金融数学产生及发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈金融数学的产生及发展
摘要:金融数学自诞生以来经过半个多世纪的扩充和修正,已经发展成为一门具有独立理论体系的交叉学科。在最近的十几年里,金融数学的研究受到了前所未有的重视。人们越来越深刻的认识到,数学已成为金融学研究中随处可见的关键技术。而同时金融学的发展也为数学知识和技巧的运用提供了重要的平台。本文简述了金融数学的产生和发展的过程,金融数学的基本理论以及最新理论进展,最后展望了金融数学发展的前沿课题和前景。
关键词:金融数学;产生;发展;理论
一、概述
金融数学,又称分析金融学、数理金融学、数学金融学,是20世纪80年代末、90年代初兴起的数学与金融学的交叉学科。它的研究对象是金融市场上风险资产的交易,其目的是利用有效的数学工具揭示金融学的本质特征,从而达到对具有潜在风险的各种未定权益的合理定价和选择规避风险的最优策略。它的历史最早可以追朔到1900 年,法国数学家巴歇里埃的博士论文“投机的理论”。该文中,巴歇里埃首次使用brown 运动来描述股票价格的变化,这为后来金融学的发展,特别是为现代期权定价理论奠定了理论基础。不过他的工作并没有得到金融数学界的重视。直到1952 年马科维茨的博士论文《投资组合选择》提出了均值——方差的模型,建立了证券投资组合理论,从此奠定了金融学的数学理论基础。在马科维茨工作的基础上,1973年布莱克与斯科尔斯得到了著名的期权定
价公式,并赢得了1997念得诺贝尔经济学奖。它对于一个重要的实际问题提供了令人满意的答案,即为欧式看涨期权寻求公平的价格。后两次发现推动了数学研究对金融的发展,逐渐形成了一门新兴的交叉学科,金融数学。
金融数学是在两次华尔街革命的基础上迅速发展起来的一门数学与金融学相交叉的前沿学科。其核心内容就是研究不确定随机环境下的投资组合的最优选择理论和资产的定价理论。套利、最优与均衡是金融数学的基本经济思想和三大基本概念。在国际上,这门学科已经有50多年的发展历史,特别是近些年来,在许多专家、学者们的努力下,金融数学中的许多理论得以证明、模拟和完善。金融数学的迅速发展,带动了现代金融市场中金融产品的快速创新,使得金融交易的范围和层次更加丰富和多样。这门新兴的学科同样与我国金融改革和发展有紧密的联系,而且其在我国的发展前景不可限量。
二、金融数学的发展
早在1990年,法国数学家巴歇里,在他的博士论文“投机的理论”中把股票描述为布朗运动。这也是第一次给brown运动以严格的数学描述。这一理论为未来金融数学的发展,特别是现在期权理论的建立奠定了基础。但这一工作很长时间并没有引起金融数学界的重视。金融数学这一学科名称直到20世纪80年代末才出现。它是马克维姿的证券组合理论(h.kowitz1990年诺贝尔经济学奖)和斯科尔斯———默顿的期权定价理论(m.scholes-r.merton.1997
年获诺贝尔经济学奖),这两次华尔街革命的直接产物。国际称其为数理金融学。
金融数学源于20世纪初法国数学家巴歇里埃在他的博士论文《投机的原理》中对股票价格用布朗运动的刻画。虽然1905年爱因斯坦也对此做了研究,但这一新做法当时还是没能引起更多人的注意,直至1950年,萨寥尔通过统计学家萨维奇终于发现了这一作法的巨大意义,并开始对金融数学做全面的研究,由此金融数学终于迎来了发展的全盛时期,现代金融学由此正式掀开了帷幕。
现代金融数学是在两次华尔街革命的背景中成长发展起来的。第一次革命的成果体现在静态投资组合理论的研究上。1952年马尔科维兹提出了基于均值-方差模型的投资组合问题,该理论把投资的风险和回报做了可量化的刻画,从而开创了用数理化方法对金融问题进行研究的先河。然而他的模型中要计算各个风险资产价格的协方差问题,这个计算量很大。第二次华尔街革命从静态决策发展到了动态决策。1970年布雷顿森林协议垮台,浮动汇率取代了固定汇率,许多金融衍生工具比如:期权,期货都随即产生,这些金融衍生工具的引入主要是为进行金融风险的管理,而要对风险进行科学有效的管理就需要对衍生工具进行科学的定价。巴歇里埃的布朗运动模型促使了一对双胞胎:连续时间的随机过程数学与连续时间的期权定价的金融工程学的诞生.数学工具的引入主要是为进行金融风险的管理,而要对风险进行科学有效的管理就需要对衍生工具进行科学的定价。此后不久,默顿用另一种严格的数学方法推导了该
定价公式,并予以推广。期权定价公式给金融交易者及银行家在金融衍生资产品的交易中带来了空前的便利,期权交易的快速发展很快就成了世界金融市场的主要内容。布莱克,休斯,莫顿的这一理论成为近代金融经济学的里程碑人物,直到现在也仍然是现代金融理论探索的重要源泉。
三、金融数学的理论方法
金融数学作为一门边缘学科,应用大量的数学理论和方法研究,解决金融中一些重大理论问题,实际应用问题和一些金融创新的定价问题等,由于金融问题的复杂性,所用到的数学知识,除基础知识外,大量的运用现代数学理论和方法(有的运用现有的数学方法也解决不了)。主要有随机分析,随机控制,数学规划,微分对策,非线性分析,数理统计,泛函分析,鞅理论等,也有人在证券价格分析中引进了新型的非线性分析工具,如分形几何,混沌学,子波理论,模式识别等,在金融计算方法与仿真技术中也逐渐引入神经网络方法,人工智能方法,模拟退火法和遗传算法等。
金融数学是利用近现代数学的优秀成果来度量和刻画金融、经济、管理等问题的“高科技”工具,其主要的基本理论表现在三个方面。
金融数学理论的新进展有随机最优控制理论,随机最优控制理论是在上世纪60年代末在控制理论中应用布尔曼的最优化原理,并结合测度论和泛函分析方法发展起来的解决随机问题的理论方法。国外的研究者很快就把随机最优控制理论运用到相关的研究中来,
从70年代初莫顿运用该理论对连续时间最优消费投资问题进行了研究,布洛克和米尔曼还研究了不确定条件下连续时间的最优增长问题。
四、结语
金融数学是运用数学理论和方法,研究金融运行规律的一门新兴边缘学科。其核心问题是在不确定多期条件下的证券组合选择和资产定价理论。套利,最优和均衡是其中三个主要概念。现代证券组合理论,资本资产定价模型,套利定价、期权定价理论和资产结构理论在现代金融数学理论中占据重要地位。