哈工大数值分析上机实验报告 (1)
数值分析上机报告(1)
一.上机目的1. 通过上机编程,复习巩固以前所学程序设计语言及上机操作指令;2. 通过上机计算,了解舍入误差所引起的数值不稳定性;3. 熟悉并掌握拉格朗日插值多项式、牛顿插值多项式和分段低次插值,注意其不同特点;4. 了解最小二乘法的基本原理,能通过计算机解决实际问题。
二.上机环境MATLAB 软件等。
三.上机内容1.数值算法稳定性实验;2.插值法实验:拉格朗日插值、牛顿插值以及分段低次插值;3.曲线拟合实验:最小二乘法。
四.实验内容1、数值稳定性实验对n=0,1,2,…20计算定积分dx x x y n n ⎰+=105算法1 利用递推公式151--=n n y ny n=1,2,…,20 取182322.05ln 6ln 51100≈-=+-⎰dx x y 代码:y(1)=log(6)-log(5);for i=1:20y(i+1)=1/i-5*y(i);endk=ones(7,3);for i=1:7for j=1:3k(i,j)=y(3*(i-1)+j);endenddigits(6)vpa(k)结果:[ 0.182322, 0.0883922, 0.0580389][ 0.0431387, 0.0343063, 0.0284684][ 0.0243249, 0.0212326, 0.0188369][ 0.0169265, 0.0153676, 0.0140713][ 0.0129767, 0.0120398, 0.0112295][ 0.0105192, 0.00990388, 0.00930414][ 0.00903483, 0.00745741, 0.012713]算法2 利用递推公式n n y n y 51511-=- n=20,19,.…,1 注意到105151561126110200201020=≤+≤=⎰⎰⎰dx x dx x x dx x 取008730.0)12611051(2120≈+≈y 代码: y(21)=0.008730;for i=2:21j=22-i;y(j)=1/(5*j)-1/5*y(j+1);endk=ones(7,3);for i=1:7for j=1:3k(i,j)=y(3*(i-1)+j);endenddigits(6) ;vpa(k)结果:[ 0.182322, 0.0883922, 0.0580389][ 0.0431387, 0.0343063, 0.0284684][ 0.0243249, 0.0212326, 0.0188369][ 0.0169265, 0.0153676, 0.0140713][ 0.0129766, 0.0120399, 0.0112292][ 0.0105205, 0.0098975, 0.00933601][ 0.00887552, 0.008254, 0.00873]说明:从计算结果可以看出,算法1是不稳定的,而算法2是稳定的。
数值分析2024上机实验报告
数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。
在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。
本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。
一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。
1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。
常见的数值方法有二分法、牛顿法、割线法等。
在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。
2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。
插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。
在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
3.数值积分这部分实验要求使用数值方法计算给定函数的积分。
常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。
在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。
4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。
常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。
结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。
2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。
结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。
数值分析上机实习报告
