组合学习神经网络
机器学习:SVM和神经网络的比较
机器学习:SVM和神经网络的比较机器学习是一种利用算法让计算机系统能够从数据中学习的技术。
在机器学习中,支持向量机(SVM)和神经网络是两种常用的算法。
本文将对这两种算法进行比较,包括其原理、应用、优缺点等方面的分析。
支持向量机(SVM)是一种用于分类和回归分析的监督学习模型。
其基本原理是通过一个最优超平面将不同类别的数据点分开,使得类别之间的间隔最大化。
SVM可用于线性和非线性分类,还可通过核函数将数据映射到更高维度的空间中,从而实现非线性分类。
SVM的优点之一是能够处理高维数据,且具有较好的泛化能力。
而且,由于其核函数的特性,SVM可以应用于非线性问题。
神经网络是一种通用的机器学习模型,受启发于人类神经系统的结构。
神经网络由多层神经元组成,每一层都与下一层相连,最终输出层生成预测结果。
训练神经网络需要大量的数据和计算资源,通常需要进行反向传播算法来更新权重和偏差,使得神经网络能够学习到正确的模式。
神经网络在图像和语音识别等领域有着广泛的应用,并且在深度学习中占据着重要的地位。
下面我们将从不同的角度对SVM和神经网络进行比较:1.原理SVM基于最大化间隔的原则进行分类,它找出最优的超平面将不同类别的数据点分隔开。
神经网络则是通过多层神经元的组合来学习数据的模式和特征。
SVM是一种几何学方法,而神经网络则是一种统计学方法。
2.应用SVM在文本分类、图像分类、生物信息学、金融分析等领域有着广泛的应用。
而神经网络在语音识别、图像识别、自然语言处理、机器翻译等方面也有着杰出的成绩。
3.优缺点SVM的优点是能够处理高维数据,且泛化能力较好。
但对于大规模数据和非线性问题,SVM的计算开销较大。
神经网络的优点是能够处理大规模数据和非线性问题,并且可以通过调节网络结构和参数来适应不同的数据。
但神经网络的缺点是需要大量的数据和计算资源,训练时间较长,且容易出现过拟合的问题。
4.性能SVM在小规模数据和线性问题上有着不错的性能,但对于大规模数据和非线性问题,其性能可能不如神经网络。
神经网络的集成学习方法与实现技巧
神经网络的集成学习方法与实现技巧神经网络是目前人工智能领域中最热门的研究方向之一。
它模拟了人脑神经元之间的相互连接,通过学习和训练来实现各种复杂的任务。
然而,单一的神经网络在解决复杂问题时可能会存在一定的局限性,这就引出了集成学习的概念。
集成学习是一种将多个不同的学习算法或模型组合在一起,以提高预测准确性和泛化能力的方法。
在神经网络领域中,集成学习可以通过多种方式实现。
下面将介绍几种常见的神经网络集成学习方法及其实现技巧。
1. 堆叠式集成学习堆叠式集成学习是一种将多个神经网络模型按层次结构组合在一起的方法。
首先,训练一组基础神经网络模型,然后将它们的输出作为输入,构建更高层次的神经网络模型。
这种方法可以提高模型的表达能力和预测准确性。
实现技巧包括设计合适的网络结构、选择适当的激活函数和优化算法,以及进行有效的参数初始化和正则化。
2. 投票式集成学习投票式集成学习是一种将多个独立训练的神经网络模型的预测结果进行投票或加权平均的方法。
每个模型都可以独立地对输入进行预测,最后通过投票或加权平均来确定最终的预测结果。
这种方法可以减少模型的偏差和方差,提高预测准确性和鲁棒性。
实现技巧包括选择合适的投票策略或加权方案,以及设计有效的模型集成策略。
3. 集成学习的正则化方法正则化是一种通过限制模型的复杂度来提高泛化能力的方法。
在神经网络集成学习中,正则化可以通过多种方式实现。
例如,可以在训练过程中引入随机性,如随机失活、随机权重初始化和随机扰动等,以增加模型的鲁棒性和泛化能力。
此外,还可以使用集成学习的正则化方法,如Bagging和Boosting,来减少模型的过拟合风险。
4. 集成学习的模型选择方法模型选择是一种通过选择最优的模型或模型组合来提高预测准确性的方法。
在神经网络集成学习中,模型选择可以通过多种方式实现。
例如,可以使用交叉验证来评估不同模型的性能,并选择性能最好的模型进行集成。
此外,还可以使用模型选择的算法,如基于信息准则的模型选择和基于贝叶斯推断的模型选择,来选择最优的模型组合。
深度学习神经网络逼近非线性函数
深度学习神经网络逼近非线性函数深度研究神经网络是一种强大的机器研究模型,被广泛应用于各个领域,包括图像识别、自然语言处理等。
它通过多层神经元来建模复杂的非线性函数关系,可以实现对非线性函数的逼近。
神经网络基础神经网络由输入层、隐藏层和输出层组成。
输入层接收输入数据,隐藏层负责对输入进行加工和提取特征,输出层则生成最终的预测结果。
每个神经元在隐藏层和输出层都会进行激活函数的运算,将线性变换后的结果转化为非线性的输出。
非线性函数逼近深度研究神经网络能够逼近非线性函数的原因在于其多层结构。
每一层的神经元都可以研究到不同级别的特征表示,通过多层的组合与堆叠,神经网络能够模拟和逼近非常复杂的非线性函数。
激活函数的重要性激活函数是神经网络中非常重要的组成部分,它引入了非线性因素,使得神经网络能够处理非线性问题。
常见的激活函数有Sigmoid函数、ReLU函数等,它们可以将线性变换的结果映射到非线性的输出,增强神经网络的表达能力。
深度研究的训练深度研究神经网络的训练过程通常使用反向传播算法。
该算法通过计算实际输出与期望输出之间的误差,然后根据误差调整神经网络的权重和偏置,以逐渐提高网络的预测准确性。
通过反复迭代训练,神经网络可以逐渐优化和逼近目标非线性函数。
应用领域深度研究神经网络广泛应用于图像识别、语音识别、自然语言处理等领域。
例如,在图像识别中,神经网络可以通过研究大量图像样本来识别物体、人脸等;在自然语言处理中,神经网络可以对文本进行分类、情感分析等任务。
深度研究神经网络的强大逼近能力使得它在这些领域具有很高的应用价值。
结论深度学习神经网络通过多层神经元和非线性激活函数的组合,能够逼近非线性函数。
它是一种强大的机器学习模型,在各个领域都有广泛的应用。
随着深度学习技术的不断发展,我们相信神经网络将会在更多领域展现出强大的能力和应用前景。
神经网络基本知识
