陕西兴平市西郊高级中学2015届高三单元测试数学(理)试题:第9单元《不等式及应用》(扫描版,无答案)

合集下载

陕西省咸阳市兴平市西郊中学高三物理一模试卷(含解析)

陕西省咸阳市兴平市西郊中学高三物理一模试卷(含解析)

陕西省咸阳市兴平市西郊中学2015届高考物理一模试卷一、单项选择题(本题包括6小题,每小题3分,共18分,每小题只有一个选项符合题意.)1.关于力,下列说法正确的是( )A.一个物体是施力物体,但不是受力物体B.力有时能脱离物体而独立存在C.有受力物体就一定有施力物体D.只有相互接触的物体才能产生作用力2.如图所示的ABC是木匠用的曲尺,它是用粗细不同、质量分布均匀、两段质量相等的木料做成的,D是AC边线的中点,F是AB段的中点,G是BC段的中点,E是FG连线的中点,则曲尺的重心在( )A.B点B.D点C.E点D.G点3.物体静止在水平桌面上,物体对水平桌面的压力( )A.就是物体的重力B.大小等于物体的重力C.这个压力是由于地球的吸引而产生的D.这个压力是由于桌面的形变而产生的4.如图所示,竖直放置在水平面上的轻弹簧上叠放着质量都为2kg的物体A、B,二者处于平衡状态,若突然将一个大小为10N的力竖直向下加在A上,在此瞬间,A对B的压力大小为( )A.35N B.25N C.15N D.5N5.如图所示,水平桌面上叠放着A、B两物体,B物体受力F作用,A、B一起相对地面向右做匀减速直线运动,则B物体的受力个数为( )A.4个B.5个C.6个D.7个6.我国道路安全部门规定:高速公路上行驶的最高时速为120km/h.交通部门提供下列资料:资料一:驾驶员的反应时间:0.3~0.6s资料二:各种路面与轮胎之间的动摩擦因数路面动摩擦因数干沥青0.7干碎石路面0.6~0.7湿沥青0.32~0.4根据以上资料,通过计算判断汽车行驶在高速公路上的安全距离最接近( )A.100m B.200m C.300m D.400m二、不定项选择题(本题包括6小题,每小题4分,共24分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部正确得4分,选对但不全的得2分,有选错的得0分.)7.某举重运动员在地面上最多能举起100kg的物体,而在加速运动的升降机中,最多举起40kg的物体,则下列运动可能的是( )A.升降机加速向上运动,加速度大小为15m/s2B.升降机加速向下运动,加速度大小为15m/s2C.升降机减速向上运动,加速度大小为15m/s2D.升降机减速向下运动,加速度大小为15m/s28.如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标出的数据可计算出( )A.物体的质量B.物体与水平面间的滑动摩擦力C.物体与水平面间的最大静摩擦力D.在F为14N时物体的速度9.如图所示,有一个很长的斜面放在粗糙的水平面上,在斜面上有一长板正好沿斜面匀速下滑.若将一橡皮泥块放在长木板上后,则它们一起在下滑的过程中( )A.长木板所受的合外力不为零B.长木板继续作匀速直线运动C.斜面体受到地面的摩擦力D.地面对斜面体的支持力小于斜面体、长木板的物块的总重力10.物体沿一直线运动,在t时间内通过的位移为x,它在中间位置x处的速度为v1,在中间时刻t时的速度为v2,则下列关于v1和v2的关系错误的是( )A.当物体做匀加速直线运动时,v1>v2B.当物体做匀减速直线运动时,v1>v2C.当物体做匀速直线运动时,v1=v2D.当物体做匀减速直线运动时,v1<v211.如图所示,倾斜的传送带顺时针匀速转动,一物块从传送上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1,不计空气阻力,动摩擦因数一定,关于物块离开传送带的速率v和位置,下面哪个是可能的( )A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v112.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在大小相等的两力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),斜向上的力F与水平方向成θ角,轻弹簧与水平方向成α角.则m1所受支持力F N、摩擦力f和弹簧弹力T正确的是( )A.F N=m1g+m2g﹣FsinθB.T=C.f=FcosθD.f=F(1﹣cosθ)三、实验题(本题共2小题,共15分)13.某同学利用如图(a)装置做“探究弹簧弹力大小与其长度的关系”的实验.(1)他通过实验得到如图(b)所示的弹力大小F与弹簧长度x的关系图线.由此图线可得该弹簧的原长x0=__________cm,劲度系数k=__________N/m.(2)他又利用本实验原理把该弹簧做成一把弹簧秤,当弹簧秤上的示数如图(c)所示时,该弹簧的长度x=__________cm.14.(1)打点计时器所用电源为__________,当电源频率为50Hz,每隔__________s打一个点,实验时放开纸带与接通电源的先后顺序是先__________.(2)某同学在测定匀变速直线运动的加速度时,得到了几条较为理想的纸带,他已在每条纸带上按每5个点取好一个计数点,即两计数点之间的时间间隔为0.1s,依打点先后编为0,1,2,3,4,5.由于不小心,几条纸带都被撕断了,如图所示,请根据给出的A、B、C、D 四段纸带回答:在B、C、D三段纸带中选出从纸带A上撕下的那段应该是__________,打A纸带时,物体的加速度大小是__________m/s2.四、计算题(本小题共4个小题,共43分).解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分,有数值运算的题,答案中必须明确写出数值和单位,并写在答题卷制定的框内.15.一辆汽车在高速公路上以30m/s的速度匀速行驶,由于在前方出现险情,司机采取紧急刹车,刹车时加速度的大小为 5m/s2,求:(1)汽车刹车后20s内滑行的距离;(2)从开始刹车汽车滑行50m所经历的时间;(3)在汽车停止前3s内汽车滑行的距离.16.A、B两辆汽车在笔直的公路上同向行驶.当B车在A车前84m处时,B车速度为4m/s,且正以2m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零.A车一直以20m/s的速度做匀速运动.经过12s后两车相遇.问B车加速行驶的时间是多少?17.如图所示,矩形斜面水平边的长度为0.6m,倾斜边的长度为0.8m,斜面倾角为37°,一与斜面动摩擦因数为μ=0.6的小物体重25N,在与斜面平行的力F的作用下,沿对角线AC匀速下滑,求推力F的大小(Sin37°=0.6,Cos37°=0.8).18.如图所示,在质量为m=1kg的重物上系着一条长30cm的细绳,细绳的另一端连着一个轻质圆环,圆环套在水平的棒上可以滑动,环与棒间的动摩擦因数μ为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环50cm的地方,当细绳的端点挂上重物G,而圆环将要开始滑动时,(g取10/ms2)试问:(1)角ϕ多大?(2)长为30cm的细绳的张力是多少:(3)圆环将要开始滑动时,重物G的质量是多少?陕西省咸阳市兴平市西郊中学2015届高考物理一模试卷一、单项选择题(本题包括6小题,每小题3分,共18分,每小题只有一个选项符合题意.)1.关于力,下列说法正确的是( )A.一个物体是施力物体,但不是受力物体B.力有时能脱离物体而独立存在C.有受力物体就一定有施力物体D.只有相互接触的物体才能产生作用力考点:力的概念及其矢量性.分析:力的作用是相互的,力不能离开物体而独立存在,一个物体是受力物体同时也是施力物体.解答:解:A、因为力的作用是相互的,一个物体是施力物体,同时也是受力物体.故A 错误,C正确.B、力是物体对物体的作用,不能离开物体而独立存在.故B错误.D、产生力的作用,不一定需要接触.故D错误.故选C.点评:解决本题的关键理解力的基本概念,知道力的作用是相互的.2.如图所示的ABC是木匠用的曲尺,它是用粗细不同、质量分布均匀、两段质量相等的木料做成的,D是AC边线的中点,F是AB段的中点,G是BC段的中点,E是FG连线的中点,则曲尺的重心在( )A.B点B.D点C.E点D.G点考点:重心.分析:先找出每段的重心,再根据两段木料的质量相等,分析判断出尺子的重心位置.解答:解;由题意知AB的重心在F点,BC的重心在G点,又AB和BC的质量又相等,所以整个曲尺的重心在FG的中心E点,C正确.故选C点评:本题考查了质量分布均匀的物体的重心在物体的几何中心,不规则的物体重心可以利用悬挂法进行判断.3.物体静止在水平桌面上,物体对水平桌面的压力( )A.就是物体的重力B.大小等于物体的重力C.这个压力是由于地球的吸引而产生的D.这个压力是由于桌面的形变而产生的考点:物体的弹性和弹力;重力.分析:物体对桌面的压力是由于物体发生形变,要恢复原状而产生对桌面的弹力.根据二力平衡以及作用力与反作用力的关系判断压力与重力的大小关系.解答:解:A、物体受重力和支持力两个力平衡,支持力等于重力的大小,支持力与压力是相互作用的一对力,大小相等,方向相反,所以压力等于重力,但不是物体的重力.故A 错误,B正确.C、物体对桌面的压力是由于物体发生形变,要恢复原状而产生对桌面的弹力.故C、D错误.故选B.点评:解决本题的关键知道压力产生的原因,以及知道压力和重力的关系,难度不大.4.如图所示,竖直放置在水平面上的轻弹簧上叠放着质量都为2kg的物体A、B,二者处于平衡状态,若突然将一个大小为10N的力竖直向下加在A上,在此瞬间,A对B的压力大小为( )A.35N B.25N C.15N D.5N考点:共点力平衡的条件及其应用;力的合成与分解的运用;胡克定律.专题:共点力作用下物体平衡专题.分析:加竖直向下的力前,弹簧的弹力大小等于两物体的总重力,为F=40N,当突然将一个大小为10N的力竖直向下加在A上的瞬间,弹簧的弹力没有变化,根据牛顿第二定律对整体研究,求出此瞬间的加速度,再对B研究,由牛顿第二定律求解A对B的压力大小.解答:解:设两物体的质量均为m.加竖直向下的力前,弹簧的弹力大小F弹=2mg=40N.突然将一个大小为10N的力竖直向下加在A上的瞬间,弹簧的弹力没有变化,根据牛顿第二定律得:对整体:F=2ma,得:a=2.5m/s2.对B:N+mg﹣F弹=ma,得:N=25N,即得在此瞬间,A对B的压力大小为25N.故选B点评:本题是瞬时问题,先研究加竖直向下的力前弹簧的弹力,再研究加力瞬间整体的加速度,采用隔离法求解A对B的压力大小.5.如图所示,水平桌面上叠放着A、B两物体,B物体受力F作用,A、B一起相对地面向右做匀减速直线运动,则B物体的受力个数为( )A.4个B.5个C.6个D.7个考点:力的合成与分解的运用;共点力平衡的条件及其应用.专题:受力分析方法专题.分析:对整体及A分析可知B受摩擦力的情况,再分析B的受力情况可知B受力个数.解答:解:由A分析,可知A受重力、支持力,由于匀减速直线运动,则水平方向受到B 对A的静摩擦力,所以A对B也静摩擦力;对B分析可知B受重力、支持力、压力、拉力及地面对B的摩擦力,还有A对B也静摩擦力,故B受6个力;故选C.点评:本题要注意摩擦力的判断,必要时可以用假设法进行判断;并且要灵活应用整体法与隔离法.6.我国道路安全部门规定:高速公路上行驶的最高时速为120km/h.交通部门提供下列资料:资料一:驾驶员的反应时间:0.3~0.6s资料二:各种路面与轮胎之间的动摩擦因数路面动摩擦因数干沥青0.7干碎石路面0.6~0.7湿沥青0.32~0.4根据以上资料,通过计算判断汽车行驶在高速公路上的安全距离最接近( ) A.100m B.200m C.300m D.400m考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:当汽车在湿沥青路面上行驶时,动摩擦因数最小,刹车时滑行的距离最大,根据运动学求出反应时间内汽车通过的距离,由动能定理求出刹车后滑行的距离,再求解安全距离最接近的值.解答:解:汽车的最高速度为v=120km/h=33.3m/s.在反应时间内,汽车仍做匀速直线运动,通过的最大距离为x1=vt=33.3×0.6m=20m在汽车刹车的过程,根据动能定理得﹣μmgx2=0﹣得x2==≈173.6m,则总位移大小为x=x1+x2=193m,接近200m.故选B点评:本题一抓住在反应时间内,汽车仍保持原来的运动状态;二要会选择数据,同等条件下,动摩擦因数越小,汽车滑行的距离越大,根据动摩擦因数最小的情况求解安全距离.二、不定项选择题(本题包括6小题,每小题4分,共24分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部正确得4分,选对但不全的得2分,有选错的得0分.)7.某举重运动员在地面上最多能举起100kg的物体,而在加速运动的升降机中,最多举起40kg的物体,则下列运动可能的是( )A.升降机加速向上运动,加速度大小为15m/s2B.升降机加速向下运动,加速度大小为15m/s2C.升降机减速向上运动,加速度大小为15m/s2D.升降机减速向下运动,加速度大小为15m/s2考点:牛顿运动定律的应用-超重和失重.专题:牛顿运动定律综合专题.分析:在加速运动的升降机中,最多举起40kg的物体说明物体超重,具有向上的加速度,根据牛顿第二定律求出加速度.解答:解;由题目知物体处于超重状态,所以具有向上的加速度,由F=m(g+a)知,a=15m/s2,升降机加速向上运动和升降机减速向下运动的加速度都向上,所以AD正确;故选AD点评:做超重和失重的题目关键是搞清楚加速度的方向,具有向上的加速度为超重,具有向下的加速度为失重.8.如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标出的数据可计算出( )A.物体的质量B.物体与水平面间的滑动摩擦力C.物体与水平面间的最大静摩擦力D.在F为14N时物体的速度考点:牛顿第二定律;滑动摩擦力.专题:牛顿运动定律综合专题.分析:对物体受力分析,根据牛顿第二定律得出力F与加速度a的函数关系,然后结合图象得出相关信息即可求解.解答:解:对物体受重力、地面的支持力、向右的拉力和向左的摩擦力根据牛顿第二定律得:F﹣μmg=ma解得:由a与F图线,得到①②①②联立得,m=2Kg,μ=0.3,故AB正确;C、物体所受的滑动摩擦力为f=μmg=6N,但滑动摩擦力小于最大净摩擦力,故无法求得最大静摩擦力,所以C错误;由于物体先静止后又做变加速运动,无法利用匀变速直线运动规律求速度和位移,又F为变力无法求F得功,从而也无法根据动能定理求速度,故D错误;故选AB.点评:本题关键是对滑块受力分析,然后根据牛顿第二定律列方程求解出加速度与推力F 的关系式,最后结合a与F关系图象得到待求量.9.如图所示,有一个很长的斜面放在粗糙的水平面上,在斜面上有一长板正好沿斜面匀速下滑.若将一橡皮泥块放在长木板上后,则它们一起在下滑的过程中( )A.长木板所受的合外力不为零B.长木板继续作匀速直线运动C.斜面体受到地面的摩擦力D.地面对斜面体的支持力小于斜面体、长木板的物块的总重力考点:牛顿第二定律;力的合成与分解的运用.专题:牛顿运动定律综合专题.分析:对木板和橡皮泥整体分析,判断重力沿斜面方向上的分力和滑动摩擦力的大小,判断长木板的运动情况.对斜面体、木板橡皮泥整体分析,根据共点力平衡判断地面的摩擦力和支持力.解答:解:A、未放橡皮泥前,有:mgsinθ=μmgcosθ,则放上橡皮泥后,因为(m+m0)gsi nθ=μ(m+m0)gcosθ.知长木板继续做匀速直线运动,合外力仍然为零.故A错误,B 正确.C、对所有物体整体分析,竖直方向上受总重力和支持力,水平方向上不受力,知斜面体对地面的摩擦力为零,地面对斜面体的支持力大于斜面体、长木板的总重力.故C、D错误.故选B.点评:解决本题的关键能够正确地进行受力分析,运用共点力平衡进行求解,注意整体法和隔离法的使用.10.物体沿一直线运动,在t时间内通过的位移为x,它在中间位置x处的速度为v1,在中间时刻t时的速度为v2,则下列关于v1和v2的关系错误的是( )A.当物体做匀加速直线运动时,v1>v2B.当物体做匀减速直线运动时,v1>v2C.当物体做匀速直线运动时,v1=v2D.当物体做匀减速直线运动时,v1<v2考点:匀变速直线运动的速度与时间的关系.专题:直线运动规律专题.分析:本题可由图象得出位移中点及时间中间的速度大小,即可比较出两速度的大小.解答:解:如图作出v﹣t图象,由图可知中间时刻的速度v2,因图象与时间图围成的面积表示物体通过的位移,故由图可知时刻物体的位移小于总位移的一半,故中间位置应在中间时刻的右侧,故此时对应的速度一定大于v2;故A、B正确,D错误;当物体做匀速直线运动时,速度始终不变,故v1=v2故C正确.本题选不正确的,故选D.点评:v﹣t图象中图象与时间轴围成的面积表示物体通过的位移,故由图象可知中间时刻和中间位移.11.如图所示,倾斜的传送带顺时针匀速转动,一物块从传送上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1,不计空气阻力,动摩擦因数一定,关于物块离开传送带的速率v和位置,下面哪个是可能的( )A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1考点:摩擦力的判断与计算;牛顿第二定律.专题:摩擦力专题.分析:由于不知道摩擦力和重力沿斜面分量的大小关系,所以物体可能从A端离开,也可能从B端离开,若能从A端离开,由运动的可逆性可知,必有v=v1,若从B端离开,当摩擦力大于重力的分力时,则v<v1,当摩擦力小于重力的分力时,则v>v1.解答:解:滑块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定滑块与传送带间的摩擦力和滑块的重力沿斜面下滑分力的大小关系和传送带的长度,若能从A 端离开,由运动的可逆性可知,必有v=v1,即选项C是正确,选项D是错误的;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B是正确的,当摩擦力小于重力的分力时,则v>v1,选项A是正确的,当摩擦力和重力的分力相等时,滑块一直做匀速直线运动,v=v1,故本题应选ABC.故选ABC点评:物体在传送带上的运动是考试的热点,关键是正确对物体进行受力分析,明确问题的运动性质.12.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在大小相等的两力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),斜向上的力F与水平方向成θ角,轻弹簧与水平方向成α角.则m1所受支持力F N、摩擦力f和弹簧弹力T正确的是( )A.F N=m1g+m2g﹣FsinθB.T=C.f=FcosθD.f=F(1﹣cosθ)考点:牛顿第二定律;力的合成与分解的运用;胡克定律.专题:牛顿运动定律综合专题.分析:先整体做受力分析,可以知道m1受到的支持力和摩擦力,然后再单独对m2受力分析,可以得到弹簧的弹力表达式.解答:解:对整体受力分析如图:由于物体做匀速运动,故竖直方向有:N+Fsinθ=G解得:N=m1g+m2g﹣Fsinθ故A正确水平方向有:F=Fcosθ+f解得:f=F(1﹣cosθ)故D正确再对m2单独受力分析,水平方向有:Tcosα=Fcosθ解得:T=故B错误故选AD点评:本题重点是对受力分析方法的应用,对连接体问题,多要用整体和部分结合的方法解题.这个方法要掌握熟练.三、实验题(本题共2小题,共15分)13.某同学利用如图(a)装置做“探究弹簧弹力大小与其长度的关系”的实验.(1)他通过实验得到如图(b)所示的弹力大小F与弹簧长度x的关系图线.由此图线可得该弹簧的原长x0=4cm,劲度系数k=50N/m.(2)他又利用本实验原理把该弹簧做成一把弹簧秤,当弹簧秤上的示数如图(c)所示时,该弹簧的长度x=10cm.考点:探究弹力和弹簧伸长的关系.专题:实验题;弹力的存在及方向的判定专题.分析:(1)弹簧处于原长时,弹力为零;根据胡克定律F=k△x求解劲度系数;(2)直接从弹簧秤得到弹力,再从图象b弹簧弹簧长度.解答:解:(1)弹簧处于原长时,弹力为零,故原长为4cm;弹簧弹力为2N时,弹簧的长度为8cm,伸长量为4cm;根据胡克定律F=k△x,有:k===50N/m;(2)由图c得到弹簧的弹力为3N,根据图b得到弹簧的长度为10cm;故答案为:(1)4,50;(2)10.点评:本题关键是明确实验原理,然后根据胡克定律F=k△x并结合图象列式求解,不难.14.(1)打点计时器所用电源为交流电,当电源频率为50Hz,每隔0.02s打一个点,实验时放开纸带与接通电源的先后顺序是先接通电源后释放纸带.(2)某同学在测定匀变速直线运动的加速度时,得到了几条较为理想的纸带,他已在每条纸带上按每5个点取好一个计数点,即两计数点之间的时间间隔为0.1s,依打点先后编为0,1,2,3,4,5.由于不小心,几条纸带都被撕断了,如图所示,请根据给出的A、B、C、D 四段纸带回答:在B、C、D三段纸带中选出从纸带A上撕下的那段应该是C,打A纸带时,物体的加速度大小是0.60m/s2.考点:探究小车速度随时间变化的规律.专题:实验题;直线运动规律专题.分析:(1)打点计时器是一种计时仪器,其电源频率为50Hz,常用的电磁打点计时器和电火花计时器使用的是交流电,它们是每隔0.02s打一个点;使用时应先给打点计时器通电打点,然后释放纸带让纸带,如果先放开纸带开始运动,再接通打点计时时器的电源,纸带上可能由很长一段打不上点.(2)根据匀变速直线运动的特点(相邻的时间间隔位移之差相等)去判断问题.利用匀变速直线运动的推论求解加速度和速度.解答:解:(1)打点计时器所用电源为交流电,当电源频率为50Hz,每隔0.02s打一个点,实验时放开纸带与接通电源的先后顺序是先接通电源后释放纸带.(2)根据匀变速直线运动的特点(相邻的时间间隔位移之差相等)得出:x45﹣x34=x34﹣x23=x23﹣x12=x12﹣x01所以属于纸带A的是C图.根据运动学公式△x=at2得:a==0.60m/s2.故答案为:(1)交流电,0.02,接通电源后释放纸带(2)C,0.60.点评:对于基本仪器的使用和工作原理,我们不仅从理论上学习它,还要从实践上去了解它,自己动手去做做,以加强基本仪器的了解和使用.对于纸带的问题,我们要熟悉匀变速直线运动的特点和一些规律.四、计算题(本小题共4个小题,共43分).解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分,有数值运算的题,答案中必须明确写出数值和单位,并写在答题卷制定的框内.15.一辆汽车在高速公路上以30m/s的速度匀速行驶,由于在前方出现险情,司机采取紧急刹车,刹车时加速度的大小为 5m/s2,求:(1)汽车刹车后20s内滑行的距离;(2)从开始刹车汽车滑行50m所经历的时间;(3)在汽车停止前3s内汽车滑行的距离.考点:匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系.专题:直线运动规律专题.分析:(1)汽车刹车时做匀减速运动,由初速度、加速度求出汽车刹车到停下的时间,判断刹车后20s内汽车的运动情况.再由位移公式求解滑行的距离.(2)运用逆向思维:汽车从静止开始做匀加速运动,加速度大小为5m/s2,求出在汽车停止前3s内汽车滑行的距离.解答:解:设汽车运动方向为正方向,则a=﹣5m/s2(1)设刹车的时间为t0,则有t0==s=6s则汽车刹车20s后的位移与6s末的位移相同,x=v0t+=30×(m)=90m(2)由x1=v0t1+at12得50=30t1+解得 t1=2s(3)汽车减速为0可看成反向的初速度为0的匀加速运动.由x2=v0t2+at22,代入解得x2=22.5m答:(1)汽车刹车后20s内滑行的距离是90m;(2)从开始刹车汽车滑行50m所经历的时间是2s;(3)在汽车停止前3s内汽车滑行的距离是22.5m.点评:对于汽车刹车问题,判断汽车的运动情况是关键,不能死套公式.有时还考虑司机的反应时间,在反应时间内汽车保持原来的状态不变.16.A、B两辆汽车在笔直的公路上同向行驶.当B车在A车前84m处时,B车速度为4m/s,且正以2m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零.A车一直以20m/s的速度做匀速运动.经过12s后两车相遇.问B车加速行驶的时间是多少?。