指导教师:姓名:学号:专业:联系电话:上海交通大学目录序言 (3)实验课题(一) 雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (4)数值分析 (6)实验课题(二) 松弛因子对SOR法收敛速度的影响 (6)数值分析 (12)总结 (13)附录(程序清单) (14)1.雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (14)雅可比迭代法: (14)高斯-塞得尔迭代法: (16)2.松弛因子对SOR法收敛速度的影响 (18)松弛法(SOR) (18)序言随着科学技术的发展,提出了大量复杂的数值计算问题,在实际解决这些计算问题的长期过程中,形成了计算方法这门学科,专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的误差分析,是一门内容丰富,有自身理论体系的实用性很强的学科。
解决工程问题,往往需要处理很多数学模型,这就要花费大量的人力和时间,但是还有不少数学模型无法用解析法得到解。
使用数值方法并利用计算机,就可以克服这些困难。
事实上,科学计算已经与理论分析、科学实验成为平行的研究和解决科技问题的科学手段,经常被科技工作者所采用。
作为科学计算的核心内容——数值分析(数值计算方法),已逐渐成为广大科技工作者必备的基本知识并越来越被人重视。
由于数值方法是解数值问题的系列计算公式,所以数值方法是否有效,不但与方法本身的好坏有关,而且与数值问题本身的好坏也有关,因此,研究数值方法时,不但需要研究数值方法的好坏,即数值稳定性问题,而且还需要研究数值问题本身的好坏,即数值问题的性态,以及它们的判别问题。
数值计算的绝大部分方法都具有近似性,而其理论又具有严密的科学性,方法的近似值正是建立在理论的严密性基础上,根据计算方法的这一特点。
因此不仅要求掌握和使用算法,还要重视必要的误差分析,以保证计算结果的可靠性。
数值计算还具有应用性强的特点,计算方法的绝大部分方法如求微分方程近似解,求积分近似值,求解超越方程,解线性方程组等都具有较强的实用性,而插值法,最小二乘法,样条函数等也都是工程技术领域中常用的,有实际应用价值的方法。
数值分析第一次上机练习实验报告
数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。
二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。
数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。
2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。
方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。
我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。
3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。
在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。
我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。
4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。
在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。
我们还学习了数值微分的数值方法,如差商法和牛顿插值法。
5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。
我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。
三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。
我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。
实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。
根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。
此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。
四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。
数值分析上机实验报告
数值分析上机实验报告摘要:本报告是对数值分析课程上机实验的总结和分析,涵盖了多种算法和数据处理方法,通过对实验结果的分析,探究了数值计算的一般过程和计算的稳定性。
1. 引言数值计算是数学的一个重要分支,广泛应用于物理、金融、工程等领域。
本次实验是对数值分析课程知识的实际应用,通过上机实现算法,探究数值计算的可靠性和误差分析。
2. 实验方法本次实验中,我们实现了多种算法,包括:(1)牛顿迭代法求方程的根;(2)高斯消元法求线性方程组的解;(3)最小二乘法拟合数据点;(4)拉格朗日插值法估计函数值;(5)梯形公式和辛普森公式求积分近似值。