神经网络基本知识一、内容简述神经网络是机器学习的一个重要分支,是一种模拟生物神经网络结构和功能的计算模型。
它以其强大的学习能力和自适应能力广泛应用于多个领域,如图像识别、语音识别、自然语言处理等。
《神经网络基本知识》这篇文章将带领读者了解神经网络的基本概念、原理和应用。
1. 神经网络概述神经网络是一种模拟生物神经系统结构和功能的计算模型。
它由大量神经元相互连接构成,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。
神经网络的概念自上世纪五十年代提出以来,经历了漫长的发展历程,逐渐从简单的线性模型演变为复杂的多层非线性结构。
神经网络在人工智能领域发挥着核心作用,广泛应用于计算机视觉、语音识别、自然语言处理等领域。
神经网络的基本构成单元是神经元,每个神经元接收来自其他神经元的输入信号,通过特定的计算方式产生输出信号,并传递给其他神经元。
不同神经元之间的连接强度称为权重,通过训练过程不断调整和优化。
神经网络的训练过程主要是通过反向传播算法来实现的,通过计算输出层误差并反向传播到输入层,不断调整权重以减小误差。
神经网络具有强大的自适应能力和学习能力,能够处理复杂的模式识别和预测任务。
与传统的计算机程序相比,神经网络通过学习大量数据中的规律和特征,自动提取高级特征表示,避免了手动设计和选择特征的繁琐过程。
随着深度学习和大数据技术的不断发展,神经网络的应用前景将更加广阔。
神经网络是一种模拟生物神经系统功能的计算模型,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。
它在人工智能领域的应用已经取得了巨大的成功,并将在未来继续发挥重要作用。
2. 神经网络的历史背景与发展神经网络的历史可以追溯到上个世纪。
最初的神经网络概念起源于仿生学,模拟生物神经网络的结构和功能。
早期的神经网络研究主要集中在模式识别和机器学习的应用上。
随着计算机科学的快速发展,神经网络逐渐成为一个独立的研究领域。
在20世纪80年代和90年代,随着反向传播算法和卷积神经网络的提出,神经网络的性能得到了显著提升。
神经网络与深度学习知识点整理
神经网络与深度学习知识点整理●神经网络基础●MP神经元模型●可以完成任何数学和逻辑函数的计算●没有找到训练方法,必须提前设计出神经网络的参数以实现特定的功能●Hebb规则●两个神经元同时处于激发状态时,神经元之间的连接强度将得到加强●Hebb学习规则是一种无监督学习方法,算法根据神经元连接的激活水平改变权值,因此又称为相关学习或并联学习。
●●感知机模型●有监督的学习规则●神经元期望输出与实际输出的误差e作为学习信号,调整网络权值●●LMS学习规则是在激活函数为f(x)=x下的感知器学习规则●由于激活函数f的作用,感知器实际是一种二分类器●感知器调整权值步骤●单层感知器不能解决异或问题●BP网络●特点:●同层神经网络无连接●不允许跨层连接●无反馈连接●BP学习算法由正向传播和反向传播组成●BP网络的激活函数必须处处可导——BP权值的调整采用 Gradient Descent 公式ΔW=-η(偏E/偏w),这个公式要求网络期望输出和单次训练差值(误差E)求导。
所以要求输出值处处可导。
s函数正好满足处处可导。
●运算实例(ppt)●Delta( δ )学习规则●误差纠正式学习——神经元的有监督δ学习规则,用于解决输入输出已知情况下神经元权值学习问题●δ学习规则又称误差修正规则,根据E/w负梯度方向调整神经元间的连接权值,能够使误差函数E达到最小值。
●δ学习规则通过输出与期望值的平方误差最小化,实现权值调整●●1●自动微分●BP神经网络原理:看书●超参数的确定,并没有理论方法指导,根据经验来选择●BP算法已提出,已可实现多隐含层的神经网络,但实际只使用单隐层节点的浅层模型●计算能力的限制●梯度弥散问题●自编码器●●自编码器(Auto-Encoder)作为一种无监督学习方法网络●将输入“编码”为一个中间代码●然后从中间表示“译码”出输入●通过重构误差和误差反传算法训练网络参数●编码器不关心输出(只复现输入),只关心中间层的编码————ℎ=σ(WX+b)●编码ℎ已经承载原始数据信息,但以一种不同的形式表达!●1●正则编码器——损失函数中加入正则项,常用的正则化有L1正则和L2正则●稀疏自编码器——在能量函数中增加对隐含神经元激活的稀疏性约束,以使大部分隐含神经元处于非激活状态●去噪自编码器——训练数据加入噪声,自动编码器学习去除噪声获得无噪声污染的输入,迫使编码器学习输入信号更加鲁棒的表达●堆叠自编码器●自编码器训练结束后,输出层即可去掉,网络关心的是x到ℎ的变换●将ℎ作为原始信息,训练新的自编码器,得到新的特征表达.●逐层贪婪预训练●1●深度神经网络初始化●●卷积神经网络●全连接不适合图像任务●参数数量太多●没有利用像素之间的位置信息●全连接很难传递超过三层●卷积神经网络是一种前馈神经网络,其输出神经元可以响应部分区域内的输入信息,适宜处理图像类信息●1●1●Zero Padding:在原始图像周围补0数量●卷积尺寸缩小,边缘像素点在卷积中被计算的次数少,边缘信息容易丢失●●卷积神经网络架构发展●1●深度发展●LeNet●具备卷积、激活、池化和全连接等基本组件●但GPU未出现,CPU的性能又极其低下●LetNet只使用在手写识别等简单场景,未得到重视●LeNet主要有2个卷积层(5*5)、2个下抽样层(池化层)、3个全连接层●通过sigmoid激活●全连接层输出:共有10个节点分别代表数字0到9,采用径向基函数作为分类器●AlexNet●第一次采用了ReLU,dropout,GPU加速等技巧●AlexNet网络共有:卷积层 5个(1111,55,3*3),池化层 3个,全连接层3个●首次采用了双GPU并行计算加速模式●第一卷积模块:96通道的特征图被分配到2个GPU中,每个GPU上48个特征图;2组48通道的特征图分别在对应的GPU中进行ReLU激活●第一层全连接:同时采用了概率为0.5的Dropout策略●VGG●通过反复堆叠3x3卷积和2x2的池化,得到了最大19层的深度●卷积-ReLU-池化的基本结构●串联多个小卷积,相当于一个大卷积的思想●使用两个串联的3x3卷积,达到5x5的效果,但参数量却只有之前的18/25●串联多个小卷积,增加ReLU非线性激活使用概率,从而增加模型的非线性特征●VGG16网络包含了13个卷积层,5个池化层和3个全连接层。