2015年高考理科数学陕西卷-答案

2015年高考理科数学陕西卷-答案

n nn 2015 年普通高等学校招生全国统一考试(陕西卷)理科数学答案解析第一部分一、选择题1. 【答案】A【解析】由 M ={x | x 2 = x } ⇒ M ={0,1},N ={x | lg x ≤ 0}⇒ N ={x | 0 < x ≤1}所以 M N =[0,1] .【提示】求解一元二次方程化简 M ,求解对数不等式化简 N ,然后利用并集运算得答案 【考点】并集及其运算2. 【答案】C【解析】初中部女教师的人数为110⨯ 70% = 77 ;高中部女教师的人数为40⨯150% = 60 ,∴该校女教师的 人数为77 + 60 =137 ,【提示】利用百分比,可得该校女教师的人数.【考点】收集数据的方法.3. 【答案】C【解析】解:由题意可得当sin⎛ π x + ϕ ⎫取最小值-1 时,函数取最小值 y= -3 + k = 2 ,解得 k = 5 ,∴ 6 ⎪ min ⎝ ⎭ y = 3sin ⎛ π x + ϕ ⎫ + 5 ,∴当sin ⎛ π x + ϕ ⎫取最大值1 时,函数取最大值 y = 3 + 5 = 8 , 3 ⎪ 6 ⎪ max ⎝ ⎭ ⎝ ⎭【提示】由题意和最小值易得 k 的值,进而可得最大值. 【考点】 y = A sin(ωx +ϕ) 的图象性质.4. 【答案】B【解析】二项式(x +1)n 的展开式的通项是T= C r x r,令 r = 2 得 x 2 的系数是C 2 ,因为 x 2 的系数为15 ,所以C 2 = 15 ,即 n 2 - n - 30 = 0 ,解得: n = 6 或n = -5 , 因为n ∈ N + ,所以n = 6r +1n 几何体 2 2【提示】由题意可得C 2= 15 ,解关于 n 的方程可得.【考点】二项式定理的应用.5. 【答案】D【解析】根据几何体的三视图,得;该几何体是圆柱体的一半,∴该几何体的表面积为V = π 12 + π⨯1⨯2 + 2⨯ 2= 3π + 4【提示】根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积. 【考点】由三视图求面积,体积6. 【答案】A【解析】cos2α = 0 ⇒cos 2 α -sin 2 α = 0⇒(cos α -sin α)(cos α +sin α) = 0所以sin α = cos α或sin α = - cos α【提示】由cos2α = cos 2 α -sin 2 α ,即可判断出. 【考点】必要条件、充分条件与充要条件的判断.7. 【答案】B【解析】因为a b =| a || b | cos < a ,b >≤| a || b | ,所以选项A 正确; 当 a 与b 方向相反时,| a - b |≤ | a | - | b | 不成立,所以选项 B 错误; 向量的平方等于向量的模的平方,所以选项C 正确;(a + b)(a - b) = a - b 所以选项D 正确【提示】由向量数量积的运算和性质逐个选项验证可得. 【考点】平面向量数量积的运算8. 【答案】C【解析】解:模拟执行程序框图,可得 x = 2006,x = 2004 满足条件 x ≥ 0,x = 2002 满足条件 x ≥ 0,x = 2000 ……满足条件 x ≥ 0,x = 0ab ⎨ ⎩ ⎩ ⎩ 满足条件 x ≥ 0不满足条件 x ≥ 0,y =10 输出 y 的值为10【提示】模拟执行程序框图,依次写出每次循环得到的 x 的值,当 x = -2 时不满足条件 x ≥ 0 ,计算并输出 y 的值为10 . 【考点】程序框图9. 【答案】B【解析】 p = f ( ab ) = ln ab ,q = f ⎛ a + b ⎫= lna +b ,2 ⎪ 2 ⎝ ⎭r = 1 ( f (a ) + f (b )) = 1ln ab = ln 2 2函数 f (x ) = ln x 在(0, +∞) 上单调递增,因为 a + b > ,所以 f ⎛ a + b ⎫> f (ab ) , 22 ⎪ ⎝ ⎭ 所以q > p = r【提示】由题意可得 p = 1 (ln a + ln b ) , q = ln ⎛ a + b ⎫ ≥ ln( ab ) = p , r = 1 (ln a + ln b ) ,可得大小关系. 2 2 ⎪ 2【考点】不等关系与不等式.10. 【答案】D⎝ ⎭⎧3x + 2 y ≤ 12【解析】设每天生产甲乙两种产品分别为 x ,y 顿,利润为 z 元,则⎪x + 2 y ≤ 8 ⎪x ≥ 0, y ≥ 0 ,目标函数为 z = 3x + 4y .作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由 z = 3x + 4y 得 y = - 3 x + z ,平移直线 y = - 3 x + z 由图象可知当直线 y = - 3 x + z经过点 B 时,直线4 4 4 4 4 4y = - 3 x + z的截距最大,此时 z 最大,解方程组⎧3x + 2 y = 12 ,解得⎧ x = 2 ,即 B 的坐标为 x = 2,y = 3 ,4 4∴z max = 3x + 4y = 6 +12 =18 ⎨x + 2 y = 8 ⎨ y = 3即每天生产甲乙两种产品分别为 2,3 顿,能够产生最大的利润,最大的利润是18 万元ab【提示】设每天生产甲乙两种产品分别为 x ,y 顿,利润为 z 元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出 z 的最大值. 【考点】简单线性规划的应用11. 【答案】D【解析】∵复数 z = (x -1) + y i(x ,y ∈R ) 且| z |≤1,∴| z |= ≤ 1,即(x -1)2 + y 2≤ 1 ,∴点(x ,y ) 在(1,0) 为圆心 1 为半径的圆及其内部,而 y ≥ x 表示直线 y = x 左上方的部分,(图中阴影弓形) ∴所求概率为弓形的面积与圆的面积之比,∴所求概率 P = 1 π 12 - 1 ⨯1⨯1 = 1 - 14 2 4 2π【提示】由题意易得所求概率为弓形的面积与圆的面积之比,分别求面积可得. 【考点】几何概型12. 【答案】A【解析】假设选项A 错误,则选项B 、C 、D 正确, f '(x ) = 2ax + b ,因为 1 是 f (x ) 的极值点,3 是 f (x ) 的极值, ⎧ f '(1) = 0 ⎧2a + b = 0 ⎧b = -2a 所以⎨ f (1) = 3 , ⎨a + b + c = 3 ,解得⎨c = 3 + a ,⎩ ⎩ ⎩因为点(2,8) 在曲线 y = f (x ) 上,所以4a + 2b + c = 8,解得: a = 5 ,所以b = -10 , c = 8 , 所以 f (x ) = 5x 2 -10x + 8因为 f (-1) = 5⨯(-1)2 -10⨯(-1) + 8 = 23 ≠ 0 , 所以-1不是 f (x ) 的零点,所以假设成立,选 A【提示】可采取排除法.分别考虑 A ,B ,C ,D 中有一个错误,通过解方程求得 a ,判断是否为非零整数,(x -1)2 + y 21即可得到结论.【考点】二次函数的性质.第二部分二、填空题13. 【答案】5【解析】解:设该等差数列的首项为 a ,由题意和等差数列的性质可得2015 + a =1010⨯ 2 解得 a = 5【提示】由题意可得首项的方程,解方程可得. 【考点】等差数列14. 【答案】2 【解析】抛物线 y 2 = 2 px ( p > 0) 的准线方程是 x =- p,2 双曲线 x 2 - y 2 = 1 的一个焦点 F (- 2, 0) ,因为抛物线 y 2 = 2 px ( p > 0) 的准线经过双曲线 x 2 - y 2 = 1 的一个焦点,所以- p= - 22 ,解得 p = 2 【提示】先求出 x 2 - y 2 = 1 的左焦点,得到抛物线 y 2= 2 px ( p > 0) 的准线,依据 p 的意义求出它的值.【考点】抛物线的简单性质 15.【答案】(1,1)【解析】∵ f '(x ) = e x ,∴ f '(0) = e 0= 1∵ y = e x在(0,1) 处的切线与 y = 1 (x > 0) 上点 P 的切线垂直x∴点 P 处的切线斜率为-1又 y ' = 1x 2 ,设点 P (x 0,y 0 )∴ - 1x 0= -1∴x 0 = ±1, x > 0,∴ x 0 =1∴y 0 = 1 223 ∴点 P (1,1)【提示】利用 y = e x在某点处的切屑斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标.【考点】利用导数研究曲线上某点切线方程16. 【答案】1.2【解析】如图:建立平面直角坐标系,设抛物线方程为:y = ax 2,因为抛物线经过(5,2) ,可得a = 2, 25所以抛物线方程: y =2x 2 ,横截面为等腰梯形的水渠, 25 泥沙沉积的横截面的面积为: 2⎛ 5 2 x 2 - 1 ⨯ 2 ⨯ 2⎫ = 2⎛ 2 x 3 |5 -2⎫ = 8, ⎰0 25 2 ⎪ 75 0 ⎪ 3 ⎝ ⎭ ⎝ ⎭10 + 6 ⨯ 2 = 16 ,当前最大流量的横截面的面积16 - 8,原始的最大流量与当前最大流量的比值为:1618 - 82 3= 1.2【提示】建立直角坐标系,求出抛物线方程,然后利用定积分求出泥沙沉积的横截面面积,求出梯形面积, 即可推出结果.【考点】直线与圆锥曲线的关系. 三、解答题17. 【答案】(Ⅰ) A = π3(Ⅱ)3 32 【解析】(Ⅰ)因为向量m = (a , 3b ) 与n = (cos A ,sin B ) 平行,所以a sin B -3b cos A = 0 ,由正弦定理可知:sin A sin B - 3 sin B cos A = 0 ,因为sin B ≠ 0 ,所以tan A =3,可得 A = π ; 3(Ⅱ)由正弦定理得 7 = 2 ,从而sin B = 21,sin π sin B 73等腰梯形的面积为:3 ⎩ ⎨又由a > b ,知 A > B ,所以cos B =故 = ⎛π ⎫sin C = sin(A + B ) sin B + ⎪⎝⎭ = sin B cos π + cos B sin π = 3 213 314 所以∆ABC 的面积为 1 bc sin A = 3 32 2【提示】(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解 A ;(Ⅱ)利用 A ,以及a = 7,b = 2 ,通过余弦定理求出 c ,然后求解∆ABC 的面积.【考点】余弦定理的应用,平面向量共线(平行)的坐标表示18. 【答案】(Ⅰ)见解析(Ⅱ) 63【解析】证明:(Ⅰ)在图 1 中,∵ AB = BC =1,AD = 2 ,E 是 AD 的中点,∠BAD = π, 2∴ BE ⊥ AC ,即在图 2 中, BE ⊥ OA 1,BE ⊥ OC ,则 BE ⊥ 平面A 1OC ;∵CD ∥BE , ∴ CD ⊥ 平面A 1OC ;(Ⅱ)若平面A 1BE ⊥ 平面BCDE ,由(Ⅰ)知 BE ⊥ OA 1,BE ⊥ OC ,∴ ∠A 1OC 为二面角 A 1 - BE - C 的平面角,∴ ∠AOC = π,如图,建立空间坐标系,12∵A 1B = A 1E = BC = ED =1 , BC ∥EDB ⎛ 2 ,0 ⎫ ⎛ 2 ⎫ ⎛ 2 ⎫ ⎛ 2 ⎫ ∴ 2 ,0 ⎪,E - 2 ,0,0 ⎪,A 1 0,0, 2 ⎪,C 0, 2 ,0 ⎪ ,⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭BC⎛ 2 2 ⎫ ⎛ 2 2 ⎫ = - 2 , 2 , 0 ⎪, A 1C = 0, 2 , - 2 ⎪,CD = BE (- 2, 0, 0)⎝ ⎭ ⎝ ⎭设平面A 1BC 的法向量为m = (x , y , z ) ,平面A 1CD 的法向量为n = (a ,b ,c ) ,则⎧⎪m B C ⎨ ⎪⎩m A C 1= 0 ⎧- x + y = 0 = 0 得⎨ y - z = 0 ,令 x =1 ,则y =1,z =1,即m ⎧⎪n A 1C = 0 = (1,1,1) ,由⎨ ⎪⎩n CD = 0⎧a = 0得 ⎩b - c = 0,取n = (0,1,1) , 2 77m, n >=m n=2| m || n | 3 ⨯ 26则cos <=,3即平面A BC 与平面ACD 夹角的余弦值为6 .1 1 3【提示】(Ⅰ)根据线面垂直的判定定理即可证明:CD ⊥平面A1OC ;(Ⅱ)若平面A1BE ⊥平面BCDE ,建立空间坐标系,利用向量法即可求平面A1BC 与平面A1CD 夹角的余弦值.【考点】二面角的平面角及求法,直线与平面垂直的性质【答案】(Ⅰ)T 的分布列为:T 25 30 35 40P 0.2 0.3 0.4 0.1ET = 32 (分钟)(Ⅱ)0.91T(分钟)25 30 35 40频率0.2 0.3 0.4 0.1T 25 30 35 40P 0.2 0.3 0.4 0.1从而数学期望ET = 25⨯ 0.2 + 30⨯ 0.3 + 35⨯ 0.4 + 40⨯ 0.1 = 32 (分钟)(Ⅱ)设T1,T2 分别表示往、返所需时间,T1,T2 的取值相互独立,且与T 的分布列相同,设事件A 表示“刘教授共用时间不超过120 分钟”,由于讲座时间为50 分钟,所以事件A 对应于“刘教授在路途中的时间不超过70 分钟”b 2 +c 210(b 2- 2) 101 12 2P (A ) = P (T 1 + T 2 > 70) = P (T 1 = 35,T 2 = 40) + P (T 1 = 40,T 2 = 35) + P (T 1 = 40,T 2 = 40)= 0.4⨯ 0.1+ 0.1⨯ 0.4 + 0.1⨯ 0.1 = 0.09 故 P ( A ) =1- P (A ) = 0.91【提示】(Ⅰ)求 T 的分布列即求出相应时间的频率,频率=频数÷样本容量, 数学期望 ET = 25⨯ 0.2 + 30⨯ 0.3 + 35⨯ 0.4 + 40⨯ 0.1 = 32 (分钟);(Ⅱ)设T 1,T 2 分别表示往、返所需时间,事件 A 对应于“刘教授共用时间不超过 70 分钟”,先求出P (A ) = P (T 1 = 35,T 2 = 40) + P (T 1 = 40,T 2 = 35)+ P (T 1 = 40,T 2 = 40 )= 0 .09【考点】离散型随机变量的期望与方差,离散型随机变量及其分布列20. 【答案】(Ⅰ) 32(Ⅱ) x 2 + y 2 =12 3【解析】(Ⅰ)经过点(0,b ) 和(c ,0) 的直线方程为bx + cy - bc = 0 ,则原点到直线的距离为d = bc = 1 c 2 ,即为a = 2b ,e = c = a = 3 ; 2(Ⅱ)由(Ⅰ)知,椭圆E 的方程为 x 2 + 4 y 2 = 4b 2①,由题意可得圆心 M (-2,1) 是线段 AB 的中点,则| AB |= 10 ,易知 AB 与 x 轴不垂直,记其方程为 y = k (x + 2) +1,代入①可得(1+ 4k 2 )x 2 + 8k (1+ 2k ) x + 4(1+ 2k )2- 4b 2 = 0 ,设 A (x ,y ),B (x ,y ) ,x +-8k (1+ 2k )4(1 + 2k )2 - 4b 2x + x = -4 -8k (1+ 2k ) 1则 1 x 2 =1+ 4k2, x 1 x 2 =1 + 4k 2,由 1 2,得 1+ 4k 2 = -4 ,解得k = , 2从而 x 1 x 2 = 8 - 2b ,于是| AB |= 2x 2 y 2= = , 解得b 2= 3 ,则有椭圆 E 的方程为 + = 112 3【提示】(Ⅰ)求出经过点(0,b ) 和(c ,0) 的直线方程,运用点到直线的距离公式,结合离心率公式计算即可得到所求值;(Ⅱ)由(Ⅰ)知,椭圆 E 的方程为 x 2 + 4 y 2 = 4b 2,①设出直线 AB 的方程,代入椭圆方程,运用韦达定理和弦长公式,结合圆的直径和中点坐标公式,解方程可得b 2 = 3 ,即可得到椭圆方程. 【考点】直线与圆锥曲线的综合问题,曲线与方程b 2 1 - a 2 1 + | x + x |= ⎛ 1 ⎫2 ⎝ 2 ⎭⎪ 1 2 5 2(x + x )2 - 4x x 1 2 1 2 1n 021. 【答案】(Ⅰ)见解析(Ⅱ)当 x =1 时, f n (x ) = g n (x )当 x ≠ 1 时, f n (x ) < g n (x )【解析】证明:(Ⅰ)由 F n (x ) = f n (x ) - 2 = 1+ x + x 2 +⋯+ x n - 2 ,则 F (1) = n -1 > 0 ,⎛ 1 ⎫n +1⎛ 1 ⎫ 1 ⎛ 1 ⎫2⎛ 1 ⎫n1- 2 ⎪ 1 F = 1+ + +⋯+- 2 = ⎝ ⎭ - 2 = - < 0 ,n 2 ⎪ 2 2 ⎪ 2 ⎪ 1 2n⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 1-2 ∴ F (x ) 在⎛ 1 ,1⎫ 内至少存在一个零点,又 F '(x ) = 1+ 2x +⋯+ nx n -1> 0 , n 2 ⎪ n ⎝ ⎭ ∴ F (x ) 在⎛ 1 ,1⎫内单调递增, n 2 ⎪ ⎝ ⎭ ∴ F (x ) 在⎛ 1 ,1⎫内有且仅有一个零点 x , n 2 ⎪ n⎝ ⎭∵ x n 是 F n (x ) 的一个零点,1 - x n +1 ∴ F (x ) = 0 ,即 n -2 = 0 ,故 x = 1 + 1 x n +1 ; 1 - x nn 2 2 n(n + 1)(1 + x n ) (Ⅱ)由题设, g n (x ) =, 22n(n +1)(1 + x n )设 h (x ) = f n (x ) - g n (x ) = 1 + x + x当 x =1 时, f n (x ) = g n (x ) .+⋯+ x -,x > 0 . 2当 x ≠ 1 时, h '(x ) = 1 + 2x +⋯+ nxn -1 n (n + 1)x n -1-.2若0 < x < 1, h '(x ) > xn -1 + 2xn -1 + ... + nx n -1 -n (n + 1)x n -12= n (n +1)x n -1 - n (n +1)x n -1 = . 2 2若 x >1 , h '(x ) < xn -1+ 2xn -1+ ... + nxn -1-n (n +1)x n -12= n (n +1)x n -1 - n (n +1)x n -1 = . 2 2∴h (x ) 在(0,1) 内递增,在(1,+ ∞) 内递减, ∴ h (x ) < h (1) = 0 ,即 f n (x ) < g n (x ) .n n2 综上,当 x =1 时, f n (x ) = g n (x ) ;当 x ≠ 1 时, f n (x ) < g n (x ) .【提示】(Ⅰ)由 F (x ) = f (x ) - 2 = 1+ x + x 2 +⋯+ x n - 2 ,求得 F (1) > 0 , F ⎛ 1 ⎫ < 0 .再由导数判断出函 n n n n 2 ⎪ ⎝ ⎭ 数 F (x ) 在 ⎛ 1 ,1⎫ 内单调递增, 得到 F (x ) 在 ⎛ 1 ,1⎫ 内有且仅有一个零点 x ,由 F (x )= 0,得到 n 2 ⎪ n 2 ⎪ n n n⎝ ⎭ ⎝ ⎭ x = 1 + 1 x n +1 ;n 2 2 n (n + 1)(1 + x n ) 2 n (n +1)(1 + x n ) (Ⅱ)先求出 g n (x ) = 2 ,构造函数h (x ) = f n (x ) - g n (x ) = 1 + x + x +⋯+ x - ,当 2x =1 时, f n (x ) = g n (x ); 当 x ≠ 1 时, 利用导数求得 h (x ) 在(0,1) 内递增, 在(1,+ ∞) 内递减,即得到f n (x ) <g n (x ).【考点】数列的求和,等差数列与等比数列的综合22. 【答案】(Ⅰ)见解析(Ⅱ)3【解析】证明:(Ⅰ)∵ DE 是 O 的直径,则∠BED + ∠EDB = 90︒ ,∵BC ⊥ DE , ∴ ∠CBD + ∠EDB = 90︒ ,即∠CBD = ∠BED ,∵ AB 切 O 于点 B ,∴ ∠DBA = ∠BED ,即∠CBD = ∠DBA ; (Ⅱ)由(Ⅰ)知 BD 平分∠CBA ,则BA = AD = 3 ,∵ BC = , ∴ AB = 3 2 , A C = BC CD= 4 ,则 AD = 3 , AB 2由切割线定理得 AB 2 = AD AE ,即 AE = = 6 ,AD 故 DE = AE - AD = 3 ,即 O 的直径为 3.【提示】(Ⅰ)根据直径的性质即可证明: ∠CBD = ∠DBA ;(Ⅱ)结合割线定理进行求解即可求 O 的直径.【考点】直线与圆的位置关系23.【答案】(Ⅰ)x 2 + ( y - 3)2 = 3 AB 2 - BC 2t 2 +12 3 3 at +12 bt -3t +12 3 4 - t 4 - t + t t ⎩ ⎨ ⎨ (Ⅱ) P (3,0)【解析】(Ⅰ)由 C 的极坐标方程为 ρ = 2 3ρ sin θ .∴ ρ2 = 2 3ρ sin θ ,化为 x 2 + y 2 = 2 3y ,配方为 x 2 + ( y -3)2 = 3 .⎛ 1 3 ⎫ (Ⅱ)设 P 3 + 2 t , 2 t ⎪ ,又C (0, 3) . ⎝ ⎭ ∴|PC |== ≥ 2 ,因此当t = 0 时,| PC | 取得最小值2 .此时 P (3,0) .【提示】(Ⅰ)由 C 的极坐标方程为 ρ = 2 3ρ sin θ .化为 ρ2 = 2 3ρ sin θ ,把⎧ρ 2 = x 2 ⎨ y = ρn+2y θ 代入即可得出. ⎛ 1 3 ⎫(Ⅱ)设 P 3 + 2 t , 2 t ⎪ ,又C (0, 3) .利用两点之间的距离公式可得|PC |=,再利用二次函数的⎝ ⎭性质即可得出.【考点】点的极坐标和直角坐标的互化⎧a = -3 24.【答案】(Ⅰ) ⎨⎩b = 1(Ⅱ)4【解析】(Ⅰ)关于 x 的不等式| x + a |< b 可化为-b - a < x < b - a ,又∵原不等式的解集为{x | 2 < x < 4}, ⎧-b - a = 2 ∴ ⎩b - a = 4 ⎧a = -3 ,解方程组可得 ; ⎩b = 1(Ⅱ)由(Ⅰ)可得 + = += +≤= 2 = 4 ,当且仅当 = 即t =1时取等号, 1∴所求最大值为 4⎛ 1 ⎫2 3 + t ⎪ + t - 3 ⎪ ⎛ 3 ⎫ 2 ⎝ 2 ⎭ ⎝ 2 ⎭ t 2 +12 tt [( 3)2 +12 ][( 4 - t )2 + ( t )2 ]4 - t 3-3t +12 t 3 4 - t t 【提示】(Ⅰ)由不等式的解集可得 a 与 b 的方程组,解方程组可得; (Ⅱ)原式= + = + ,由柯西不等式可得最大值.【考点】不等关系与不等式。