对于每个算法,我们都进行了多组数值和不同参数的实验,并记录了相关数据和误差。
在实验过程中,我们着重考虑了算法的可靠性和计算的稳定性。
3. 实验结果与分析在实验中,我们得到了大量的实验数据和误差分析,通过对数据的展示和分析,我们得到了以下结论:(1)牛顿迭代法求解非线性方程的根能够对算法的初始值和迭代次数进行适当的调整,从而达到更高的稳定性和可靠性。
(2)高斯消元法求解线性方程组的解需要注意到矩阵的奇异性和精度的影响,从而保证计算的准确性。
(3)最小二乘法拟合数据点需要考虑到拟合的函数形式和数据的误差范围,采取适当的数据预处理和拟合函数的选择能够提高计算的准确性。
(4)拉格朗日插值法估计函数值需要考虑到插值点的选择和插值函数的阶数,防止出现龙格现象和插值误差过大的情况。
(5)梯形公式和辛普森公式求积分近似值需要考虑到采样密度和拟合函数的选择,从而保证计算的稳定性和收敛速度。
4. 结论通过本次实验的分析和总结,我们得到了深入的认识和理解数值计算的一般过程和算法的稳定性和可靠性,对于以后的数值计算应用也提供了一定的指导和参考。
哈工大数值分析上机实验报告版可编辑
分段线性插值:
设在区间[a, b]上,给定n+1个插值节点
a=x0<x1<…<xn=b
和相应的函数值y0,y1,…,yn,,求作一个插值函数 ,具有如下性质:
1) ,j=0,1,…,n。
2) 在每个区间[xi, xj]上是线性连续函数。则插值函数 称为区间[a, b]上对应n个数据点的分段线性插值函数。
结论:
对于二分法,只要能够保证在给定的区间内有根,使能够收敛的,当时收敛的速度和给定的区间有关,二且总体上来说速度比较慢。Newton法,收敛速度要比二分法快,但是最终其收敛的结果与初值的选取有关,初值不同,收敛的结果也可能不一样,也就是结果可能不时预期需要得结果。改进的Newton法求解重根问题时,如果初值不当,可能会不收敛,这一点非常重要,当然初值合适,相同情况下其速度要比Newton法快得多。
结论:
采用Gauss消去法时,如果在消元时对角线上的元素始终较大(假如大于10-5),那么本方法不需要进行列主元计算,计算结果一般就可以达到要求,否则必须进行列主元这一步,以减少机器误差带来的影响,使方法得出的结果正确。
实验报告三
题目:Rung现象产生和克服
摘要:由于高次多项式插值不收敛,会产生Runge现象,本实效的克服了这一现象,而且还取的很好的插值效果。
for r=k+1:n;
if abs(A(r,k))>abs(t)
p=r;
else p=k;
end
end
%%%交换元素
if p~=k;
for q=k:n+1;
s=A(k,q);
A(k,q)=A(p,q);
优质文档精选——数值分析上机实验报告
数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。
当前后两个的差<=ε时,就认为求出了近似的根。
本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。
1.2 C 语言程序原代码:#include<stdio.h>#include<math.h> main(){double x2,f,f1;double x1=1.9; //取初值为 1.9 do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数 printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB 上机程序function y=Newton(f,df,x0,eps,M) d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
哈工大_数学实验报告
数学实验报告实验一Matlab的使用1.上机实验各种数据输入方法:程序语句:a=[1 2 3;4 5 6 ;7,8,9] 程序语句:linspace(1,10,5) 等等…………计算结果:a = 计算结果:ans =1 2 34 5 6 1.0000 3.2500 5.5000 7.7500 10.00007 8 92.(1) (a)方法:(b) 方法:程序语句:程序语句:a=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5]; a=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5];b=[0;2;-1;6]; b=[0;2;-1;6];inv(a)*b a\b计算结果:计算结果:ans = ans =-0.6386 -0.6386-0.4210 -0.4210-0.3529 -0.35290.0237 0.0237(2) 4个矩阵的生成语句:矩阵a 的生成语句:e=eye(3,3); a=[e r;o s]r=rand(3,2); 验证语句:o=zeros(2,3); a^2s=diag([1,2]);%此为一个任取的2X2 矩阵b=[e r+r*s; o s^2]计算结果相同:ans =1.0000 0 0 1.9003 1.45790 1.0000 0 0.4623 2.67390 0 1.0000 1.2137 2.28630 0 0 1.0000 00 0 0 0 4.00003.