组合神经网络与感知器的合成对数字串中手写体数字序列的识别
输入 数 字 串的识 别程 序 , 合神 经 网络执 行 中间 的数 字识 别过程 。在 网络 中 , 于感知 器 组 基 类 型的 网络执 行 最终经选择 存储 的有 限数 字 串。 实验 显 示 , 合 系统 可 以采 用 M IT数 组 NS
据 库许 多正 确的数 字识 别方 法 , 包括 数 字 串的信 息。 另外 , 实验 还显 示 , 每 个数据 库 中, 在
测 实验 样本 的类 别 。
网络 的神 经 元与输 入 数据 中提取 的特 征有
关, 输入 样本 提取 的特 征用 于学 习和识 别 , 网 在 络 中激 活转 换 为 相 关 的 神经 元 。然 后 , 一 步 进
字符 串中许 多正确 的识 别方 法 。文 中介 绍 了两个神 经 网络 , 它们 组合成 相连 的识 别 系统 。
一
个是组 合 的神 经 网络 , 另一 个是 感知 器类型 的神 经 网络 , 由计 算机 系统模 拟 来 实现。在
数 字 串 中, 组合 系统 解决 了 MN S IT数据 库提 供 的数 字序 列 中手写体 数 字 识 别 问题 。对 于
2 6
许多 用于 学 习的特征 产 生 于 自身的学 习过 程, 其结构 在 并 列 的学 习过 程 中形 成 。对 于来 自输入 图像 提取 的特征 , 它类 型 的识 别装 置 其 需提 供一 些预检 算 法 。组合 神经 网络 淡化 了字 符 的类别 。如 按 照预 检 算 法 , 必需 从 每 个 输 入 图像 中提 取 一些 特 征 作 用 于 网络 , 特 征可 以 其
维普资讯
组合 神经 网络 与 感知 器 的合 成对 数字 串 中
手 写体 数 字 序 列 的 识 别
神经网络学习
第9章 机器学习
第9章 机器学习
9.1 符号学习 9.2 神经网络学习 9.3 知识发现与数据挖掘 9.4 遗传算法
第9章 机器学习
9.1.1 记忆学习 记忆学习也称死记硬背学习或机械学习。这种学
习方法不要求系统具有对复杂问题求解的能力,也就 是没有推理技能,系统的学习方法就是直接记录问题 有关的信息,然后检索并利用这些存储的信息来解决 问题。
第9章 机器学习
机械学习是基于记忆和检索的办法,学习方法很 简单,但学习系统需要几种能力。
第9章 机器学习
以上三种特性函数的图像依次如图9―9中的(a)、 (b)、(c)所示。由于特性函数的不同,神经元也就分为 阈值型、S型和分段线性型三类。另外,还有一类概率 型神经元,它是一类二值型神经元。与上述三类神经元 模型不同,其输出状态为0或1是根据激励函数值的大 小,按照一定的概率确定的。例如,一种称为波尔茨 曼机神经元就属此类。本书后面所说的神经元及神经 网络都是指人工神经元与人工神经网络。
花色(c1,x)∧花色(c2,x)∧花色(c3,x)∧花色(c4, x)→同花(c1,c2,c3,c4)
第9章 机器学习
例9.2 假设示例空间存放有如下的三个示例: 示例1:(0,2,7) 示例2:(6,-1,10) 示例3:(-1,-5,-10) 这是三个3维向量,表示空间中的三个点。现要求 求出过这三点的曲线。 对于这个问题可采用通常的曲线拟合技术,归纳 出规则: (x,y,2x+3y+1) 即z=2x+3y+1
神经网络中的学习率调整方法与技巧(十)
神经网络中的学习率调整方法与技巧神经网络是一种模仿人类神经系统工作原理的计算模型,具有自学习和自适应的特性。
神经网络在机器学习和人工智能领域具有广泛的应用,而神经网络的学习率调整是神经网络训练的关键步骤之一。
学习率决定了模型在训练过程中参数更新的幅度,过大的学习率可能导致模型不稳定,而过小的学习率又会使得模型收敛速度过慢。
因此,合理调整学习率对于神经网络的训练至关重要。
一、常见的学习率调整方法1. 固定学习率最简单的学习率调整方法是固定学习率,即在整个训练过程中,学习率保持不变。
这种方法适用于一些简单的模型和数据集,但对于复杂的神经网络和大规模数据集来说,固定学习率的效果并不理想。
2. 动态调整学习率动态调整学习率是根据模型在训练过程中的表现来调整学习率的方法。
常见的动态调整学习率的方法包括指数衰减、余弦退火、学习率衰减等。
这些方法可以根据模型在训练过程中的表现来动态地调整学习率,使得模型更容易收敛并取得更好的性能。
3. 自适应学习率自适应学习率是根据参数的梯度来自适应地调整学习率的方法。
常见的自适应学习率的方法包括Adagrad、RMSprop、Adam等。
这些方法可以根据参数的梯度来动态地调整学习率,使得模型更容易收敛并取得更好的性能。
二、学习率调整的技巧1. 设置合适的初始学习率合适的初始学习率对于神经网络的训练至关重要。
通常情况下,初始学习率的选择应该尽量小一些,然后根据模型在训练过程中的表现来动态地调整学习率。
2. 监控模型的性能在训练过程中,及时监控模型的性能是调整学习率的关键。
通过监控模型在验证集上的性能,可以及时发现模型的过拟合和欠拟合情况,从而及时调整学习率,使得模型更容易收敛并取得更好的性能。
3. 使用学习率衰减学习率衰减是一种常见的学习率调整技巧,它可以根据模型在训练过程中的表现来动态地调整学习率。
通过使用学习率衰减,可以使得模型更容易收敛并取得更好的性能。
4. 组合多种学习率调整方法在实际应用中,通常可以组合多种学习率调整方法来调整学习率,以便更好地适应不同的模型和数据集。
神经网络与传统算法的比较研究
神经网络与传统算法的比较研究神经网络和传统算法是当前人工智能领域中广泛使用的两种方法。
本文将比较这两种方法在不同场景下的优缺点。
一. 神经网络与传统算法的基本概念神经网络是由一系列的神经元(节点)构成的。
每个神经元可以接受来自其它神经元的输入,并产生一个输出。
神经网络的优点是能够识别模式,并在数据中找到有用的线索。