2015年高考理科数学试题分类解析之专题七不等式.doc

2015年高考理科数学试题分类解析之专题七不等式.doc

专题七 不等式试题部分1.【2015高考四川,理9】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )8122.【2015高考北京,理2】若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为( )A .0B .1C .32D .23.【2015高考广东,理6】若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则yx z 23+=的最小值为( )A .531 B. 6 C. 523 D. 4 4.【2015高考陕西,理9】设()ln ,0f x x a b =<<,若p f =,()2a bq f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 5.【2015高考湖北,理10】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,则正整数n 的最大值是( )A .3B .4C .5D .66.【2015高考天津,理2】设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为( )(A )3 (B )4 (C )18 (D )407.【2015高考陕西,理10】某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元8.【2015高考山东,理5】不等式152x x ---<的解集是( )(A )(-,4) (B )(-,1) (C )(1,4) (D )(1,5)9.【2015高考福建,理5】若变量,x y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩ 则2z x y =-的最小值等于 ( )A .52-B .2-C .32- D .210.【2015高考山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a = ( )(A )3 (B )2 (C )-2 (D )-311.【2015高考新课标1,理15】若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .12.【2015高考浙江,理14】若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .14.【2015高考江苏,7】不等式224x x-<的解集为________.15.【2015高考湖南,理4】若变量x ,y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y=-的最小值为( )A.-7B.-1C.1D.216.【2015高考上海,理17】记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根参考答案1.【答案】B 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,822n m --≥-即212m n +≤.226,182m nm n mn +⋅≤≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m --≤-即218m n +≤.28129,22n m n m mn +⋅≤≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B..2【答案】D 如图,先画出可行域,由于2z x y =+,则1122y x z =-+,令0Z =,作直线12y x =-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取得最小值2.3【答案】C .4【答案】C p f ==()ln22a b a bq f ++==,11(()())ln 22r f a f b ab =+==()ln f x x =在()0,+∞上单调递增,因为2a b +>,所以()2a b f f +>,所以q p r >=,故选C .5【答案】B 因为[]x 表示不超过x 的最大整数.由1][=t 得21<≤t ,由2][2=t 得322<≤t ,由3][4=t 得544<≤t ,所以522<≤t ,所以522<≤t ,由3][3=t 得433<≤t ,所以5465<≤t ,由5][5=t 得655<≤t ,与5465<≤t 矛盾,故正整数n 的最大值是4. 6.【答案】C7【答案】D 设该企业每天生产甲、乙两种产品分别为x 、y吨,则利润34z x y =+由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,故选D .8【答案】A 原不等式同解于如下三个不等式解集的并集;1155()()()152152152x x x I II III x x x x x x <≤<≥⎧⎧⎧⎨⎨⎨-+-<-+-<--+<⎩⎩⎩ 解(I )得:1x < ,解(II )得:14x ≤< ,解(III )得:x φ∈ , 所以,原不等式的解集为{}4x x < .故选A.910【答案】B 不等式组020x y x y y -≥⎧⎪+≤⎨⎪≥⎩ 在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y =+的最大值为4,则最优解可能为1,1x y == 或2,0x y == ,经检验,2,0x y ==是最优解,此时2a = ;1,1x y ==不是最优解.故选B.11【答案】3作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故yx的最大值为3.12【答案】3.13.【2015高考新课标2,理14】若x,y满足约束条件1020,220,x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y=+的最大值为____________.13【答案】32画出可行域,如图所示,将目标函数变形为y x z=-+,当z取到最大时,直线y x z=-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D,则z x y=+的最大值为32.xy–1–2–3–41234–1–2–3–41234DCBO14【答案】(1,2).-由题意得:2212x x x -<⇒-<<,解集为(1,2).-15 【答案】A.如下图所示,画出线性约束条件所表示的区域,即可行域,作直线l :30x y -=,平移l ,从而可知当2-=x ,1=y 时,min 3(2)17z =⨯--=-的最小值是7-,故选A.16.【答案】B。

2015年普通高等学校招生全国统一考试理科数学(陕西卷)(含答案全解析)

2015年普通高等学校招生全国统一考试理科数学(陕西卷)(含答案全解析)

2015年普通高等学校招生全国统一考试陕西理科数学1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,先按规定在试卷上填写姓名、准考证号,并在答题卡上填上对应的试卷类型信息.3.所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷及答题卡一并交回.第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分).1.(2015陕西,理1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案:A解析:解x2=x,得x=0或x=1,故M={0,1}.解lg x≤0,得0<x≤1,故N=(0,1].故M∪N=[0,1],选A.2.(2015陕西,理2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167答案:C解析:由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).选C.3.(2015陕西,理3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sinπx+φ +k.据此函数6可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10答案:C解析:因为sinπx+φ ∈[-1,1],所以函数y=3sinπx+φ +k的最小值为k-3,最大值为k+3.由题图可知函数最小值为k-3=2,解得k=5.所以y的最大值为k+3=5+3=8,故选C.4.(2015陕西,理4)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4答案:B解析:(x+1)n的展开式通项为T r+1=C n r x n-r.令n-r=2,即r=n-2.则x2的系数为C n n−2=C n2=15,解得n=6,故选B.5.(2015陕西,理5)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案:D解析:由三视图可知,该几何体是一个半圆柱,圆柱的底面半径r=1,高h=2.所以几何体的侧面积S1=C底·h=(π×1+2)×2=2π+4.几何体的底面积S2=12π×12=12π.故该几何体的表面积为S=S1+2S2=2π+4+2×π2=3π+4.故选D.6.(2015陕西,理6)“sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:由cos 2α=0,得cos2α-sin2α=0,即cos α=sin α或cos α=-sin α.故“sin α=cos α”是“cos 2α=0”的充分不必要条件.7.(2015陕西,理7)对任意向量a,b,下列关系式中不恒成立的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案:B解析:A项,a·b=|a||b|cos<a,b>≤|a||b|,所以不等式恒成立;B项,当a与b同向时,|a-b|=||a|-|b||;当a与b非零且反向时,|a-b|=|a|+|b|>||a|-|b||.故不等式不恒成立;C项,(a+b)2=|a+b|2恒成立;D项,(a+b)·(a-b)=a2-a·b+b·a-b2=a2-b2,故等式恒成立.综上,选B.8.(2015陕西,理8)根据右边框图,当输入x为2 006时,输出的y=()A.2B.4C.10D.28答案:C解析:由算法框图可知,每运行一次,x的值减少2,当框图运行了1 004次时,x=-2,此时x<0,停止循环,由y=3-x+1可知,y=3-(-2)+1=10,故输出y的值为10,故选C.9.(2015陕西,理9)设f(x)=ln x,0<a<b,若p=f(ab),q=f a+b2,r=12(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.p=r<qC.q=r>pD.p=r>q答案:B解析:因为0<a<b,所以a+b>ab.又因为f(x)=ln x在(0,+∞)上单调递增,所以f a+b2>f(ab),即p<q.而r=1(f(a)+f(b))=1(ln a+ln b)=12ln(ab)=ln ab,所以r=p,故p=r<q.选B.10.(2015陕西,理10)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元答案:D解析:设该企业每天生产甲产品x吨,乙产品y吨,获利z元.则由题意知3x+2y≤12,x+2y≤8,x≥0,y≥0,利润函数z=3x+4y.画出可行域如图所示,当直线3x+4y-z=0过点B 时,目标函数取得最大值.由 3x +2y =12,x +2y =8,解得 x =2,y =3.故利润函数的最大值为z=3×2+4×3=18(万元).故选D .11.(2015陕西,理11)设复数z=(x-1)+y i (x ,y ∈R ),若|z|≤1,则y ≥x 的概率为( )A.34+12π B.12+1πC.12-1πD.14-12π答案:D解析:由|z|≤1,得(x-1)2+y 2≤1.不等式表示以C (1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=1π×12-S △OAC =1π-1×1×1=π-1.故所求事件的概率P=S 阴S 圆=π4−12π×12=14-12π.12.(2015陕西,理12)对二次函数f (x )=ax 2+bx+c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ) A.-1是f (x )的零点 B.1是f (x )的极值点 C.3是f (x )的极值 D.点(2,8)在曲线y=f (x )上 答案:A解析:f'(x )=2ax+b.若A 正确,则f (-1)=0,即a-b+c=0, ① 若B 正确,则f'(1)=0,即2a+b=0, ② 若C 正确,则f'(x 0)=0,且f (x 0)=3, 即f −b=3,即c-b2=3.③ 若D 项正确,则f (2)=8,即4a+2b+c=8.④假设②③④正确,则由②得b=-2a ,代入④得c=8,代入③得8-4a 24a=3,解得a=5,b=-10,c=8.此时f (x )=5x 2-10x+8,f (-1)=5×(-1)2-10×(-1)+8=5+10+8=23≠0,即A 不成立.故B ,C ,D 可同时成立,而A 不成立.故选A .第二部分(共90分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分).13.(2015陕西,理13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 . 答案:5解析:由题意知,1 010为数列首项a 1与2 015的等差中项,故a 1+2 015=1 010,解得a 1=5.14.(2015陕西,理14)若抛物线y 2=2px (p>0)的准线经过双曲线x 2-y 2=1的一个焦点,则p= .答案:2解析:双曲线x 2-y 2=1的焦点为F 1(- 2,0),F 2( 2,0).抛物线的准线方程为x=-p 2.因p>0,故-p2=- 2,解得p=2 2.15.(2015陕西,理15)设曲线y=e x 在点(0,1)处的切线与曲线y=1(x>0)上点P 处的切线垂直,则P 的坐标为 . 答案:(1,1)解析:曲线y=e x 在点(0,1)处的切线斜率k=y'=e x |x=0=1;由y=1,可得y'=-12,因为曲线y=1(x>0)在点P 处的切线与曲线y=e x 在点(0,1)处的切线垂直,故-1P2=-1,解得x P =1,由y=1,得y P =1,故所求点P 的坐标为(1,1). 16.(2015陕西,理16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 .答案:1.2解析:以梯形的下底为x 轴,上、下底边的中点连线为y 轴,建立如图所示的坐标系,设抛物线的方程为y=ax 2,则抛物线过点(5,2),故2=25a ,得a=2,故抛物线的方程为y=2x 2.最大流量的比,即截面的面积比,由图可知,梯形的下底长为6,故梯形的面积为(10+6)×2=16,而当前的截面面积为2 52−2x 2 d x=2 2x −2x 3 |05=40,故原始流量与当前流量的比为16403=1.2. 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分).17.(本小题满分12分)(2015陕西,理17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m=(a , 3b )与n=(cos A ,sin B )平行. (1)求A ;(2)若a= 7,b=2,求△ABC 的面积.(1)解:因为m ∥n ,所以a sin B- b cos A=0.由正弦定理,得sin A sin B- 3sin B cos A=0. 又sin B ≠0,从而tan A= 3. 由于0<A<π,所以A=π3.(2)解法一:由余弦定理,得a 2=b 2+c 2-2bc cos A ,而a= 7,b=2,A=π3,得7=4+c 2-2c ,即c 2-2c-3=0. 因为c>0,所以c=3.故△ABC 的面积为12bc sin A=3 3.解法二:由正弦定理,得 7sin π3=2sin B ,从而sin B= 21.又由a>b ,知A>B ,所以cos B=2 7.故sin C=sin (A+B )=sin B +π=sin B cos π3+cos B sin π3=3 2114.所以△ABC 的面积为12ab sin C=3 32. 18.(本小题满分12分)(2015陕西,理18)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD=π,AB=BC=1,AD=2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图②.图①图②(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明:在题图①中,因为AB=BC=1,AD=2,E 是AD 的中点,∠BAD=π,所以BE ⊥AC ,即在题图②中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC. (2)解:由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE-C 的平面角, 所以∠A 1OC=π.如图,以O 为原点,建立空间直角坐标系,因为A 1B=A 1E=BC=ED=1,BC ∥ED , 所以B 2,0,0 ,E −2,0,0 ,A 1 0,0,2,C 0,2,0 ,得BC = − 2, 2,0 ,A 1C = 0, 2,− 2,CD =BE =(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 夹角为θ,则 n 1·BC =0,n 1·A 1C =0,得 −x 1+y 1=0,y 1−z 1=0,取n 1=(1,1,1); n 2·CD =0,n 2·A 1C =0,得x 2=0,y 2−z 2=0,取n 2=(0,1,1), 从而cos θ=|cos <n 1,n 2>|=3× 2= 63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为 6.19.(本小题满分12分)(2015陕西,理19)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得T的分布列为从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09,故P(A)=1-P(A)=0.91.20.(本小题满分12分)(2015陕西,理20)已知椭圆E:x2a2+y2b2=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为12c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=5的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.(1)解:过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d=bcb+c2=bc,由d=1c,得a=2b=2 a2−c2,解得离心率c=3.(2)解法一:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB|= 10.易知,AB 与x 轴不垂直,设其方程为y=k (x+2)+1,代入①得,(1+4k 2)x 2+8k (2k+1)x+4(2k+1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k2,x 1x 2=4(2k +1)2−4b21+4k2.由x 1+x 2=-4,得-8k (2k +1)1+4k2=-4,解得k=1.从而x 1x 2=8-2b 2.于是|AB|= 1+ 122|x 1-x 2|= 52 (x 1+x 2)2−4x 1x 2= 10(b 2−2). 由|AB|= 10,得 2−2)= 10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.解法二:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB|= 10. 设A (x 1,y 1),B (x 2,y 2),则x 12+4y 12=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2, 得-4(x 1-x 2)+8(y 1-y 2)=0. 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1−y 2x 1−x 2=12. 因此,直线AB的方程为y=12(x+2)+1,代入②得,x 2+4x+8-2b 2=0.所以x 1+x 2=-4,x 1x 2=8-2b 2. 于是|AB|= 1+ 122|x 1-x 2|= 5(x 1+x 2)2−4x 1x 2= 10(b 2−2). 由|AB|= 10,得 10(b 2−2)= 10,解得b 2=3.故椭圆E 的方程为x 2+y 2=1.21.(本小题满分12分)(2015陕西,理21)设f n (x )是等比数列1,x ,x 2,…,x n 的各项和,其中x>0,n ∈N ,n ≥2.(1)证明:函数F n (x )=f n (x )-2在 12,1 内有且仅有一个零点(记为x n ),且x n =12+12x n n +1;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x ),比较f n (x )和g n (x )的大小,并加以证明.(1)证明:F n (x )=f n (x )-2=1+x+x 2+…+x n -2,则F n (1)=n-1>0,F n 12 =1+12+ 12 2+…+ 12 n-2 =1− 12n +11−12-2=-1n <0,所以F n (x )在 1,1 内至少存在一个零点. 又F n '(x )=1+2x+…+nx n-1>0, 故F n (x )在 12,1 内单调递增,所以F n (x )在 1,1 内有且仅有一个零点x n . 因为x n 是F n (x )的零点,所以F n (x n )=0,即1−x nn +1n -2=0,故x n =1+1x n n +1. (2)解法一:由假设,g n (x )=(n +1)(1+x n )2.设h (x )=f n (x )-g n (x )=1+x+x 2+…+x n -(n +1)(1+x n ),x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,h'(x )=1+2x+…+nx n-1-n (n +1)x n−1. 若0<x<1,h'(x )>x n-1+2x n-1+…+nx n-1-n (n +1)x n-1=n (n +1)x n-1-n (n +1)x n-1=0. 若x>1,h'(x )<x n-1+2x n-1+…+nx n-1-n (n +1)2x n-1=n (n +1)2x n-1-n (n +1)2x n-1=0.所以h (x )在(0,1)上递增,在(1,+∞)上递减, 所以h (x )<h (1)=0,即f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).解法二:由题设,f n (x )=1+x+x 2+…+x n ,g n (x )=(n +1)(x n +1)2,x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,用数学归纳法可以证明f n (x )<g n (x ).①当n=2时,f 2(x )-g 2(x )=-1(1-x )2<0, 所以f 2(x )<g 2(x )成立.②假设n=k (k ≥2)时,不等式成立,即f k (x )<g k (x ). 那么,当n=k+1时,f k+1(x )=f k (x )+x k+1<g k (x )+x k+1=(k +1)(1+x k )2+x k+1 =2x k +1+(k +1)x k +k +1.又g k+1(x )-2x k +1+(k +1)x k +k +12=kx k +1−(k +1)x k +1,令h k (x )=kx k+1-(k+1)x k +1(x>0),则h k '(x )=k (k+1)x k -k (k+1)x k-1=k (k+1)x k-1(x-1). 所以,当0<x<1时,h k '(x )<0,h k (x )在(0,1)上递减; 当x>1时,h k '(x )>0,h k (x )在(1,+∞)上递增. 所以h k (x )>h k (1)=0, 从而g k+1(x )>2x k +1+(k +1)x k +k +12.故f k+1(x )<g k+1(x ),即n=k+1时不等式也成立. 由①和②知,对一切n ≥2的整数,都有f n (x )<g n (x ).解法三:由已知,记等差数列为{a k },等比数列为{b k },k=1,2,…,n+1.则a 1=b 1=1,a n+1=b n+1=x n , 所以a k =1+(k-1)·x n −1(2≤k ≤n ), b k =x k-1(2≤k ≤n ),令m k (x )=a k -b k =1+(k−1)(x n −1)n-x k-1,x>0(2≤k ≤n ), 当x=1时,a k =b k ,所以f n (x )=g n (x ). 当x ≠1时,m k '(x )=k−1·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1). 而2≤k ≤n ,所以k-1>0,n-k+1≥1. 若0<x<1,x n-k+1<1,m k '(x )<0;若x>1,x n-k+1>1,m k '(x )>0,从而m k (x )在(0,1)上递减,在(1,+∞)上递增, 所以m k (x )>m k (1)=0.所以当m>0且m ≠1时,a k >b k (2≤k ≤n ), 又a 1=b 1,a n+1=b n+1,故f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑.22.(本小题满分10分)(2015陕西,理22)选修4—1:几何证明选讲 如图,AB 切☉O 于点B ,直线AO 交☉O 于D ,E 两点,BC ⊥DE ,垂足为C.(1)证明:∠CBD=∠DBA ;(2)若AD=3DC ,BC= 2,求☉O 的直径. (1)证明:因为DE 为☉O 直径,则∠BED+∠EDB=90°.又BC ⊥DE ,所以∠CBD+∠EDB=90°, 从而∠CBD=∠BED.又AB 切☉O 于点B ,得∠DBA=∠BED , 所以∠CBD=∠DBA. (2)解:由(1)知BD 平分∠CBA ,则BA =AD=3, 又BC= 2,从而AB=3 2.所以AC=2−BC 2=4,所以AD=3. 由切割线定理得AB 2=AD ·AE ,即AE=AB 2=6,故DE=AE-AD=3,即☉O 直径为3.23.(本小题满分10分)(2015陕西,理23)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为 x =3+12t ,y = 3t(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,☉C 的极坐标方程为ρ=2 3sin θ. (1)写出☉C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=2 θ,得ρ2=2 3ρsin θ,从而有x 2+y 2=2 3y ,所以x 2+(y- 3)2=3. (2)设P 3+1t , 3t ,又C (0, 3),则|PC|= 3+1t + 3t − 3 2= t 2+12,故当t=0时,|PC|取得最小值, 此时,P 点的直角坐标为(3,0).24.(本小题满分10分)(2015陕西,理24)选修4—5:不等式选讲已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求at+12+bt的最大值.解:(1)由|x+a|<b,得-b-a<x<b-a,则−b−a=2,b−a=4,解得a=-3,b=1.(2)−3t+12+t=34−t+t≤[(3)2+12][(4−t)2+(t)2]=24−t+t=4,当且仅当4−t3=t,即t=1时等号成立.故(−3t+12+t)max=4.11。