生成多项式的语句:poly ([2,-3,1+2i,1-2i,0,-6])计算结果:ans = 1 5 -9 -1 72 -180 0 计算x=0.8,-x=-1.2 之值的指令与结果:指令:polyval([1,5,-9,-1,72,-180,0],0.8) 结果:ans= -100.2179指令:polyval([1,5,-9,-1,72,-180,0],-1.2) 结果:ans= 293.29004.求a的指令与结果:指令:a=compan([1,0,-6,3,-8])结果:a =0 6 -3 81 0 0 00 1 0 00 0 1 0求a的特征值的指令与结果:roots(p)的指令与结果为:指令:eig(a) 指令:roots([1,0,-6,3,-8])结果:结果:ans = ans =-2.8374 -2.83742.4692 2.46920.1841 + 1.0526i 0.1841 + 1.0526i0.1841 - 1.0526i 0.1841 - 1.0526i结论:利用友元阵函数a=company(p) 和eig(a) 可以与roots(p)有相同的作用,结果相同。
数值分析上机实验报告
数值分析上机实验报告导言:本次上机实验主要是针对数值分析课程中的一些基本算法进行实验验证。
实验内容包括迭代法、插值法、数值积分和常微分方程的数值解等。
在实验过程中,我们将会使用MATLAB进行算法的实现,并对结果进行分析。
一、迭代法迭代法是解决函数零点、方程解等问题的常用方法。
我们将选择几个常见的函数进行迭代求根的实验。
(1)二分法二分法是一种简单而有效的迭代求根法。
通过函数在区间两个端点处的函数值异号来确定函数在区间内存在零点,并通过不断缩小区间来逼近零点。
(2)牛顿法牛顿法利用函数的一阶导数和二阶导数的信息来逼近零点。
通过不断迭代更新逼近值,可以较快地求得零点。
实验结果表明,对于简单的函数,这两种迭代法都具有很好的收敛性和稳定性。
但对于一些复杂的函数,可能会出现迭代失效或者收敛速度很慢的情况。
二、插值法插值法是在给定一些离散数据点的情况下,通过构造一个插值函数来逼近未知函数的值。
本实验我们将使用拉格朗日插值和牛顿插值两种方法进行实验。
(1)拉格朗日插值拉格朗日插值通过构造一个多项式函数来逼近未知函数的值。
该多项式经过离散数据点,并且是唯一的。
该方法简单易懂,但插值点越多,多项式次数越高,插值函数的精度也就越高。
(2)牛顿插值牛顿插值利用差商的概念,通过构造一个插值多项式来逼近未知函数的值。
与拉格朗日插值相比,牛顿插值的计算过程更加高效。
但同样要求插值点的选择要合理,否则可能出现插值函数不收敛的情况。
实验结果表明,这两种插值方法都能够很好地逼近未知函数的值。
插值点的选择对插值结果有很大的影响,过多或者过少的插值点都可能导致插值结果偏离真实函数的值。
三、数值积分数值积分是一种将定积分问题转化为数值求和的方法。
本实验我们将使用复合梯形求积法和复合辛普森求积法进行实验。
(1)复合梯形求积法复合梯形求积法将定积分区间等分为若干小区间,然后使用梯形公式对每个小区间进行近似求积,最后将结果相加得到整个定积分的近似值。
数值分析上机实习报告
数值分析上机实习报告随着现代科学技术的迅猛发展,计算机科学的应用日益广泛,数值分析作为计算机科学中重要的分支之一,其在工程、物理、生物学等领域的应用也越来越受到重视。
本学期,我们在数值分析课程的学习中,进行了多次上机实习,通过实习,我们对数值分析的基本方法和算法有了更深入的理解和掌握。
在实习过程中,我们使用了MATLAB软件作为主要的工具,MATLAB是一种功能强大的数学软件,它提供了丰富的数值计算函数和图形显示功能,使我们能够更加方便地进行数值计算和分析。
第一次实习是线性插值和函数逼近。
我们学习了利用已知数据点构造插值函数的方法,并通过MATLAB软件实现了线性插值和拉格朗日插值。
通过实习,我们了解了插值的基本原理,掌握了插值的计算方法,并能够利用MATLAB软件进行插值计算。
第二次实习是解线性方程组。
我们学习了高斯消元法、列主元高斯消元法和克莱姆法则等解线性方程组的方法,并通过MATLAB软件实现了这些算法。
在实习过程中,我们通过实际例子了解了这些算法的应用,掌握了它们的计算步骤,并能够利用MATLAB软件准确地求解线性方程组。
第三次实习是求解非线性方程和方程组。
我们学习了二分法、牛顿法、弦截法和迭代法等求解非线性方程的方法,以及雅可比法和高斯-赛德尔法等求解非线性方程组的方法。
通过实习,我们了解了非线性方程和方程组的求解方法,掌握了它们的计算步骤,并能够利用MATLAB软件求解实际问题。
通过这次上机实习,我们不仅深入学习了数值分析的基本方法和算法,而且锻炼了利用MATLAB软件进行数值计算和分析的能力。
同时,我们也认识到了数值分析在实际问题中的应用价值,增强了解决实际问题的能力。
总之,这次上机实习使我们受益匪浅,对我们学习数值分析课程起到了很好的辅助作用。
数值分析上机实践报告