传统算法则是通过规则和逻辑来执行任务的。
传统算法在已经知道解决方案或规则的场景下运行良好。
二. 神经网络与传统算法的优缺点神经网络的优点是能够学习并预测未来的结果,能够在数据中找到有用的线索,且能够处理非线性问题。
而传统算法的优点是精度高、通用性强、易于调整、易于理解。
在某些情况下,传统算法可能比神经网络更加准确。
当需要对大量数据进行分类或者处理时,使用神经网络可能更好。
然而,当处理的数据规模较小或者问题比较简单时,传统算法的使用可能更为合适。
传统算法适用于已知解决方法的场景下,而神经网络可以发现新的模式和线索。
这一点使得神经网络适用于未知的问题。
三. 神经网络与传统算法的应用场景神经网络在图像、语音识别、机器翻译和自然语言处理等领域应用广泛。
神经网络能够通过大量的数据学习模式并对来自不同数据源的信息进行处理。
传统算法则在工业、金融和行政领域应用广泛。
传统算法常常被用来管理和处理数据。
传统算法处理大量金融数据的效率高,同时精度也非常高。
四. 神经网络与传统算法结合的发展方向神经网络和传统算法都有其优点和缺点。
然而,由于两种方法的不同之处,有些问题使用神经网络更加优秀,有些问题使用传统算法更加优秀。
因此,结合两种技术的优点是一种很有实际意义和探索性的研究方向。
结合神经网络和传统算法的方法被称为混合模型或者半监督学习。
这种方法可以通过将神经网络和传统算法的结果进行组合来提高准确性。
同时,还可以通过神经网络的未知模式和传统算法的已知规则来发现新的应用场景。
总之,神经网络和传统算法两种方法都有自己的优缺点和应用场景。
神经网络
1. 什么是神经网络
• 神经网络(Neural Networks,NN)是由大量的、简 单的处理单元(称为神经元)广泛地互相连接而形 成的复杂网络系统,它反映了人脑功能的许多基本 特征,是一个高度复杂的非线性动力学习系统。 • 神经网络具有大规模并行、分布式存储和处理、自 组织、自适应和自学能力,特别适合处理需要同时 考虑许多因素和条件的、不精确和模糊的信息处理 问题。 • 神经网络的发展与神经科学、数理科学、认知科学、 计算机科学、人工智能、信息科学、控制论、机器 人学、微电子学、心理学、光计算、分子生物学等 有关,是一门新兴的边缘交叉学科。
概述
• BP算法的出现
非循环多级网络的训练算法 UCSD PDP小组的Rumelhart、Hinton和Williams1986年独立地给出 了BP算法清楚而简单的描述 1982年,Paker就完成了相似的工作 1974年,Werbos已提出了该方法
• BP网络主要用于: 1、函数逼近:用输入向量和相应的输出向量训练一个网络逼 近一个函数。 2、模式识别:用一个特定的输出向量将它与输入向量联系起 来。 3、分类:把输入向量 以所定义的合适方式进行分类。 4、数据压缩:减少输出向量维数以便于传输或存储。
神经网络中神经元的构造方式是和训练网络的学习算法紧 密相连的。一般来说,我们可以区分三种不同的网络结构。
①单层前馈网络 在分层网络中,神经元以层的形式 组织。在最简单的分层网络中,源节 点构成输入层,直接投射到神经元的 输出层,也就是说,这个网络是严格 的无圈的或前馈的。 如图所示,输出输入层各有4个节点, 这样的一个网络称为单层网。
3.鲁棒性和容错性。
神经网络具有信息存储的分布性,故 局部的损害会使人工神经网络的运行适 度减弱,但不会产生灾难性的错误。
深度学习模型的常见结构
深度学习模型的常见结构深度学习已经在各个领域展现出了巨大的潜力,并且成为了人工智能领域的热门话题。
在深度学习中,模型的结构是至关重要的,它决定了模型的性能和效果。
本文将介绍深度学习模型中常见的结构,包括卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN)。
一、卷积神经网络(CNN)卷积神经网络是一种特殊的神经网络结构,广泛应用于图像识别和计算机视觉任务中。
它模拟了人类对视觉信息的处理方式,通过卷积层、池化层和全连接层构成。
其中,卷积层负责提取图像的特征,池化层用于降采样和减小计算量,全连接层则将提取的特征进行分类。
二、循环神经网络(RNN)循环神经网络是一种适用于序列数据处理的模型,广泛应用于自然语言处理和语音识别等领域。
与传统的前馈神经网络不同,RNN 具有循环连接的结构,使其能够捕捉到序列数据中的上下文信息。
RNN 中的隐藏状态可以储存前面时间步的信息,并传递到后面的时间步中,以此实现对序列数据的有效建模。
三、生成对抗网络(GAN)生成对抗网络是一种包含生成器和判别器的模型结构,用于生成逼真的合成数据。
生成器负责生成伪造数据,而判别器则负责判断生成的数据和真实数据的区别。
GAN 通过两个网络相互对抗的方式进行训练,逐渐提高生成器生成真实数据的能力。
四、注意力机制(Attention)注意力机制是一种用于强化模型重点关注区域的结构。
它在自然语言处理和计算机视觉任务中被广泛应用。
通过引入注意力机制,模型能够更加准确地聚焦于输入数据中的关键信息,从而提高模型的性能。
五、残差连接(Residual Connection)残差连接是一种用于解决深度神经网络中梯度消失和梯度爆炸的问题的结构。
在残差连接中,模型的前向传播不仅仅包括正常的组件,还包括一个跳跃连接,将前一层的输出直接与当前层的输入相加。
通过这种方式,残差连接可以使信息更好地从一个层传递到另一个层,加快训练速度并提高模型性能。
如何解决神经网络中的类别不平衡问题
如何解决神经网络中的类别不平衡问题神经网络在机器学习领域扮演着重要的角色,它能够根据大量的数据进行学习和预测。
然而,神经网络中存在一个常见的问题,即类别不平衡。
类别不平衡是指数据集中某些类别的样本数量远远大于其他类别的样本数量。
这种不平衡会对神经网络的训练和预测产生负面影响,因此解决类别不平衡问题是非常重要的。
一种常见的解决类别不平衡问题的方法是过采样。
过采样是指通过增加少数类别的样本数量来平衡数据集。
这可以通过复制少数类别的样本来实现,但这种方法可能会导致过拟合问题。