陕西省2015年高三教学质量检测(一)数学理试题 Word版含答案

陕西省2015年高三教学质量检测(一)数学理试题 Word版含答案

2015年陕西省高三教学质量检测试题(一)数学(理)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合(){}lg 32x y x A ==-,集合{x y B ==,则A B =( )A .31,2⎡⎫⎪⎢⎣⎭B .(],1-∞C .3,2⎛⎤-∞ ⎥⎝⎦D .3,2⎛⎫+∞ ⎪⎝⎭ 2、已知复数12z i =+,212z i =-,若12z z z =,则z =( ) A .45i + B .45i - C .i D .i -3、若()f x 是定义在R 上的函数,则“()00f =”是“函数()f x 为奇函数”的( ) A .必要不充分条件 B .充要条件C .充分不必要条件D .既不充分也不必要条件4、若过点()0,1A -的直线l 与圆()2234x y +-=的圆心的距离记为d ,则d 的取值范围为( )A .[]0,4B .[]0,3C .[]0,2D .[]0,1 5、周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.486、一个几何体的三视图如图所示,那么该几何体的体积是( )A .3B .2C .43 D .237、如图,给出的是计算11112462016+++⋅⋅⋅+的值的程序框图,其中判断框内应填入的是( ) A .2021i ≤ B .2019i ≤ C .2017i ≤ D .2015i ≤8、已知直线y x m =-+是曲线23ln y x x =-的一条切线,则m 的值为( )A .0B .2C .1D .39、设x ,y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则目标函数2y z x =+的取值范围为( )A .[]3,3-B .[]3,2--C .[]2,2-D .[]2,310、已知直线:l 0x y m --=经过抛物线C :22y px =(0p >)的焦点,l 与C 交于A 、B 两点.若6AB =,则p 的值为( )A .12B .32C .1D .211、在正四棱柱CD C D ''''AB -A B 中,1AB =,2'A A =,则C 'A 与C B 所成角的余弦值为( ) ABCD12、已知函数()x f x π=和函数()sin 4g x x =,若()f x 的反函数为()h x ,则()h x 与()g x 两图象交点的个数为( )A .1B .2C .3D .0 二、填空题(本大题共4小题,每小题5分,共20分.)13、6⎛⎝展开式的常数项为 .(用数字作答)14、已知向量1e ,2e 是两个不共线的向量,若122a e e =-与12b e e λ=+共线,则λ= .15、双曲线221412x y -=的两条渐近线与右准线围成的三角形的面积为 . 16、()13sin cos 2f x x x π⎛⎫=+ ⎪⎝⎭,()()2sin sin f x x x π=+,若设()()()12f x f x f x =-,则()f x 的单调递增区间是 .三、解答题(本大题共8小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)已知正整数数列{}n a 是首项为2的等比数列,且2324a a +=.()I 求数列{}n a 的通项公式; ()II 设23n nnb a =,求数列{}n b 的前n 项和n T . 18、(本小题满分12分)如图,C A 是圆O 的直径,点B 在圆O 上,C 30∠BA =,C BM ⊥A 交C A 于点M ,EA ⊥平面C AB ,FC//EA ,C 4A =,3EA =,FC 1=. ()I 证明:EM ⊥F B ;()II 求平面F BE 与平面C AB 所成的锐二面角的余弦值.19、(本小题满分12分)有一种密码,明文是由三个字母组成,密码是由明文的这三个字母对应的五个数字组成.编码规则如下表:明文由表中每一排取一个字母组成,且第一排取的字母放在第一位,第二排取的字母放在第二位,第三排取的字母放在第三位,对应的密码由明文所取的这三个字母对应的数字按相同的次序排成一组组成.(如:明文取的三个字母为FA P,则与它对应的五个数字(密码)就为11223.)()I假设明文是G B N,求这个明文对应的密码;()II设随机变量ξ表示密码中所含不同数字的个数.()i求()2ξP=;()ii求随机变量ξ的分布列和它的数学期望.20、(本小题满分12分)如图,在平面直角坐标系x yO中,椭圆22221x ya b+=(0a b>>),过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,CDAB+=()I求椭圆的方程;()II求由A,B,C,D四点构成的四边形的面积的取值范围.21、(本小题满分12分)已知函数()ln f x x x =,()31223g x ax x e=--.()I 求()f x 的单调增区间和最小值;()II 若函数()y f x =与函数()y g x =在交点处存在公共切线,求实数a 的值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22、(本小题满分10分)选修4-1:几何证明选讲 如图,设AB 为O 的任一条不与直线l 垂直的直径,P 是O 与l 的公共点,C l A ⊥,D l B ⊥,垂足分别为C ,D ,且C D P =P . ()I 求证:l 是O 的切线;()II 若O 的半径5OA =,C 4A =,求CD 的长.23、(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是22x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),C 的极坐标方程为2c o s 4πρθ⎛⎫=+ ⎪⎝⎭.()I 求圆心C 的直角坐标;()II 试判断直线l 与C 的位置关系.24、(本小题满分10分)选修4-5:不等式选讲 已知函数()2123f x x x =++-.()I 求不等式()6f x ≤的解集;()II 若关于x 的不等式()1f x a <-的解集非空,求实数a 的取值范围.13、160- 14、12-15 16、(),2k k k πππ⎡⎤+∈Z ⎢⎥⎣⎦(II )解:如图,以A 为坐标原点,垂直于C A 、AE 所在的直线为x 轴,C A 、AE 分别为y 轴和z 轴建立空间直角坐标系.由已知条件得()0,0,0A ,()0,3,0M ,()0,0,3E,)B ,()F 0,4,1,()3,3BE =-,()F B =.设平面F BE 的法向量为(),,n x y z =.由0n ⋅BE =,F 0n ⋅B =,得330y z y z ⎧-+=⎪⎨++=⎪⎩令x =1y =,2z =∴()3,1,2n =………………………………(9分)由已知EA ⊥平面C AB ,所以取面C AB 的法向量为()0,0,3AE = 设平面F BE 与平面C AB 所成的锐二面角为θ,则3cos cos ,2n θ=AE ==∴平面F BE 与平面C AB 所成的锐二面角的余弦值为2………………………………(12分)。

2015年普通高等学校招生全国统一考试数学理试题(陕西卷,含解析)

2015年普通高等学校招生全国统一考试数学理试题(陕西卷,含解析)