数值分析上机实践报告班级:计算机1002姓名:陈斯琪学号:20102686课题三A . 实验题目:线性方程组的迭代法B . 实验要求(1) 应用迭代法求解线性方程组,并与直接法作比较;(2) 分别对不同精度要求,如5-4-3-10,10,10=ε,利用所需迭代次数体会该迭代法的收敛快慢;(3) 对方程组(2),(3)使用SOR 方法时,选取松弛因子=0.8,0.9,1,1.1,1.2等,试观察对算法收敛性的影响,并找出你所选用松弛因子的最佳值; (4) 编制出各种迭代法的程序并给出计算结果。
C . 目的和意义(1) 通过上机了解迭代法求解线性方程组的特点;掌握求解线性方程组的各类迭代法;(2) 体会上机计算时,终止准则‖X^(k+1)-X^k ‖∞<ε,对控制迭代精度的有效性; (3) 体会初始值和松弛因子的选择,对迭代收敛速度的影响 D . 实验方程组(1)线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡1-421534100368-24-3-81-012029137-2621-234179-11-1003524-31-23-6217758-6233-761-62911-31-512-301-231-2-2010563-5-6000121-3-20416084-0484⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125精确解Tx )2,1,1,3,0,2,1,0,1,1(*--=.(2) 对称正定线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡45152211236601924-3-360024-3-36014110-3-5211144-3-310-4221-8-13-4-1-612-53-8-1141-2312-1-204204-2004204-2487654321x x x x x x x x精确解T*)2,0,1,1,2,0,1,1(--=x .(3)三对角线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡554141262135741-000000001-0041-0000001-41-0000001-41-0000001-41-0000001-41-0000001-41-0000001-41-0000001-400000001-000000001-410987654321x x xx x x x x x x精确解Tx )1,1,0,3,2,1,0,3,1,2(*---=.E . 实验程序代码及截图(1) 应用Jacobi 迭代法求解方程组代码如下: #include<iostream.h> #include<math.h>#define N 10 //十阶矩阵 staticdoubleA[N][N]={4,2,-3,-1,2,1,0,0,0,0,8,6,-5,-3,6,5,0,1,0,0,4,2,-2,-1,3,2,-1,0,3,1,0,-2,1,5,-1,3,-1,1,9,4,-4,2,6,-1,6,7,-3,3,2,3,8,6,-8,5,7,17,2,6,-3,5,0,2,-1,3,-4,2,5,3,0,1,16,10,-11,-9,17,34,2,-1,2,2,4,6,2,-7,13,9,2,0,12,4,0,0,-1,8,-3,-24,-8,6,3,-1};//方程组左侧系数矩阵 static double B[N]={5,12,3,2,3,46,13,38,19,-21}; //右侧值static double Y[N]; //输出比较项static double Y[N];static double X[N]; //输出项static double G[N]; //X = BX' + G的G矩阵int i,j,k; //计数器double eps;int M=100;bool distance(){ //求两输出项的差的范数是否满足精度要求double temp=0;for (i=0;i<N;i++){temp=temp+fabs(X[i]-Y[i]);}if (temp>eps)return false;elsereturn true; //满足精度要求则结束程序}void main(){cout<<"最大迭代次数为100次"<<endl;cout<<"你希望的精度是多少?"<<endl;cout<<"eps=";cin>>eps;//形成迭代矩阵B,存放到A中for (i=0;i<N;i++){if (fabs(A[i][i])<eps){cout <<"打印失败"<<endl;return;}double T=A[i][i];for (j=0;j<N;j++){A[i][j]=-A[i][j]/T;}A[i][i] = 0;G[i]=B[i]/T;}int counter=0;while (counter<M){//迭代for (i=0;i<N;i++){double temp=0;for (j=0;j<N;j++){temp=temp+A[i][j]*Y[j];}X[i]=G[i]+temp;}if (distance()==true)break;else{//交换X,Y向量;for(i=0;i<N;i++){Y[i]=X[i];}}counter++;}//打印Xcout << "迭代次数为:"<<counter<<"次。