为了解决这个问题,可以使用一些改进的过采样算法,如SMOTE(Synthetic Minority Over-sampling Technique)。
SMOTE算法通过在少数类别的样本之间插入合成的样本来增加样本数量。
这些合成的样本是通过在两个相似的样本之间进行插值生成的。
通过使用SMOTE算法,可以有效地增加少数类别的样本数量,从而解决类别不平衡问题。
除了过采样,还可以使用欠采样来解决类别不平衡问题。
欠采样是指通过减少多数类别的样本数量来平衡数据集。
欠采样的方法有很多种,其中一种常用的方法是随机欠采样。
随机欠采样是指随机地从多数类别中选择一部分样本,使得多数类别和少数类别的样本数量相近。
然而,随机欠采样可能会丢失一些重要的信息,因此可以使用一些改进的欠采样算法,如NearMiss算法。
NearMiss算法通过选择与少数类别样本最近的多数类别样本来进行欠采样,从而保留了更多的重要信息。
除了过采样和欠采样,还可以使用集成学习来解决类别不平衡问题。
集成学习是指将多个分类器组合起来进行预测。
在类别不平衡问题中,可以使用集成学习来平衡不同分类器对于不同类别的预测能力。
一种常见的集成学习方法是集成多个不同的分类器,如决策树、支持向量机和神经网络等。
这些分类器可以通过投票或加权平均的方式来得到最终的预测结果。
通过使用集成学习,可以充分利用不同分类器的优势,提高整体的预测性能。
如何解决神经网络中的过学习问题
如何解决神经网络中的过学习问题神经网络是一种强大的机器学习工具,它可以通过大量的数据进行训练,从而实现各种复杂的任务。
然而,神经网络在训练过程中往往会出现过学习问题,即网络在训练数据上表现出色,但在新的数据上却表现不佳。
这个问题对于提高网络的泛化能力和应用性能非常重要。
本文将探讨如何解决神经网络中的过学习问题。
首先,了解过学习问题的原因是解决该问题的关键。
过学习问题通常是由于网络的复杂性和训练数据的不足导致的。
当网络的参数过多时,网络会过度拟合训练数据,从而导致在新的数据上表现不佳。
同时,如果训练数据的数量不足或者不够多样化,网络也容易过学习。
为了解决过学习问题,我们可以采取以下几个方法。
首先,增加训练数据的数量是一个有效的方法。
更多的训练数据可以提供更多的样本,从而使得网络更好地学习到数据的真实分布。
可以通过数据增强技术,如旋转、缩放和平移等,来生成更多的训练样本。
此外,可以尝试从其他数据集中获取更多的数据,或者通过合成数据的方式来增加训练数据的多样性。
其次,正则化是另一个有效的方法来解决过学习问题。
正则化可以通过限制网络的复杂性来防止过度拟合。
常见的正则化方法包括L1正则化和L2正则化。
L1正则化通过增加网络的稀疏性来降低网络的复杂性,而L2正则化通过限制网络参数的大小来防止过度拟合。
此外,还可以尝试其他正则化方法,如Dropout和Batch Normalization等。
另外,集成学习也可以用来解决过学习问题。
集成学习通过将多个模型的预测结果进行组合,从而提高网络的泛化能力。
常见的集成学习方法包括Bagging和Boosting。
Bagging通过对训练数据进行有放回的采样,从而生成多个子模型,然后将它们的预测结果进行平均或投票来得到最终的预测结果。
Boosting则是通过逐步训练多个模型,并根据前一个模型的错误来调整后一个模型的权重,从而提高整体模型的性能。
此外,模型选择也是解决过学习问题的关键。
深度学习神经网络原理与应用分析
深度学习神经网络原理与应用分析深度学习神经网络是当今最热门的领域之一,其在人工智能、计算机视觉、语音识别和自然语言处理等方面都有广泛的应用。
深度学习的基础是神经网络,本文将对深度学习神经网络的原理与应用进行分析。
一、神经网络的基本结构与原理神经网络是由多个神经元组合而成的网络结构,每个神经元都具有多个输入和一个输出。
神经元接收到多个输入,并将这些输入送入激活函数中进行处理,最终输出一个结果。
多个神经元组成的网络就可以实现更加复杂的功能。
神经网络通常由输入层、中间层和输出层组成。
输入层是神经网络的接口,将外部信息输入到神经网络中;中间层是神经网络的核心,通过多个中间层的组合,可以实现非常复杂的功能;输出层是神经网络的输出接口,将神经网络的输出结果输出到外部。
神经网络的训练过程通常采用反向传播算法,该算法是求解网络的最优权值的一种方法。
在训练过程中,首先对神经网络进行正向传播,得到神经网络的输出结果;然后,将输出结果与期望输出结果进行比较,计算误差;最后,将误差通过反向传播算法传回网络,调整神经元之间的权值,使得误差最小化。
二、深度学习神经网络的应用1.计算机视觉深度学习在计算机视觉领域有着广泛的应用,如图像分类、目标识别和人脸识别等。
目前,卷积神经网络(CNN)已成为计算机视觉领域最常用的深度学习模型。
CNN的特点是可以自动提取图像的特征,并可以逐层提取信息,逐渐深入到图像的各个层次。
通过CNN,可以实现图像分类、目标检测、图像分割等多种计算机视觉任务。
2.语音识别深度学习在语音识别领域的应用也非常广泛。
传统的语音识别方法通常是通过Gaussian混合模型(GMM)和隐马尔可夫模型(HMM)来实现的。
然而,这些方法需要手动提取语音的特征,容易受到噪声和变化的影响。
深度学习神经网络可以自动提取语音的特征,并且对于噪声和变化具有很好的鲁棒性。
目前,深度学习神经网络已经成为语音识别领域最常用的模型之一。
组合分类方法
组合分类方法组合分类方法是一种将基础分类器组合成一个更强大的分类器的技术。
它通过将多个基础分类器的输出组合以形成最终分类的决策,以提高分类的准确度和泛化能力。
本文将分别介绍集成学习、叠加泛化和标签传播这三种常用的组合分类方法。
集成学习是一种基于多个分类器集合的组合分类技术。
它的核心思想是将多个弱分类器组合成一个更强大的分类器,以提高分类的准确度和泛化能力。
集成学习主要分为两类:一类是基于同质模型的集成学习,即将多个相同类型的基础分类器组合在一起;另一类是基于异质模型的集成学习,即将多个不同类型的基础分类器组合在一起。
目前,集成学习领域的代表性算法有随机森林、AdaBoost和Bagging等。
叠加泛化是一种基于多个不同层次的分类器集合的组合分类技术。