2015年普通高等学校招生全国统一考试(陕西卷)理一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A 【解析】试题分析:{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1MN =,故选A .考点:1、一元二次方程;2、对数不等式;3、集合的并集运算.2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( ) A .167 B .137 C .123 D .93【答案】B考点:扇形图.3.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C 【解析】试题分析:由图象知:min 2y =,因为min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C . 考点:三角函数的图象与性质.4.二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C考点:二项式定理.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D 【解析】试题分析:由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 考点:1、三视图;2、空间几何体的表面积.6.“sin cos αα=”是“cos 20α=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:因为22cos 2cos sin 0ααα=-=,所以sin cos αα=或sin cos αα=-,因为“sin cos αα=”⇒“cos 20α=”,但“sin cos αα=”⇐/“cos 20α=”,所以“sin cos αα=”是“cos 20α=”的充分不必要条件,故选A . 考点:1、二倍角的余弦公式;2、充分条件与必要条件. 7.对任意向量,a b ,下列关系式中不恒成立的是( )A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+D .22()()a b a b a b +-=- 【答案】B考点:1、向量的模;2、向量的数量积.8.根据右边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D .2【答案】B 【解析】试题分析:初始条件:2006x =;第1次运行:2004x =;第2次运行:2002x =;第3次运行:2000x =;⋅⋅⋅⋅⋅⋅;第1003次运行:0x =;第1004次运行:2x =-.不满足条件0?x ≥,停止运行,所以输出的23110y =+=,故选B . 考点:程序框图.9.设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C考点:1、基本不等式;2、基本初等函数的单调性.10.某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最 大利润为( )A .12万元B .16万元C .17万元D .18万元【答案】D 【解析】试题分析:设该企业每天生产甲、乙两种产品分别为x 、y 吨,则利润34z x y =+由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,故选D .考点:线性规划.11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( )A .3142π+B .1142π-C .112π-D .112π+【答案】B 【解析】试题分析:22(1)||1(1)1z x yi z x y =-+⇒=⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=- 若||1z ≤,则y x ≥的概率是211142142πππ-=-⨯,故选B . 考点:1、复数的模;2、几何概型.12.对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()y f x =上 【答案】A考点:1、函数的零点; 2、利用导数研究函数的极值. 二、填空题(本大题共4小题,每小题5分,共20分.)13.中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 【答案】5 【解析】试题分析:设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5. 考点:等差中项.14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p= .【答案】考点:1、抛物线的简单几何性质;2、双曲线的简单几何性质. 15.设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标为 .【答案】()1,1 【解析】试题分析:因为x y e =,所以x y e '=,所以曲线x y e =在点()0,1处的切线的斜率101x k y e ='===,设P 的坐标为()00,x y (00x >),则001y x =,因为1y x =,所以21y x '=-,所以曲线1y x=在点P 处的切线的斜率02201x x k y x ='==-,因为121k k ⋅=-,所以211x -=-,即201x =,解得01x =±,因为00x >,所以01x =,所以01y =,即P 的坐标是()1,1,所以答案应填:()1,1.考点:1、导数的几何意义;2、两条直线的位置关系.16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【答案】1.2 【解析】试题分析:建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰,故原始的最大流量与当前最大流量的比值是161.2403=,所以答案应填:1.2. 考点:1、定积分;2、抛物线的方程;3、定积分的几何意义.三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤.) 17.(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量(),3m a b =与()cos ,sin n =A B 平行. (I )求A ; (II )若a =2b =求C ∆AB 的面积.【答案】(I)3π;(II )2.试题解析:(I )因为//m n ,所以sincos 0a B A -=,由正弦定理,得sinAsinB 0-=又sin 0B ≠,从而tan A 由于0Aπ<<,所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+- 而2,a =3πA =得2742c c =+-,即2230c c --= 因为0c >,所以3c =. 故∆ABC 的面积为1bcsinA 2.考点:1、平行向量的坐标运算;2、正弦定理;3、余弦定理;4、三角形的面积公式. 18.(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.(I )证明:CD ⊥平面1C A O ;(II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值.【答案】(I )证明见解析;(II )3试题解析:(I )在图1中,因为AB=BC=1,AD=2,E 是AD 的中点,∠BAD=2π,所以BE ⊥AC 即在图2中,BE ⊥ 1OA ,BE ⊥OC 从而BE ⊥平面1AOC 又CD BE ,所以CD ⊥平面1AOC.(II)由已知,平面1A BE ⊥平面BCDE ,又由(1)知,BE⊥ 1OA ,BE ⊥OC 所以1AOC ∠为二面角1--C A BE 的平面角,所以1OC 2A π∠=.如图,以O 为原点,建立空间直角坐标系, 因为11B=E=BC=ED=1A A , BC ED所以1((0,0,2222B -得2BC(22-12A C(0,22-,CD BE (==-. 设平面1BC A 的法向量1111(,,)n x y z =,平面1CD A 的法向量2222(,,)n x y z =,平面1BC A 与平面1CD A 夹角为θ, 则11100n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩,得11110x y y z -+=⎧⎨-=⎩,取1(1,1,1)n =,2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩,得22200x y z =⎧⎨-=⎩,取2(0,1,1)n =,从而12cos |cos ,|n n θ=〈〉== 即平面1BC A与平面1CD A考点:1、线面垂直;2、二面角;3、空间直角坐标系;4、空间向量在立体几何中的应用. 19.(本小题满分12分)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,(II )刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 【答案】(I )分布列见解析,32;(II )0.91. 【解析】试题分析:(I )先算出T 的频率分布,进而可得T 的分布列,再利用数学期望公式可得数学期望ET ;(II )先设事件A 表示“刘教授从离开老校区到返回老校区共用时间不超过120分钟”,再算出A 的概率.从而 0.4400.132⨯+⨯=(分钟)(II)设12,T T 分别表示往、返所需时间,12,T T 的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=.解法二:121(A )P P T T T=+>=12P(40,40)T T +== 0.40.10.10.40.10.10.09=⨯+⨯+⨯=故(A)1P(A)0.91P =-=.考点:1、离散型随机变量的分布列与数学期望;2、独立事件的概率.20.(本小题满分12分)已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(I )求椭圆E 的离心率;(II )如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方 程.【答案】(III )221123x y +=. 【解析】试题分析:(I )先写过点(),0c ,()0,b 的直线方程,再计算原点O 到该直线的距离,进而可得椭圆E 的离心率;(II )先由(I )知椭圆E 的方程,设AB 的方程,联立()2222144y k x x y b⎧=++⎪⎨+=⎪⎩,消去y ,可得12x x +和12x x 的值,进而可得k,再利用AB =可得2b 的值,进而可得椭圆E 的方程.试题解析:(I )过点(c,0),(0,b)的直线方程为0bx cy bc +-=, 则原点O到直线的距离bcd a==, 由12d c =,得2a b ==c a . (II)解法一:由(I )知,椭圆E 的方程为22244x y b +=. (1) 依题意,圆心M(-2,1)是线段AB的中点,且|AB|易知,AB 不与x 轴垂直,设其直线方程为(2)1y k x =++,代入(1)得2222(14)8(21)4(21)40k x k k x k b +++++-=设1122(,y ),B(,y ),A x x 则221212228(21)4(21)4,.1414k k k b x x x x k k ++-+=-=-++ 由124x x +=-,得28(21)4,14k k k +-=-+解得12k =.从而21282x x b =-.于是12|AB ||x x =-=由|AB|23b =.故椭圆E 的方程为221123x y +=. 解法二:由(I )知,椭圆E 的方程为22244x y b +=. (2) 依题意,点A ,B关于圆心M(-2,1)对称,且|AB|设1122(,y ),B(,y ),A x x 则2221144x y b +=,2222244x y b +=, 两式相减并结合12124,y 2,x x y +=-+=得()1212-4()80x x y y -+-=. 易知,AB 不与x 轴垂直,则12x x ≠,所以AB 的斜率12121k .2AB y y x x -==-因此AB 直线方程为1(2)12y x =++,代入(2)得224820.x x b ++-= 所以124x x +=-,21282x x b =-.于是12|AB ||x x =-=由|AB|23b =.故椭圆E 的方程为221123x y +=. 考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.21.(本小题满分12分)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,nx 的各项和,其中0x >,n ∈N , 2n ≥.(I )证明:函数()()F 2n n x f x =-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为n x ),且11122n n n x x +=+; (II )设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x与()n g x 的大小,并加以证明.【答案】(I )证明见解析;(II )当1x =时, ()()n n f x g x =,当1x ≠时,()()n n f x g x <,证明见解析. 【解析】试题分析:(I )先利用零点定理可证()F n x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点,再利用函数的单调性可证()F n x 在1,12⎛⎫⎪⎝⎭内有且仅有一个零点,进而利用n x 是()F n x 的零点可证11122n n n x x +=+;(II )先设()()()n n h x f x g x =-,再对x 的取值范围进行讨论来判断()h x 与0的大小,进而可得()n f x 和()n g x 的大小. 试题解析:(I )2()()212,n n n F x f x x x x =-=+++-则(1)10,n F n =->1211111112()1220,12222212n nn nF +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-所以()n F x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点n x . 又1()120n n F x x nx -'=++>,故在1,12⎛⎫⎪⎝⎭内单调递增,所以()n F x 在1,12⎛⎫⎪⎝⎭内有且仅有一个零点n x . 因为n x 是()n F x 的零点,所以()=0n n F x ,即11201n n nx x +--=-,故111=+22n n n x x +.(II)解法一:由题设,()()11().2nnn x g x ++=设()()211()()()1,0.2nnn n n x h x f x g x x x x x ++=-=+++->当1x =时, ()()n n f x g x =当1x ≠时, ()111()12.2n n n n x h x x nx--+'=++-若01x <<,()11111()22n n n n n n h x x x nx x ----+'>++-()()11110.22n n n n n n x x --++=-= 若1x >,()11111()22n n n n n n h x xx nx x ----+'<++-()()11110.22n n n n n n x x --++=-= 所以()h x 在(0,1)上递增,在(1,)+∞上递减, 所以()(1)0h x h <=,即()()n n f x g x <.综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x < 解法二 由题设,()()211()1,(),0.2nn n n n x f x x x x g x x ++=+++=>当1x =时, ()()n n f x g x =当1x ≠时, 用数学归纳法可以证明()()n n f x g x <. 当2n =时, 2221()()(1)0,2f xg x x -=--<所以22()()f x g x <成立. 假设(2)n k k =≥时,不等式成立,即()()k k f x g x <. 那么,当+1n k =时,()()111k+1k 11()()()2kk k k k k x f x f x xg x xx +++++=+<+=+()12112k k x k x k +++++=. 又()()11k+121111()22k k k k x k x k kx k x g x ++++++-++-=令()1()11(x 0)k k k h x kx k x +=-++>,则()()11()(k 1)11(x 1)k k k k h x k x k k x k k x --'=+-+=+-所以当01x <<,()0kh x '<,()k h x 在(0,1)上递减; 当1x >,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h >=,从而()1k+1211()2k k x k x k g x +++++>故11()()k k f x g x ++<.即+1n k =,不等式也成立. 所以,对于一切2n ≥的整数,都有()()n n f x g x <.解法三:由已知,记等差数列为{}k a ,等比数列为{}k b ,k 1,2,, 1.n =+则111a b ==,11n n n a b x ++==,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤ 令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x =时, =k k a b ,所以()()n n f x g x =.当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=-- 而2k n ≤≤,所以10k ->,11n k -+≥.若01x <<, 11n k x -+<,()0k m x '<,当1x >,11n k x-+>,()0km x '>, 从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m >=, 所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b =,11n n a b ++=,故()()n n f x g x < 综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x < 考点:1、零点定理;2、利用导数研究函数的单调性.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目的题号后的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 切O 于点B ,直线D A 交O 于D ,E 两点,C D B ⊥E ,垂足为C . (I )证明:C D D ∠B =∠BA ;(II )若D 3DC A =,C B =O 的直径.【答案】(I )证明见解析;(II )3. 【解析】试题分析:(I )先证C D D ∠B =∠BE ,再证D D ∠BA =∠BE ,进而可证C D D ∠B =∠BA ;(II )先由(I )知D B 平分C ∠BA ,进而可得D A 的值,再利用切割线定理可得AE 的值,进而可得O 的直径.试题解析:(I )因为DE 为圆O 的直径,则BED EDB ∠+∠=90, 又BC ⊥DE ,所以∠CBD+∠EDB=90°,从而∠CBD=∠BED. 又AB 切圆O 于点B ,得∠DAB=∠BED ,所以∠CBD=∠DBA. (II )由(I )知BD 平分∠CBA ,则=3BA AD BC CD=,又BCAB =所以4AC =,所以D=3A .由切割线定理得2=AD AB AE ×,即2=ADAB AE =6,故DE=AE-AD=3,即圆O 的直径为3.考点:1、直径所对的圆周角;2、弦切角定理;3、切割线定理. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x y O 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x轴正半轴为极轴 建立极坐标系,C的极坐标方程为ρθ=.(I )写出C 的直角坐标方程;(II )P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 【答案】(I)(223x y +=;(II )()3,0.【解析】试题分析:(I )先将ρθ=两边同乘以ρ可得2sin ρθ=,再利用222x y ρ=+,sin x ρθ=可得C 的直角坐标方程;(II )先设P 的坐标,则C P =,再利用二次函数的性质可得C P 的最小值,进而可得P 的直角坐标.试题解析:(I)由2,sin ρθρθ==得,从而有(2222+,+3x y x y ==所以.(II)设1(32P +又,则|PC |== 故当t=0时,|PC|取最小值,此时P 点的直角坐标为(3,0).考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质.24.(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式x a b +<的解集为{}24x x <<. (I )求实数a ,b 的值;(II 的最大值. 【答案】(I )3a =-,1b =;(II )4. 【解析】试题分析:(I )先由x a b +<可得b a x b a --<<-,再利用关于x 的不等式x a b+<的解集为{}24x x <<可得a ,b 的值;(II )试题解析:(I )由||x a b +<,得b a x b a --<<-则2,4,b a b a --=⎧⎨-=⎩解得3a =-,1b =(II ≤4==,即1t =时等号成立,故max4=.考点:1、绝对值不等式;2、柯西不等式.。

2015年陕西省高考数学试卷(理科)

2015年陕西省高考数学试卷(理科)