《数值分析》上机实验报告
数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。
当前后两个的差<=ε时,就认为求出了近似的根。
本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。
1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
哈工大数值分析实验报告
哈工大数值分析实验报告标题:哈工大数值分析实验报告一、实验目的:本实验的目的是探究在数值分析中使用的各种数值方法,对于解决实际问题的有效性和可靠性进行评估。
二、实验内容:本实验主要包括以下几个方面的内容:1. 熟悉数值分析中常用的数值方法,如数值积分、数值微分、迭代法等;2. 在MATLAB等数学软件平台上,编写程序实现所学的数值方法;3. 使用所编写的程序,对给定的实际问题进行求解,并分析其结果的有效性和可靠性;4. 根据实际问题的特点,评估不同数值方法的适用性,并给出相应的结论和建议。
三、实验步骤:1. 阅读相关的理论知识,熟悉数值分析中常用的数值方法;2. 编写数值分析实验的程序代码,包括数值积分、数值微分和迭代法等;3. 使用编写的程序,对所给的实际问题进行求解,记录并分析结果;4. 根据实际问题的特点,评估所使用的数值方法的可靠性和有效性;5. 根据实验结果,撰写实验报告,包括实验目的、实验内容、实验步骤和实验结果的分析等。
四、实验结果:根据实际问题的不同,实验结果也会有所差异。
在实验报告中,可以详细叙述对所给实际问题的求解过程,并对结果进行分析和解释。
同时,还可以比较不同数值方法的结果,评估其优劣和适用性。
五、实验结论:根据实验结果的分析,可以得出结论,总结不同数值方法的优缺点,并对其在实际问题中的应用进行评价。
同时,还可以给出相应的建议,为以后的数值分析工作提供参考。
六、实验总结:通过本次实验,进一步加深了对数值分析中常用数值方法的理解和掌握。
通过实际问题的求解,对于这些数值方法的应用和效果有了更深入的认识。
同时,也提高了编程和科研报告撰写的能力,为以后的学习和工作打下了坚实的基础。
以上是关于哈工大数值分析实验报告的基本内容,具体实验细节和结果请根据实际情况进行补充。
哈工大-数值分析上机实验报告
Emax= 0.70770085900503,0 此时由 Emax 可以看出,不选主元的结果应该可以说是不正确了,这是由机器误差引 起的。 当 10 20 时,不选主元和选主元的计算结果如下 NaN NaN NaN Emax=NaN, 0 不选主元时,程序报错: Warning: Divide by zero. 。这是因为机器计算的最小精度为 10-15,所以此时的 10 20 就认为是 0,故出现了错误现象。而选主元时则没有这种现象, 而且由 Emax 可以看出选主元时的结果应该是精确解。
x3 x 1 0
x0=1; x0=0.45, x0=0.65;
( x 1) 2 (2 x 1) 0
当 x0=0.45 时,计算结果为 x= 0.49999999999983; f(x)= -8.362754932994584e-014; k=4; 由 f(x)知结果满足要求,而且又迭代次数只有 4 次看出收敛速度很快,实际上该方程确实 有真解 x=0.5。 当 x0=0.65 时,计算结果为 x= 0.50000000000000; f(x)=0; k=9; 由 f(x)知结果满足要求,实际上该方程确实有真解 x=0.5,但迭代次数增多,实际上当取 x0〉0.68 时,x≈1,就变成了方程的另一个解,这说明 Newton 法收敛与初值很有关系, 有的时候甚至可能不收敛。
实验报告
结果分析和讨论: 例 用最小二乘法处理下面的实验数据 . xi fi 3 2.01 4 2.98 5 3.50 6 5.02 7 5.47 8 6.02 9 7.05
Hale Waihona Puke 并作出 f ( x) 的近似分布图。 分别采用一次,二次和五次多项式来拟合数据得到相应的拟合多项式为: y1=-0.38643+0.82750x ; y2=-1.03024+1.06893x-0.02012x2; y5=-50.75309+51.53527x-19.65947x2+3.66585x3-0.32886x4+0.01137x5; 分别作出它们的曲线图,图中点划线为 y1 曲线,实线为 y2 曲线,虚线为 y5 曲线。’x’为 给定的数据点。从图中可以看出并不是多项式次数越高越好,次数高了,曲线越能给定点 处和实际吻合,但别的地方就很差了。因此,本例选用一次和两次的多项式拟合应该就可 以了。
数值分析上机实验报告一
实验报告一题目: 数值运算中误差分析的方法与原则摘要:在我们的日常生活与学习中,很多具体问题抽象成数学模型都可以解决,而求解这些数学模型就要用到数值分析,本实验讨论的是数值分析中的误差。
前言:(目的和意义)掌握误差来源,会对误差进行分析,了解简化计算步骤的基本原理和应用。
数学原理:误差会随着计算步骤的增加而积累,计算步骤越多,误差越大。
为了减小数值计算结果的误差,应该尽量减少计算步骤,并对误差做好分析与处理。
程序设计一:(1)计算110n x n I e x e dx -=⎰ (0,1,...)n =并估计误差。
