865MHz,这9个小区均与LTE小区天线共平台。
图一:设计图纸DCS1800-3小区对打LTE-2小区
图二:后台跟踪100个PRB走势,明显前高后低状
图三:现场实拍效果,存在对打
20
1、DCS1800杂散干扰的成因-隔离度较小
LTE天线与DCS1800天线基本同方向,但隔离度较小,主要是由于前期工程未按图 施工或者平台空间较小导致,目前该类原因造成的干扰占比较大
改善约10dB左右, 未完全清除
BTS下电,干扰是否消除?

干扰消除
18
目录
LTE干扰特征规律总结 LTE干扰整治经验总结
1、FDD干扰排查方法 2、系统间干扰排查 3、系统内干扰排查
19
1、DCS1800杂散干扰的成因-天线对打
这类LTE小区受影响较为严重,现场发现隔离度即使超过9米调整LTE小区方位角仍 然受杂散干扰影响,该类LTE小区可通过更换D频段天线或者增加垂直隔离度解决
宽频干扰 干扰源:1、电信FDD阻塞:前期电信使用1860-1880MHz带宽,对TDD造成严重的阻塞
干扰,后更改至1875MHz后阻塞干扰消除; 2、干扰器开启:多个场所如学校、驾校发现开启干扰器造成全频段干扰。
远距离同频干扰 主要因素:低空大气波导效应导致远端基站的下行信号干扰近端的上行信号; 次要因素:天线挂高过高、发射功率过大
用户 感知
3
系统间干扰-杂散干扰特征
频域100个RB典型特征为前端RB底噪较高,后端RB底噪较低(小灵通除外
,干扰特征相反),整体曲线较为平滑,干扰带宽一般为前10M。
主要干扰源:DCS1800(1805-1830Mhz)、OFDM天线(1850-1880MHz)、
小灵通等由于天线对打、或天线隔离度不够造成
17
4、移动1800WLAN杂散干扰现场处理流程
通过闭塞OFDM小区腔体,干扰有所改善,但未全部消除,机架下电后干扰消失: 排查流程:
是否DCS1800干扰

是否OFDM共平台

闭塞OFDM站点腔体, 干扰是否消除?
相关文档
最新文档