2015年陕西省高考数学试卷(理科)一、选择题,共12小题,每小题5分,共60分1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.1673.(5分)(2015•陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5 B.6 C.8 D.104.(5分)(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7 B.6 C.5 D.45.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+46.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣28.(5分)(2015•陕西)根据如图框图,当输入x为2006时,输出的y=()A.2 B.4 C.10 D.289.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q10.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润)11.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣12.(5分)(2015•陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上二、填空题,共4小题,每小题5分,共20分13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为.14.(5分)(2015•陕西)若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=.15.(5分)(2015•陕西)设曲线y=e x在点(0,1)处的切线与曲线y=(x>0)上点P的切线垂直,则P的坐标为.16.(5分)(2015•陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为.三、解答题,共5小题,共70分17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.19.(12分)(2015•陕西)某校新、老校区之间开车单程所需时间为T,T只与道路通畅状(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20.(12分)(2015•陕西)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.21.(12分)(2015•陕西)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(Ⅰ)证明:函数F n(x)=f n(x)﹣2在(,1)内有且仅有一个零点(记为x n),且x n=+x;(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x),比较f n(x)和g n(x)的大小,并加以证明.四、选修题,请在22、23、24中任选一题作答,如果多做则按第一题计分.选修4-1:几何证明选讲22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.五、选修4-4:坐标系与参数方程23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.六、选修4-5:不等式选讲24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4} (Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.2015年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,共12小题,每小题5分,共60分1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]【分析】求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.【解答】解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.【点评】本题考查了并集及其运算,考查了对数不等式的解法,是基础题.2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.167【分析】利用百分比,可得该校女教师的人数.【解答】解:初中部女教师的人数为110×70%=77;高中部女教师的人数为150×40%=60,∴该校女教师的人数为77+60=137,故选:C.【点评】本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.3.(5分)(2015•陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5 B.6 C.8 D.10【分析】由题意和最小值易得k的值,进而可得最大值.【解答】解:由题意可得当sin(x+φ)取最小值﹣1时,函数取最小值y min=﹣3+k=2,解得k=5,∴y=3sin(x+φ)+5,∴当当sin(x+φ)取最大值1时,函数取最大值y max=3+5=8,故选:C.【点评】本题考查三角函数的图象和性质,涉及三角函数的最值,属基础题.4.(5分)(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7 B.6 C.5 D.4【分析】由题意可得==15,解关于n的方程可得.【解答】解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即=15,解得n=6,故选:B.【点评】本题考查二项式定理,属基础题.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+4【分析】根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是圆柱体的一半,∴该几何体的表面积为S几何体=π•12+π×1×2+2×2=3π+4.故选:D.【点评】本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.6.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【分析】由cos2α=cos2α﹣sin2α,即可判断出.【解答】解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα”是“cos2α=0”的充分不必要条件.故选:A.【点评】本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2【分析】由向量数量积的运算和性质逐个选项验证可得.【解答】解:选项A恒成立,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B不恒成立,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C恒成立,由向量数量积的运算可得()2=||2;选项D恒成立,由向量数量积的运算可得()•()=2﹣2.故选:B【点评】本题考查平面向量的数量积,属基础题.8.(5分)(2015•陕西)根据如图框图,当输入x为2006时,输出的y=()A.2 B.4 C.10 D.28【分析】模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣2时不满足条件x≥0,计算并输出y的值为10.【解答】解:模拟执行程序框图,可得x=2006,x=2004满足条件x≥0,x=2002满足条件x≥0,x=2000…满足条件x≥0,x=0满足条件x≥0,x=﹣2不满足条件x≥0,y=10输出y的值为10.故选:C.【点评】本题主要考查了循环结构的程序框图,属于基础题.9.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【分析】由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小关系.【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B【点评】本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.10.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润)【分析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.【解答】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z max=3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故选:D.【点评】本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣【分析】由题意易得所求概率为弓形的面积与圆的面积之比,分别求面积可得.【解答】解:∵复数z=(x﹣1)+yi(x,y∈R)且|z|≤1,∴|z|=≤1,即(x﹣1)2+y2≤1,∴点(x,y)在(1,0)为圆心1为半径的圆及其内部,而y≥x表示直线y=x左上方的部分,(图中阴影弓形)∴所求概率为弓形的面积与圆的面积之比,∴所求概率P==故选:D.【点评】本题考查几何概型,涉及复数以及圆的知识,属基础题.12.(5分)(2015•陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上【分析】可采取排除法.分别考虑A,B,C,D中有一个错误,通过解方程求得a,判断是否为非零整数,即可得到结论.【解答】解:可采取排除法.若A错,则B,C,D正确.即有f(x)=ax2+bx+c的导数为f′(x)=2ax+b,即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②,又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a为非零整数.若B错,则A,C,D正确,则有a﹣b+c=0,且4a+2b+c=8,且=3,解得a∈∅,不成立;若C错,则A,B,D正确,则有a﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D错,则A,B,C正确,则有a﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立.故选:A.【点评】本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.二、填空题,共4小题,每小题5分,共20分13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为5.【分析】由题意可得首项的方程,解方程可得.【解答】解:设该等差数列的首项为a,由题意和等差数列的性质可得2015+a=1010×2解得a=5故答案为:5【点评】本题考查等差数列的基本性质,涉及中位数,属基础题.14.(5分)(2015•陕西)若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=2.【分析】先求出x2﹣y2=1的左焦点,得到抛物线y2=2px的准线,依据p的意义求出它的值.【解答】解:双曲线x2﹣y2=1的左焦点为(﹣,0),故抛物线y2=2px的准线为x=﹣,∴=,∴p=2,故答案为:2.【点评】本题考查抛物线和双曲线的简单性质,以及抛物线方程y2=2px中p的意义.15.(5分)(2015•陕西)设曲线y=e x在点(0,1)处的切线与曲线y=(x>0)上点P的切线垂直,则P的坐标为(1,1).【分析】利用y=e x在某点处的切线斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标.【解答】解:∵f'(x)=e x,∴f'(0)=e0=1.∵y=e x在(0,1)处的切线与y=(x>0)上点P的切线垂直∴点P处的切线斜率为﹣1.又y'=﹣,设点P(x0,y0)∴﹣=﹣1,∴x0=±1,∵x>0,∴x0=1∴y0=1∴点P(1,1)故答案为:(1,1)【点评】本题考查导数在曲线切线中的应用,在高考中属基础题型,常出现在选择填空中.16.(5分)(2015•陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 1.2.【分析】建立直角坐标系,求出抛物线方程,然后利用定积分求出泥沙沉积的横截面面积,求出梯形面积,即可推出结果.【解答】解:如图:建立平面直角坐标系,设抛物线方程为:y=ax2,因为抛物线经过(5,2),可得a=,所以抛物线方程:y=,横截面为等腰梯形的水渠,泥沙沉积的横截面的面积为:2×=2()=,等腰梯形的面积为:=16,当前最大流量的横截面的面积16﹣,原始的最大流量与当前最大流量的比值为:=1.2.故答案为:1.2.【点评】本题考查抛物线的求法,定积分的应用,考查分析问题解决问题的能力,合理建系是解题的关键.三、解答题,共5小题,共70分17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【分析】(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a=,b=2,通过余弦定理求出c,然后求解△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.【点评】本题考查余弦定理以及正弦定理的应用,三角形的面积的求法,考查计算能力.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.【分析】(Ⅰ)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,建立空间坐标系,利用向量法即可求平面A1BC与平面A1CD夹角的余弦值.【解答】证明:(Ⅰ)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=,∴BE⊥AC,即在图2中,BE⊥OA1,BE⊥OC,则BE⊥平面A1OC;∵CD∥BE,∴CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,由(Ⅰ)知BE⊥OA1,BE⊥OC,∴∠A1OC为二面角A1﹣BE﹣C的平面角,∴∠A1OC=,如图,建立空间坐标系,∵A1B=A1E=BC=ED=1.BC∥ED∴B(,0,0),E(﹣,0,0),A1(0,0,),C(0,,0),=(﹣,,0),=(0,,﹣),设平面A1BC的法向量为=(x,y,z),平面A1CD的法向量为=(a,b,c),则得,令x=1,则y=1,z=1,即=(1,1,1),由得,取=(0,1,1),则cos<>===,∴平面A1BC与平面A1CD夹角的余弦值为.【点评】本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.19.(12分)(2015•陕西)某校新、老校区之间开车单程所需时间为T,T只与道路通畅状(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.【分析】(Ⅰ)求T的分布列即求出相应时间的频率,频率=频数÷样本容量,数学期望ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟);(Ⅱ)设T1,T2分别表示往、返所需时间,事件A对应于“刘教授在路途中的时间不超过70分钟”,先求出P()=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.09,即P(A)=1﹣P()=0.91.T的频率分布为ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟)(Ⅱ)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同,设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”P()=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09故P(A)=1﹣P()=0.91故答案为:(Ⅰ)分布列如上表,数学期望ET=32(分钟)(Ⅱ)0.91【点评】本题考查了频率=频数÷样本容量,数学期望,对学生的理解事情的能力有一定的要求,属于中档题.20.(12分)(2015•陕西)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.【分析】(Ⅰ)求出经过点(0,b)和(c,0)的直线方程,运用点到直线的距离公式,结合离心率公式计算即可得到所求值;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①设出直线AB的方程,代入椭圆方程,运用韦达定理和弦长公式,结合圆的直径和中点坐标公式,解方程可得b2=3,即可得到椭圆方程.【解答】解:(Ⅰ)经过点(0,b)和(c,0)的直线方程为bx+cy﹣bc=0,则原点到直线的距离为d==c,即为a=2b,e===;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①由题意可得圆心M(﹣2,1)是线段AB的中点,则|AB|=,易知AB与x轴不垂直,记其方程为y=k(x+2)+1,代入①可得(1+4k2)x2+8k(1+2k)x+4(1+2k)2﹣4b2=0,设A(x1,y1),B(x2,y2),则x1+x2=.x1x2=,由M为AB的中点,可得x1+x2=﹣4,得=﹣4,解得k=,从而x1x2=8﹣2b2,于是|AB|=•|x1﹣x2|=•==,解得b2=3,则有椭圆E的方程为+=1.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率的求法和椭圆方程的运用,联立直线方程和椭圆方程,运用韦达定理和弦长公式,同时考查直线和圆的位置关系,以及中点坐标公式和点到直线的距离公式的运用,属于中档题.21.(12分)(2015•陕西)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(Ⅰ)证明:函数F n(x)=f n(x)﹣2在(,1)内有且仅有一个零点(记为x n),且x n=+x;(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x),比较f n(x)和g n(x)的大小,并加以证明.【分析】(Ⅰ)由F n(x)=f n(x)﹣2=1+x+x2+…++x n﹣2,求得F n(1)>0,F n()<0.再由导数判断出函数F n(x)在(,1)内单调递增,得到F n(x)在(,1)内有且仅有一个零点x n,由F n(x n)=0,得到;(Ⅱ)先求出,构造函数h(x)=f n(x)﹣g n(x)=1+x+x2+…++x n ﹣,当x=1时,f n(x)=g n(x).当x≠1时,利用导数求得h(x)在(0,1)内递增,在(1,+∞)内递减,得到f n(x)<g n(x).【解答】证明:(Ⅰ)由F n(x)=f n(x)﹣2=1+x+x2+…++x n﹣2,则F n(1)=n﹣1>0,F n()=1+.∴F n(x)在(,1)内至少存在一个零点,又,∴F n(x)在(,1)内单调递增,∴F n(x)在(,1)内有且仅有一个零点x n,∵x n是F n(x)的一个零点,∴F n(x n)=0,即,故;(Ⅱ)由题设,,设h(x)=f n(x)﹣g n(x)=1+x+x2+…++x n﹣,x>0.当x=1时,f n(x)=g n(x).当x≠1时,.若0<x<1,h′(x)>=.若x>1,h′(x)<=.∴h(x)在(0,1)内递增,在(1,+∞)内递减,∴h(x)<h(1)=0,即f n(x)<g n(x).综上,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).【点评】本题考查了函数零点的判定方法,考查了等比数列的前n项和,训练了利用导数研究函数的单调性,考查了数学转化与化归等思想方法,是中档题.四、选修题,请在22、23、24中任选一题作答,如果多做则按第一题计分.选修4-1:几何证明选讲22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.【分析】(Ⅰ)根据直径的性质即可证明:∠CBD=∠DBA;(Ⅱ)结合割线定理进行求解即可求⊙O的直径.【解答】证明:(Ⅰ)∵DE是⊙O的直径,则∠BED+∠EDB=90°,∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED,∵AB切⊙O于点B,∴∠DBA=∠BED,即∠CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD平分∠CBA,则=3,∵BC=,∴AB=3,AC=,则AD=3,由切割线定理得AB2=AD•AE,即AE=,故DE=AE﹣AD=3,即可⊙O的直径为3.【点评】本题主要考查直线和圆的位置关系的应用和证明,根据相应的定理是解决本题的关键.五、选修4-4:坐标系与参数方程23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.【分析】(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.【解答】解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).【点评】本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.六、选修4-5:不等式选讲24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.【分析】(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.【解答】解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等号,∴所求最大值为4【点评】本题考查不等关系与不等式,涉及柯西不等式求最值,属基础题.参与本试卷答题和审题的老师有:sxs123;刘长柏;lincy;742048;沂蒙松;w3239003;maths;双曲线;雪狼王;qiss;依依(排名不分先后)菁优网2016年5月30日第21页(共21页)。