本实验采用Matlab 的M 文件编写,程序如下:I=1-exp(-1);n=input('请输入n 的值');format longfor N=1:nI=1-n*I;endI当n=17时,I= -4.769577843020550e+020程序设计二:(2)计算多项式11110()...n n n n n P x a x a xa x a --=++++( 03a = 123k k a a -=+)并计算100(0.5)P 与150(13)P 的值本实验采用Matlab 的M 文件编写,程序如下:n=input('请出入n 的值');x=input('请出入x 的值');a=3;p=3;for i=1:na=2*a+3;b=x^i;p=p+a*b;endp计算结果:150(13)P = 1.099478611479765e+213100(0.5)P =600结果分析和讨论:(1) 计算时,要防止大数“吃”掉小数(2) 要避免除数绝对值远远小于被除数绝对值;(3) 要避免两相近数相减;(4) 注意简化计算步骤,减少运算次数。
同样一个计算问题,若能减少运算次数,不但可以节省计算时间,还能减小舍入误差。
例如上述第二题,如果要直接计算n n a x 的值再逐项相加,那么一共要做(1)(1) (212)n n n n ++-+++=次乘法和n 次加法。
数值分析上机实验——数值积分
实验报告哈尔滨工程大学教务处制实验三 数值积分一.数值积分的基本思想1.复合梯形公式:Tn=++)()([2b f a f h2∑-=11)](n k xk f ;2.复合辛普森公式:Sn=6h[f(a)+f(b)+2∑-=11)](n k xk f +4∑-=+1)2/1(n k x f ];以上两种算法都是将a-b 之间分成多个小区间(n ),则h=(b-a)/n,x k =a+kh,x k+1/2=a+(k+1/2)h,利用梯形求积根据两公式便可。
3.龙贝格算法:在指定区间内将步长依次二分的过程中运用如下公式(1)Sn=34T2n-31Tn(2)Cn=1516S2n-151Sn(3)Rn=6364C2n-631Cn4T)(k m=144-m m T )1(1+-k m - 141-mT )(1k m -,k = 1,2,… 二.实验题目及实验目的(第4章计算实习题第1题)用不同数值方法计算积分xdx x ln 1⎰= -94。
(1)取不同的步长h 。
分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善?(2)用龙贝格求积计算完成问题(1)。
(3)用自适应辛普森积分,使其精度达到104-。
三.实验手段:指操作环境和平台:win7系统下MATLAB R2009a程序语言:一种类似C 语言的程序语言,但比C 语言要宽松得多,非常方便。
四.程序①复合梯形求积程序function t=TiXing_quad(a,b,.h) format longx=a:h:b;y=sqrt(x).*log(x);y(1)=0;t=0;for k=1:(b-a)/h,t= t+y(k)+y(k+1);endt=t*h/2;②复合辛普森求积程序function s=Simpson_quad(a,b,h) format longx=a:h:b;y=sqrt(x).*log(x);z=sqrt(x+h/2).*log(x+h/2);y(1)=0;s=0;for k=1:(b-a)/h,s= s+y(k)+y(k+1)+4*z(k);ends=s*h./6;③龙贝格求积程序function [q,R]=Romberg(a,b,eps) h=b-a;R(1,1)=h*(0+sqrt(b).*log(b))/2; M=1;J=0;err=1;while err>epsJ=J+1;h=h/2;S=0;for p=1:Mx=a+h*(2*p-1);S=S+sqrt(x).*log(x);endR(J+1,1)=R(J,1)/2+h*S;M=2*M;for k=1:JR(J+1,k+1)=R(J+1,k)+(R(J+1,k)-R(J,k))/(4^k-1);enderr=abs(R(J+1,J)-R(J+1,J+1));endq=R(J+1,J+1);控制台输入代码:(1)>> a=0;>> b=1;>> h=0.1;>> t=TiXing_quad(a,b,h)>> s=Simpson_quad(a,b,h)>> h=0.01;>> t=TiXing_quad(a,b,h)>> s=Simpson_quad(a,b,h)>> h=0.001;>> t=TiXing_quad(a,b,h)>> s=Simpson_quad(a,b,h)(2)>> a=0;>> b=1;>> eps=10^-8;>> [quad,R]=Romberg(a,b,eps)(3)>> a=0;>> b=1;>> eps=10^-4;>> q=ZiShiYingSimpson('sqrt(x).*log(x)',a,b,eps) 五.实验结果比较与分析(1)h = 0.1时h = 0.01时h = 0.001时由结果(1)可知对于同一步长h,复合辛普森法求积分精度明显比复合梯形法求积的精度要高,且当步长取不同值时即h越小时,积分精度越高。