它的核心思想是将多个级别不同的分类器组合成一个更强大的分类器,以提高分类的准确度和泛化能力。
叠加泛化主要包括两个主要的步骤:首先是建立一个集成的分级分类器,然后再对未知样本进行分类。
目前,叠加泛化领域的代表性算法有深度信念网络和卷积神经网络等。
标签传播是一种基于标签传递的组合分类技术。
它的核心思想是利用已知样本的标签信息,将这些标签信息传递给未知样本,从而实现分类。
它主要包括两个阶段:首先是构建带标签的图形模型,然后是使用标签传播算法对未知样本进行分类。
标签传播不需要训练很多基础分类器,它可以利用少量的已知标签信息对未知样本进行分类,标签传播技术在许多实际应用中得到广泛应用。
组合分类方法是一种有效的提高分类准确度和泛化能力的技术。
不同的组合分类方法可以根据具体的应用场景选择。
在实际应用中,我们可以根据需要选择适合自己的方法,并优化它以获得更高的分类性能。
除了上述的三个常用的组合分类方法外,还有其他一些组合分类方法。
一种是基于神经网络的组合分类方法。
这种方法利用不同的神经网络训练出不同的基础分类器,再将它们组合成一个更强大的分类器。
由于神经网络可以在大规模数据上学习和泛化,因此这种方法在处理大规模数据集时效果非常好。
机器学习中的集成学习与深度学习模型集成方法对比
机器学习中的集成学习与深度学习模型集成方法对比在机器学习领域,集成学习和深度学习模型集成方法都是用来提高预测准确度和模型性能的重要技术。
虽然它们有着不同的原理和方法,但它们都可以有效地提高模型的泛化能力和鲁棒性。
首先,让我们来看看集成学习。
集成学习是通过将多个基学习器组合在一起来形成一个更强大的集成模型。
集成学习通过在训练过程中引入随机性和多样性,可以减少模型的过拟合风险,并提高预测的准确度和稳定性。
常见的集成学习方法包括Bagging、Boosting和Stacking等。
Bagging是一种通过自助采样(bootstrap sampling)和平均化(averaging)来构建集成模型的方法。
在Bagging中,我们首先从原始训练集中有放回地采样产生多个子训练集,然后使用每个子训练集训练一个基学习器,最后通过对多个基学习器预测结果进行平均或投票等方式来获得最终的预测结果。
Bagging可以降低模型的方差,提高模型的稳定性。
Boosting是一种通过加权迭代学习来构建集成模型的方法。
在Boosting中,我们首先使用原始训练集训练一个基学习器,然后根据基学习器在训练集上的表现调整样本的权重,使得在下一轮训练中更关注前一轮的错误样本。
通过迭代多次,将多个基学习器进行加权组合得到最终的预测结果。
Boosting可以降低模型的偏差,提高模型的准确度。
Stacking是一种将多个基学习器组合的方法。
在Stacking中,我们首先训练多个不同类型的基学习器,然后使用验证集上的预测结果作为输入,训练一个元学习器(也被称为组合器或次级学习器),最后使用元学习器对测试集进行预测。
Stacking可以通过选择合适的元学习器来更好地捕捉不同基学习器之间的关系,提高模型的泛化能力。
与集成学习相比,深度学习模型集成方法注重于利用神经网络的深度结构和复杂特征表达能力。
深度学习模型集成方法可以通过多种方式来集成多个深度学习模型,如模型平均、模型融合和模型堆叠等。
神经网络——五个基本学习算法
五个基本的学习算法:误差—修正学习;基于记忆的学习;Hebb 学习;竞争学习和Boltzmann 学习。
误差修正学习植根于最优滤波。
基于记忆的学习通过明确的记住训练数据来进行。
Hebb 学习和竞争学习都是受了神经生物学上的考虑的启发。
Boltzmann 学习是建立在统计学力学借来的思想基础上。
1. 误差修正学习神经元k 的输出信号)(n y k 表示,)(n d k 表示的是期望响应或目标输出比较。
由此产生)(n e k 表示的误差信号,有)()()(n y n d n e k k k -= 这一目标通过最小化代价函数或性能指标)(n ξ来实现。
定义如下)(21)(2n e n k =ξ 也就是说)(n ξ是误差能量的瞬时值。
这种对神经元k 的突触权值步步逼近的调节将持续下去,直到系统达到稳定状态。
这时,学习过程停止。
根据增量规则,在第n 时间步作用于突触权值的调节量)(n w kj ∆定义如下:)()()(n x n e n w j k kj η=∆ 2. 基于记忆的学习在一个简单而有效的称作最近邻规则的基于记忆的学习类型中,局部邻域被定义为测试向量test X 的直接邻域的训练实例,特别,向量 {}N N X X X X ,,,21'⋅⋅⋅∈被称作test X 的最邻近,如果),(),(min 'test N test i iX X d X X d = 这里,),(test i X X d 是向量i X 和test X 的欧几里德距离。
与最短距离相关的类别,也就是向量'N X 被划分的类别。
3. Hebb 学习我们定义Hebb 突触为这样一个突触,它使用一个依赖时间的、高度局部的和强烈交互的机制来提高突触效率为前突触和后突触活动间的相互关系的一个函数。
可以得出Hebb 突触特征的4个重要机制:时间依赖机制;局部机制;交互机制;关联或相关机制。
4. 竞争学习获胜神经元k 的输出信号k y 被置为1;竞争失败的所有神经元输出信号被置为0。
神经网络的学习规律和结构控制
神经网络的学习规律和结构控制神经网络是一种由许多个简单组件组合而成的复杂系统,其特点是能够模拟人类的大脑,并具备自主学习和适应的能力。
神经网络具有广泛的应用,如语音识别、自然语言处理、图像识别等领域。
神经网络的学习规律和结构控制是神经网络研究的关键,下面我们将详细探讨。
一、神经网络的学习规律神经网络学习的过程实质上是通过优化网络的权重和偏置参数实现的。
神经网络的学习规律分为有监督学习、无监督学习和强化学习三种。
1. 有监督学习有监督学习是最常用的学习方式,它是以标记过的数据为输入,即带有标签的数据(如人物姓名的声音记录数据和相应的姓名标签)。
神经网络通过比较预测值与真实标签的误差,不断地调整网络的权重和偏置参数值,以减小误差。