陕西省咸阳市兴平市西郊中学高三数学上学期第二次模考试卷理(含解析)

陕西省咸阳市兴平市西郊中学高三数学上学期第二次模考试卷理(含解析)

2015-2016学年陕西省咸阳市兴平市西郊中学高三(上)第二次模考数学试卷(理科)一.选择题1.设f:x→x2是从集合A到集合B的映射,如果B={1,2},则A∩B为( )A.∅B.{1} C.∅或{2} D.∅或{1}2.命题“∀x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件是( )A.a≥4 B.a≤4 C.a≥5 D.a≤53.函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a=( )A.2 B.3 C.4 D.54.函数f(x)=x+lnx的零点所在的区间为( )A.(﹣1,0)B.(0,1)C.(1,2)D.(1,e)5.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=﹣1为函数f(x)e x的一个极值点,则如图四个图象可以为y=f(x)的图象序号是__________(写出所有满足题目条件的序号).6.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上(其中m,n>0),则4m+2n的值等于( )A.4 B.3 C.2 D.17.若函数f(x)=x3+f′(1)x2﹣f′(2)x+3,则f(x)在点(0,f(0))处切线的倾斜角为( )A.B.C.D.π8.若函数在区间上为减函数,则a的取值范围是( )A.(0,1)B.(1,+∞)C.(1,2)D.(0,1)∪(1,2)9.已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg(lg2))=( )A.﹣5 B.﹣1 C.3 D.410.已知函数f(x)定义域为R,则下列命题:①若y=f(x)为偶函数,则y=f(x+2)的图象关于y轴对称.②若y=f(x+2)为偶函数,则y=f(x)关于直线x=2对称.③若函数y=f(2x+1)是偶函数,则y=f(2x)的图象关于直线对称.④若f(x﹣2)=f(2﹣x),则则y=f(x)关于直线x=2对称.⑤函数y=f(x﹣2)和y=f(2﹣x)的图象关于x=2对称.其中正确的命题序号是( )A.①②④B.①③④C.②③⑤D.②③④二、填空题11.函数f(x)=3+xlnx的单调递减区间是__________.12.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=__________.13.已知定义域为R的函数是奇函数,则a+b=__________.14.先将函数y=ln的图象向右平移3个单位,再将所得图象关于原点对称得到y=f(x)的图象,则y=f(x)的解析式是__________.15.已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是__________.三、解答题16.设集合,B={x|x2﹣3mx+2m2﹣m﹣1<0}.(1)当x∈Z时,求A的非空真子集的个数.(2)若B=∅,求m的取值范围.(3)若A⊇B,求m的取值范围.17.已知c>0,设P:函数y=c x在R上单调递减,Q:不等式x+|x﹣2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.18.某桶装水经营部每天房租、工作人员工资等固定成本为200元,每桶水进价为5元,销19.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.20.设数列{a n}满足:a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,T n为前n项和,且b1=a2,b3=a1+a2+a3,求T20.21.已知函数f(x)=x4﹣4x3+ax2﹣1在区间[0,1]上单调递增,在区间[1,2]上单调递减.(1)求a的值;(2)记g(x)=bx2﹣1,若方程f(x)=g(x)的解集恰有3个元素,求b的取值范围.2015-2016学年陕西省咸阳市兴平市西郊中学高三(上)第二次模考数学试卷(理科)一.选择题1.设f:x→x2是从集合A到集合B的映射,如果B={1,2},则A∩B为( )A.∅B.{1} C.∅或{2} D.∅或{1}【考点】映射;交集及其运算.【专题】计算题.【分析】根据映射的定义,先求出集合A中的像,再求A∩B.【解答】解:由已知x2=1或x2=2,解之得,x=±1或x=±.若1∈A,则A∩B={1},若1∉A,则A∩B=∅.故A∩B=∅或{1},故选D.【点评】要注意,根据映射的定义,集合A中的像是A={x=±1或x=±},它有多种情况,容易选B造成错误.2.命题“∀x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件是( )A.a≥4 B.a≤4 C.a≥5 D.a≤5【考点】命题的真假判断与应用.【专题】函数的性质及应用.【分析】本题先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案.【解答】解:命题“∀x∈[1,2],x2﹣a≤0”为真命题,可化为∀x∈[1,2],a≥x2,恒成立即只需a≥(x2)max=4,即“∀x∈[1,2],x2﹣a≤0”为真命题的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C符合题意.故选C【点评】本题为找命题一个充分不必要条件,还涉及恒成立问题,属基础题.3.函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a=( )A.2 B.3 C.4 D.5【考点】利用导数研究函数的极值.【专题】导数的概念及应用;导数的综合应用.【分析】先对函数进行求导,根据函数f(x)在x=﹣3时取得极值,可以得到f′(﹣3)=0,代入求a值.【解答】解:对函数求导可得,f′(x)=3x2+2ax+3∵f(x)在x=﹣3时取得极值∴f′(﹣3)=0⇒a=5,验证知,符合题意故选:D.【点评】本题主要考查函数在某点取得极值的性质.属基础题.比较容易,要求考生只要熟练掌握基本概念,即可解决问题.4.函数f(x)=x+lnx的零点所在的区间为( )A.(﹣1,0)B.(0,1)C.(1,2)D.(1,e)【考点】函数零点的判定定理.【专题】常规题型.【分析】令函数f(x)=0得到lnx=﹣x,转化为两个简单函数g(x)=lnx,h(x)=﹣x,最后在同一坐标系中画出g(x),h(x)的图象,进而可得答案.【解答】解:令f(x)=x+lnx=0,可得lnx=﹣x,再令g(x)=lnx,h(x)=﹣x,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(0,1),从而函数f(x)的零点在(0,1),故选B.【点评】本题主要考查函数零点所在区间的求法.属基础题.5.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=﹣1为函数f(x)e x的一个极值点,则如图四个图象可以为y=f(x)的图象序号是①②③(写出所有满足题目条件的序号).【考点】利用导数研究函数的极值;二次函数的性质.【专题】函数的性质及应用;导数的概念及应用.【分析】先求出函数f(x)e x的导函数,利用x=﹣1为函数f(x)e x的一个极值点可得a,b,c之间的关系,再代入函数f(x)=ax2+bx+c,对答案分别代入验证,看哪个答案不成立即可.【解答】解:因为[f(x)e x]′=f′(x)e x+f(x)(e x)′=[f(x)+f′(x)]e x,且x=﹣1为函数f(x)e x的一个极值点,所以f(﹣1)+f′(﹣1)=0;对于①②,f(﹣1)=0且f′(﹣1)=0,所以成立;对于③,f(﹣1)<0,且a<0,﹣<﹣1,得2a﹣b<0,即b﹣2a>0,所以f′(﹣1)>0,所以可满足f(﹣1)+f′(﹣1)=0,故③可以成立;对于④,因f(﹣1)>0,f′(﹣1)>0,不满足f′(1)+f(1)=0,故不能成立,故①②③成立.故答案为:①②③【点评】本题考查极值点与导函数之间的关系.一般在知道一个函数的极值点时,直接把极值点代入导数令其等0即可.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.6.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上(其中m,n>0),则4m+2n的值等于( )A.4 B.3 C.2 D.1【考点】直线的一般式方程;对数函数图象与性质的综合应用.【专题】计算题.【分析】由对数函数的特点可得点A的坐标,代入直线方程可得2m+n=1,进而可得4m+2n 的值.【解答】解:由题意当x=﹣2时,无论a为何值,总有y=﹣1即点A的坐标为(﹣2,﹣1),又点A在直线mx+ny+1=0上,所以﹣2m﹣n+1=0,即2m+n=1,故4m+2n=2(2m+n)=2故选C【点评】本题为对数函数过定点的问题,准确找到定点是解决问题的关键,属基础题.7.若函数f(x)=x3+f′(1)x2﹣f′(2)x+3,则f(x)在点(0,f(0))处切线的倾斜角为( )A.B.C.D.π【考点】导数的几何意义.【分析】由导函数的几何意义可知函数图象在点(0,f(0))处的切线的斜率值即为其点的导函数值,再根据k=tanα,结合正切函数的图象求出倾斜角α的值.【解答】解析:由题意得:f′(x)=x2+f′(1)x﹣f′(2),令x=0,得f′(0)=﹣f′(2),令x=1,得f′(1)=1+f′(1)﹣f′(2),∴f′(2)=1,∴f′(0)=﹣1,即f(x)在点(0,f(0))处切线的斜率为﹣1,∴倾斜角为π.故选D.【点评】本题考查了导数的几何意义,以及利用正切函数的图象、直线的倾斜角等基础知识,属于基础题.8.若函数在区间上为减函数,则a的取值范围是( )A.(0,1)B.(1,+∞)C.(1,2)D.(0,1)∪(1,2)【考点】复合函数的单调性.【专题】函数的性质及应用.【分析】先根据复合函数的单调性确定函数g(x)=x2﹣2ax+3的单调性,进而分a>1和0<a<1两种情况讨论:①当a>1时,考虑地函数的图象与性质得到其对称轴在x=的右侧,当x=时的函数值为正;②当0<a<1时,g(x)在上为增函数,此种情况不可能,从而可得结论.【解答】解:令g(x)=x2﹣2ax+3(a>0,且a≠1),则f(x)=log a g(x).当a>1时,g(x)在上为减函数,∴,∴1<a<2;②当0<a<1时,g(x)在上为增函数,此种情况不可能.综上所述:1<a<2.故选C.【点评】本题主要考查复合函数的单调性,考查解不等式,必须注意对数函数的真数一定大于0.9.已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg(lg2))=( ) A.﹣5 B.﹣1 C.3 D.4【考点】函数奇偶性的性质;函数的值.【专题】计算题;压轴题;方程思想;函数的性质及应用.【分析】由题设条件可得出lg(log210)与lg(lg2)互为相反数,再引入g(x)=ax3+bsinx,使得f(x)=g(x)+4,利用奇函数的性质即可得到关于f(lg(lg2))的方程,解方程即可得出它的值【解答】解:∵lg(log210)+lg(lg2)=lg1=0,∴lg(log210)与lg(lg2)互为相反数则设lg(log210)=m,那么lg(lg2)=﹣m令f(x)=g(x)+4,即g(x)=ax3+bsinx,此函数是一个奇函数,故g(﹣m)=﹣g(m),∴f(m)=g(m)+4=5,g(m)=1∴f(﹣m)=g(﹣m)+4=﹣g(m)+4=3.故选C.【点评】本题考查函数奇偶性的运用及求函数的值,解题的关键是观察验证出lg(log210)与lg(lg2)互为相反数,审题时找准处理条件的方向对准确快速做题很重要10.已知函数f(x)定义域为R,则下列命题:①若y=f(x)为偶函数,则y=f(x+2)的图象关于y轴对称.②若y=f(x+2)为偶函数,则y=f(x)关于直线x=2对称.③若函数y=f(2x+1)是偶函数,则y=f(2x)的图象关于直线对称.④若f(x﹣2)=f(2﹣x),则则y=f(x)关于直线x=2对称.⑤函数y=f(x﹣2)和y=f(2﹣x)的图象关于x=2对称.其中正确的命题序号是( )A.①②④B.①③④C.②③⑤D.②③④【考点】命题的真假判断与应用.【专题】综合题;函数思想;分析法;函数的性质及应用.【分析】由函数的图象关于y轴对称结合函数的图象平移判断①②③;令t=x﹣2换元,然后利用偶函数的性质判断④;设f(m)=n,可得函数y=f(x﹣2)的图象经过点A(m+2,n),求出A关于x=2的对称点B (﹣m+2,n),由B在y=f(2﹣x)上说明⑤正确.【解答】解:①若y=f(x)为偶函数,则其图象关于y轴对称,∴y=f(x+2)的图象关于直线x=﹣2对称,①错误;②若y=f(x+2)为偶函数,则其图象关于y轴对称,∴y=f(x)关于直线x=2对称,②正确;③若函数y=f(2x+1)=f[2(x+)]是偶函数,则其图象关于y轴对称,∴y=f(2x)的图象关于直线对称,③正确;④令t=x﹣2,则2﹣x=﹣t,由于f(x﹣2)=f(2﹣x),得f(t)=f(﹣t),∴函数f(x)是偶函数,得f(x)的图象自身关于直线y轴对称,④错误;⑤设f(m)=n,则函数y=f(x﹣2)的图象经过点A(m+2,n)而y=f(2﹣x)的图象经过点B(﹣m+2,n),由于点A与点B是关于x=2对称的点,∴y=f(x﹣2)与y=f(2﹣x)的图象关于直线x=2对称,⑤正确.∴正确命题的序号是②③⑤.故答案为:②③⑤.【点评】本题考查命题的真假判断与应用,考查了函数的性质,考查了函数图象的平移与对称性问题,是中档题.二、填空题11.函数f(x)=3+xlnx的单调递减区间是(0,).【考点】利用导数研究函数的单调性.【专题】导数的概念及应用.【分析】首先求函数f(x)的定义域,x>0,求f(x)的导数,利用f′(x)<0,解出x 的范围;【解答】解:∵函数f(x)=3+xlnx,(x>0)∴f′(x)=lnx+1>0,得x<,∴f(x)=3+xlnx的单调递减区间是(0,),故答案为(0,);【点评】利用导数研究函数的单调性,本题的易错点的忘记函数f(x)的定义域,是一道基础题;12.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.【考点】利用导数研究曲线上某点切线方程.【专题】导数的概念及应用.【分析】先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k的值.【解答】解:由题意得,∵在点(1,a)处的切线平行于x轴,∴2a﹣1=0,得a=,故答案为:.【点评】本题考查了函数导数的几何意义应用,难度不大.13.已知定义域为R的函数是奇函数,则a+b=3.【考点】函数奇偶性的性质.