有监督学习主要包括分类和回归两种学习方式。
2. 无监督学习无监督学习是在没有标签情况下,让神经网络自发地训练和学习。
无监督学习通常应用在聚类、降维和生成模型等领域中。
其中,聚类是将相似数据进行分组,降维是缩减大量数据的维度,生成模型是用网络来生成类似于输入数据的新数据。
3. 强化学习强化学习是一种可以让神经网络自主决策的学习方式。
它是通过训练神经网络,使其能够根据当前场景,决策出最优的行动方案,以获取最大的收益。
强化学习在机器人、游戏和物流等众多领域有广泛的应用。
二、神经网络的结构控制神经网络的结构控制包括网络层数、层与层之间的连接方式以及神经单元的个数等。
下面我们来详细了解神经网络的结构控制。
1. 神经单元的个数神经单元的个数主要取决于神经网络的复杂程度和训练数据集的大小。
通常来说,如果网络的神经单元过少,则无法有效的拟合数据,造成欠拟合现象;而如果过多,则可能造成过拟合现象。
2. 网络的层数网络的层数是指神经网络的深层结构层数,也是神经网络中的一个重要参数。
增加神经元层数能够让网络具有更高的复杂度和表达能力,在某些特定的任务中能更好地发挥作用。
3. 层与层之间的连接方式层与层之间的连接方式主要有前向连接和反向连接两种。
多任务学习中的神经网络模型构建和训练
多任务学习中的神经网络模型构建和训练多任务学习是指在一个神经网络模型中同时进行多个任务的学习。
在传统的机器学习中,每个任务通常都需要单独构建一个模型进行训练,这样会导致模型数量庞大、计算资源浪费、模型之间信息共享不足等问题。
而多任务学习则可以通过共享网络层的方式,将不同任务的特征进行融合,从而提高模型性能和泛化能力。
在构建和训练多任务学习神经网络模型时,需要考虑以下几个关键问题:选择合适的网络架构、设计适当的损失函数、确定优化算法和调整超参数。
首先,选择合适的网络架构是构建多任务学习神经网络模型的关键。
常见的架构包括共享层和独立层两种。
共享层是指将不同任务之间共享一部分神经网络层,这样可以提高参数利用率,并且通过特征融合可以提取到更具有代表性和泛化能力的特征。
独立层则是指每个任务都有自己独立的一部分神经网络层,在一定程度上可以保证每个任务有足够自由度来表达自己独特的特征。
选择合适的网络架构需要根据任务之间的关联性和差异性来进行权衡。
其次,设计适当的损失函数是多任务学习神经网络模型训练的关键。
损失函数可以分为两种类型:联合损失和分离损失。
联合损失是将所有任务的损失函数进行加权求和,通过最小化总体损失来训练模型。
分离损失则是将每个任务的损失函数分别进行最小化,通过独立地训练每个任务来学习模型参数。
选择适当的损失函数需要考虑到不同任务之间的关系,以及对不同任务重要性和难易程度的考虑。
第三,在多任务学习神经网络模型中选择合适的优化算法也是非常重要的。
常见的优化算法包括随机梯度下降(SGD)、Adam、Adagrad等。
针对多任务学习中可能存在梯度消散或梯度爆炸等问题,可以采用一些改进算法或技巧来优化训练过程,如批次归一化、梯度裁剪等。
最后,在构建和训练多任务学习神经网络模型时需要调整一些超参数以达到更好的性能。
超参数包括学习率、正则化参数、批次大小等。
通过交叉验证等方法,可以选择出最佳的超参数组合,以提高模型的性能和泛化能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(c) 初始权值围绕随机选取的样本分布
16
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
5.1 LVQ网络
5.1.4 网络设计
(3)学习率(t)的设计
学习率(t)变化规律可参考SOFM网络的学习率的设计。网络的学习过程 可分为两个阶段。第一阶段为粗学习和粗调整阶段,该阶段时刻t的学习率(t) 可以取较大的值,这样有利于快速确定各输入模式在竞争层中所对应的映射位 置。一旦各输入模式有了相对的映射位置后,则转入精学习和细调整阶段。
5.1.5.1 LVQ网络在苹果等级判别中的应用包晓安,钟乐海,张娜.基于人工神
经网络的苹果等级判别方法研究.中国农业科学.2004,37(3):464-468
2.步骤 (3)网络的改进
由于苹果的色泽、横径和果形指数对分类结果的影响依次递减,不能 按照同样的权重对待,故在输入层和竞争层中加入了一个修正层,对原 始数据进行了尺度变换,使苹果色泽的竞争能力分别提高到苹果横径的 2倍和果形指数的4倍。故修正层的权值矩阵为: 4 0 0 0 2 0 0 0 1
T
W1的权值由计算机随机产生1个4行20列的矩阵。W1 需要修正,直到 40 个训练样本全部正确划分,即网络迭代收敛为止。
22
5.1 LVQ网络
5.1.5 举例
5.1.5.1 LVQ网络在苹果等级判别中的应用包晓安,钟乐海,张娜.基于人工神
@调整量后权向量为
j{ 1,2 ,..., m}
ˆ TX ˆ) max (W j
ˆ * (t ) W * W ˆ * (t ) ( X ˆ W ˆ *) W j* (t 1) W j j j j
ˆ (t ) W j (t 1) W j
4
“胜者为王”权值调整--例子
当t<tm时,t=t+1,转到步骤(2)输入下一个样本,重复各步骤直到t=tm。
12
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
5.1 LVQ网络
5.1.4 网络设计
关键因素:
@ 学习样本是否具有代表性; @ 学习样本空间大小是否满足需要;
x
3
x1 w2 w1
x2
x4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5.1 学习向量量化(Learning Vector Quantization, LVQ)网络(LVQ) @向量量化
@网络结构与工作原理
@学习算法
@设计
@举例
6
5.1 LVQ网络
18
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
5.1 LVQ网络
5.1.5 举例
5.1.5.1 LVQ网络在苹果等级判别中的应用包晓安,钟乐海,张娜.基于人工神
经网络的苹果等级判别方法研究.中国农业科学.2004,37(3):464-468
1.问题描述 用计算机视觉模拟人类视觉系统,可以获取苹果等农产品的形状、颜色、大 小等信息,结合信息处理方法可以对其进行分级等判别。 2.步骤 (1)样本数据 原始数据:选取外形无损伤红富士苹果,在实验室内进行试验,光照强度 750~1 000lx。通过CCD摄像头采集苹果图像。 样本的处理:目的是从苹果图像中获取用于判断苹果的3个元素:苹果的色 泽、横径和果形指数。
„
○ ○y6
竞争层 Wm
○
x1
○输入层
„
xi
xn
图5. 2 学习向量量化网络
11
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
5.1 LVQ网络
5.1.3 网络学习算法
@ 学习步骤
1 (1)初始化 竞争层各神经元权值向量 W j (0),j 1,2,...,m
目标类
W2
W
o1
o2
类别 2○
o3
类别 l○
2 1
W22 Wk2 Wl 2
类别 1○
输出层
1 1 0 2 W 0 0 0
0 0 0 0 1 0 1 0 0 1 0 1
子类
y1 W1
○ ○ ○ ○ ○
„
○ ○y6
竞争层 Wm
2
竞争学习规则(胜者为王)小结
@将输入模式向量和内星权向量归一化 ˆ 最相似的 W ˆ 对应的神经元j 获胜 @ 将两者比较,与 X j
@ 获胜神经元的输出为1,并获准调节其对应的权向量
1
j
ˆ W j
ˆ X
3
“胜者为王”权值调整规则
@方法:只有获胜神经元才有权调整其权向量Wj*
@获胜神经元
ˆ *T X ˆ W j
LVQ网络将竞争学习思想和有监督学习算法相结合。 5.1.1 向量量化
向量量化的思路是,将高维输入空间分成若干不同的区域,对每个 区域确定一个中心向量作为聚类中心,与其处于同一区域的输入向量可 用该中心向量来代表,从而形成以各中心向量为聚类中心的点集。
在图像处理领域,常用各区 域中心点(向量)的编码代替 区域内的点来存储或传输, 从而提出了各种基于向量量 化的有损压缩技术。
○
x1
○输入层
„
xi
xn
图5. 2 学习向量量化网络
9
5.1 LVQ网络
5.1.3 网络学习算法
@ 学习规则由无导师学习和有 导师学习组合而成
o1
类别 1○
o2
类别 2○
o3
类别 l○
输出层
训练样本集中输入向量 与期望输出向量应成对 组成,即:{Xp,dp},p= 1,2,…,P,P为训练集中 的模式总数。
第五章
组合学习神经网络
--学习向量量化神经网络(LVQ) --对向传播神经网络 (CPN)
1
简单回顾 @感知器---感知器规则---有导师学习
单层感知器---无法解决线性不可分问题
多层感知器---隐层权值调整规则不可知
@BP网络---误差反传(BP)算法---- 有导师学习 @自组织网络--竞争学习---无导师学习
21
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
5.1 LVQ网络
5.1.5 举例
5.1.5.1 LVQ网络在苹果等级判别中的应用包晓安,钟乐海,张娜.基于人工神
经网络的苹果等级判别方法研究.中国农业科学.2004,37(3):464-468
无归一化
赋小随机数,确定初始学习速率 (0) 和训练次数tm; (2)输入样本向量X; 1 1 , 2, ...m (3)寻找获胜神经元j* X W j* min X W j , j 1
j
(4)根据分类是否正确按不同规则调整获胜神经元的权值:当网络分类结果与教师 信号一致,按式(a)向输入样本方向调整权值,否则按式(b)调整。
2.步骤 (4)网络的训练
4 0 0 0 2 0 0 0 1
1 0 2 W 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
图5.1 二维向量量化
7
5.1 LVQ网络
5.1.2 网络结构与运行原理 @ X=(x1,x2,…,xn)T
o1
类别 1○
„
o2
„
ol 输出层
@ Y=(y1,y2,…,ym)T
类别 2○
类别 l○
yi∈{0,1},i=1,2,…,m
@ O=(o1,o2,…,ol )T
T
y1 W1
○„ ○ ○ „○ ○
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
(a) ( b)
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
其它非获胜神经元的权值保持不变。 t (5)更新学习速率 (k ) (0) 1 t m
14
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
5.1 LVQ网络
5.1.4 网络设计
(1)竞争层中神经元个数的设计
一般为输出层的整数倍。由于竞争层各神经元的权向量是输入样本的聚类 中心,因此神经元数目的设置与输入空间样本的分布情况密切相关。
@ LVQ网络的参数(包括竞争层中神经元的个数、学习率和初始权值
等)是否合适。
13
W 1 j* (t 1) W 1 j* (t ) (t )[X W 1 j* (t )]
5.1 LVQ网络
5.1.4 网络设计
(1)竞争层中神经元个数的设计
一般为输出层的整数倍。由于竞争层各神经元的权向量是输入样本的聚类 中心,因此神经元数目的设置与输入空间样本的分布情况密切相关。 每类样本设1个聚类中心 每类样本设1个聚类中心
2.步骤 (1)样本数据 原始数据:选取外形无损伤红富士苹果,在实验室内进行试验,光照强度 750~1 000lx。通过CCD摄像头采集苹果图像。 样本的处理:目的是从苹果图像中获取用于判断苹果的3个元素:苹果的色 泽、横径和果形指数。 训练集和测试集:训练集中共有40个样本,根据苹果的色泽、横径及果形指数 选取优等、一等、二等和次品苹果各10个,作为训练样本。测试集中共有122 个 样本(人工分级结果是:优等果39 个,一等果39 个,二等果31 个,次品13 个)。