【专题】方程思想;转化思想;数学模型法;函数的性质及应用.【分析】根据函数是定义域为R的奇函数,故f(0)=0且f(﹣1)=﹣f(1),求出a,b 值后,检验是否满足题意,可得答案.【解答】解:∵定义域为R的函数是奇函数,∴f(0)==0,解得:b=1,且f(﹣1)=﹣f(1),即=﹣,解得:a=2,经检验,当a=2,b=1时,满足f(﹣x)=﹣f(x)恒成立,为奇函数,故a+b=3,故答案为:3【点评】本题考查的知识点是函数奇偶性的性质,方程思想,转化思想,难度中档.14.先将函数y=ln的图象向右平移3个单位,再将所得图象关于原点对称得到y=f(x)的图象,则y=f(x)的解析式是f(x)=lnx.【考点】函数的图象与图象变化;函数解析式的求解及常用方法.【专题】计算题;转化思想;分析法;函数的性质及应用.【分析】依据各步的规则进行图象变换逐步求出相应的函数解析式即可.【解答】解:函数y=ln的图象右平移3个单位得到y=ln的图象,而y=ln的图象关于原点对称的函数是y=lnx,故答案为:f(x)=lnx.【点评】本题考查了函数的图象变换以及函数解析式的求解,熟练掌握图象的对称变换、平移变换是解决本题的基础.15.已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是(0,1)∪(1,2).【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】函数y===,如图所示,可得直线y=kx与函数y=的图象相交于两点时,直线的斜率k的取值范围.【解答】解:函数y===,如图所示:故当一次函数y=kx的斜率k满足0<k<1 或1<k<2时,直线y=kx与函数y=的图象相交于两点,故答案为(0,1)∪(1,2).【点评】本题主要考查函数的零点的定义,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.三、解答题16.设集合,B={x|x2﹣3mx+2m2﹣m﹣1<0}.(1)当x∈Z时,求A的非空真子集的个数.(2)若B=∅,求m的取值范围.(3)若A⊇B,求m的取值范围.【考点】子集与真子集;集合的包含关系判断及应用;空集的定义、性质及运算.【专题】计算题;压轴题.【分析】(1)由条件:“x∈Z”知集合A中的元素是整数,进而求它的子集的个数;(2)由条件:“B=∅”知集合B中的没有任何元素是,得不等式的解集是空集,进而求m;(3)由条件:“A⊇B”知集合B是A的子集,结合端点的不等关系列出不等式后解之即得.【解答】解:化简集合A={x|﹣2≤x≤5},集合B可写为B={x|(x﹣m+1)(x﹣2m﹣1)<0} (1)∵x∈Z,∴A={﹣2,﹣1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集数为28﹣2=254(个).(2)显然只有当m﹣1=2m+1即m=﹣2时,B=∅.(3)当B=∅即m=﹣2时,B=∅⊆A;当B≠∅即m≠﹣2时,(ⅰ)当m<﹣2时,B=(2m+1,m﹣1),要B⊆A,只要,所以m的值不存在;(ⅱ)当m>﹣2时,B=(m﹣1,2m+1),要B⊆A,只要.【点评】本题考查集合的子集、集合的包含关系判断及应用以及空集的性质及运算.是一道中档题.17.已知c>0,设P:函数y=c x在R上单调递减,Q:不等式x+|x﹣2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.【考点】绝对值不等式的解法;指数函数单调性的应用.【专题】计算题;综合题.【分析】函数y=c x在R上单调递减,推出c的范围,不等式x+|x﹣2c|>1的解集为R,推出x+|x﹣2c|的最小值大于1,P和Q有且仅有一个正确,然后求出c的取值范围.【解答】解:函数y=c x在R上单调递减⇔0<c<1.不等式x+|x﹣2c|>1的解集为R⇔函数y=x+|x﹣2c|在R上恒大于1.∵x+|x﹣2c|=∴函数y=x+|x﹣2c|在R上的最小值为2c.∴不等式x+|x﹣2c|>1的解集为R⇔2c>1⇔c>.如果P正确,且Q不正确,则0<c≤.如果P不正确,且Q正确,则c>1.∴c的取值范围为(0,]∪(1,+∞).【点评】本题考查绝对值不等式的解法,指数函数单调性的应用,是中档题.18.某桶装水经营部每天房租、工作人员工资等固定成本为200元,每桶水进价为5元,销【考点】函数最值的应用.【专题】函数的性质及应用.【分析】利用表格数据,可得涨价x元后,日销售的桶数,利用销售收入减去固定成本,即可得到利润函数,利用配方法,即可得到最大利润.【解答】解:设每桶水在原来的基础上上涨x元,利润为y元,由表格中的数据可以得到,价格每上涨1元,日销售量就减少40桶,所以涨价x元后,日销售的桶数为480﹣40(x﹣1)=520﹣40x>0,所以0<x<13,则利润y=(520﹣40x)x﹣200=﹣40x2+520x﹣200=﹣40(x﹣6.5)2+1490,其中0<x<13,所以当x=6.5时,利润最大,即当每桶水的价格为11.5元时,利润最大值为1490元.【点评】本题考查函数的构建,考查利用数学知识解决实际问题,解题的关键是确定函数模型.19.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.【考点】两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;三角函数的周期性及其求法;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】(I)利用两角和的正弦公式将sin(2x+)展开,结合二倍角的正余弦公式化简合并,得f(x)=2sin2x﹣2cos2x,再利用辅助角公式化简得f(x)=2si n(2x﹣),最后利用正弦函数的周期公式即可算出f(x)的最小正周期;(II)根据x∈,得﹣≤2x﹣≤.再由正弦函数在区间[﹣,]上的图象与性质,可得f(x)在区间上的最大值为与最小值.【解答】解:(I)∵sinxcosx=sin2x,cos2x=(1+cos2x)∴f(x)=﹣sin(2x+)+6sinxcosx﹣2cos2x+1=﹣sin2x﹣cos2x+3sin2x﹣(1+cos2x)+1=2sin2x﹣2cos2x=2sin(2x﹣)因此,f(x)的最小正周期T==π;(II)∵0≤x≤,∴﹣≤2x﹣≤∴当x=0时,sin(2x﹣)取得最小值﹣;当x=时,sin(2x﹣)取得最大值1由此可得,f(x)在区间上的最大值为f()=2;最小值为f(0)=﹣2.【点评】本小题主要考查两角和与差的正弦公式、二倍角的正弦与余弦公式、三角函数的最小正周期和函数y=Asin(ωx+φ)的单调性等知识,考查基本运算能力,属于中档题.20.设数列{a n}满足:a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,T n为前n项和,且b1=a2,b3=a1+a2+a3,求T20.【考点】等比数列的前n项和;等差数列的前n项和;等比数列的通项公式.【专题】等差数列与等比数列.【分析】(Ⅰ)可得数列{a n}是首项为1,公比为3的等比数列,代入求和公式和通项公式可得答案;(Ⅱ)可得b1=3,b3=13,进而可得其公差,代入求和公式可得答案.【解答】解:(Ⅰ)由题意可得数列{a n}是首项为1,公比为3的等比数列,故可得a n=1×3n﹣1=3n﹣1,由求和公式可得S n==;(Ⅱ)由题意可知b1=a2=3,b3=a1+a2+a3=1+3+9=13,设数列{b n}的公差为d,可得b3﹣b1=10=2d,解得d=5故T20=20×3+=1010【点评】本题考查等差数列和等比数列的通项公式和求和公式,属中档题.21.已知函数f(x)=x4﹣4x3+ax2﹣1在区间[0,1]上单调递增,在区间[1,2]上单调递减.(1)求a的值;(2)记g(x)=bx2﹣1,若方程f(x)=g(x)的解集恰有3个元素,求b的取值范围.【考点】利用导数研究函数的单调性;根的存在性及根的个数判断.【专题】综合题;压轴题;方程思想.【分析】(1)根据函数f(x)=x4﹣4x3+ax2﹣1在区间[0,1]上单调递增,在区间[1,2]上单调递减,知道x=1是f(x)的极值点,求导,令f′(1)=0,可得a的值;(2)把f(x)和g(x)代入方程f(x)=g(x),因式分解,转化为一元二次方程根的问题,求得b的取值范围.【解答】解:(1)f′(x)=4x3﹣12x2+2ax,因为f(x)在[0,1]上递增,在[1,2]上递减,所以x=1是f(x)的极值点,所以f′(1)=0,即4×13﹣12×12+2a×1=0.解得a=4,经检验满足题意,所以a=4.(2)由f(x)=g(x)可得x2(x2﹣4x+4﹣b)=0,由题意知此方程有三个不相等的实数根,此时x=0为方程的一实数根,则方程x2﹣4x+4﹣b=0应有两个不相等的非零实根,所以△>0,且4﹣b≠0,即(﹣4)2﹣4(4﹣b)>0且b≠4,解得b>0且b≠4,所以所求b的取值范围是(0,4)∪(4,+∞).【点评】考查利用导数研究函数的单调性和极值,以及一元二次方程根的存在性的判定,体现了数形结合的思想方法,属中档题.。

2015年陕西省高考理科数学试题

2015年陕西省高考理科数学试题

2015年普通高等学校招生全国统一考试理科数学(陕西)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求(本大题共12小题,每小题5分,共60分)1.已知集合2{|},{|lg 0}M x x x N x x ===≤,则MN =A.[0,1]B. (0,1]C.[0,1)D.(],1-∞ 2.某中学初中部共有110名教师,高中部共有150名教师, 其性别比例如图所示,则该校女教师的人数 A.167 B.137 C.123 D.933.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()y x k πϕ=++,,据此函数可知,这段时间水深(单位:m )的最大值为 A.5 B.6 C.8 D.104.二项式()1()nx n N++∈的展开式中2x 的系数为15,则n =A.4B.5C.6D.75.一个几何体的三视图如图所示,则该几何体的表面积为 A. 3π B. 4π C. 24π+ D. 34π+6. sin cos αα=“”是cos 20α=“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.对任意向量,a b ,下列关系不恒成立的是 A. a b a b ⋅≤ B. a b a b -≤- C. 22()a b a b +=+ D. 22()()a b a b a b +⋅-=- 8.根据右边框图,当输入x 为2000时,输出的y = A.28 B.10 C.4 D.29.设()ln ,0f x x a b =<<,若p f =,()2a bq f +=, 1(()())2r f a f b =+,则下列关系式中正确的是A. q r p =<B. q r p =>C. p r q =<D. p r q =>10.某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产一(初中部) (高中部)h主视图左视图吨每种产品所需原料及每天原料的可用限额如表所示,如果生产一甲乙产品可获利润分别为3万元、4万元,则该企业每天活得最大利润为 A.1211.设复数(1)(,)z x yi x y R =-+∈,若1z ≤,则y x ≥的概率为 A.3142π+ B. 1142π- C. 112π- D. 112π+ 12.对于二次函数2y ax bx c =++(a 为非零常数)四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是 A.1-是()f x 的零点 B.1是()f x 的极值点C.3是()f x 的极值D.点(2,8)在曲线()y f x =上二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分)13.中位数是1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p = . 15.设曲线xy e =在点(0,1)初的切线与曲线1(0)yx x=>上点p 处的切线垂直,则p 的坐标为 .16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠的边界 呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比 值为 .三、解答题:解答应写出文字说明、证明过程及演算步骤(本大题共6小题共70分) 17. (本小题满分12分)△ABC 的内角A,B,C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B =平行,(1)求A ;(2)若2a b ==,求△ABC 的面积. 18. (本小题满分12分)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD=2π,AB=BC=1,AD=2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2,A BCD E O图1 A 1(A)BCDE O图2(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE,求平面A 1BC 与平面A 1CD 夹角的余弦值. 19. (本小题满分12分)设某校新老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的(1)求T 的分布列与数学期望;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 20. (本小题满分12分)已知椭圆E :22221(0)x y a b a b+=>>的半焦距c ,原点o 到经过两点(,0)c ,(0,)b 的距离为12c , (1)求椭圆E 的离心率;(2)如图,AB 是圆M :225(2)(1)2x y ++-=的一条直径, 若椭圆E 经过A,B 两点,求椭圆E 的方程. 21. (本小题满分12分) 设()n f x 是等比数列1,x ,2x ,n x ,的各项和,其中0,,2x n N n >∈≥, (1)证明函数()()2n n F x f x =-在1(,1)2内有且仅有一个零点(记为n x ),且11122n n n x x +=+; (2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x 与()n g x 的大小,并加以证明.22. (本小题满分10分)选修4—1几何证明选讲如图,AB 切⊙O 于点B ,直线AO 交⊙O 于D,E 两点,BC ⊥DE ,垂足为C(1)证明:∠CBD=∠DEA(2)若O 的直径.23.(本小题满分10分)选修4—4坐标系与参数方程在直角坐标系xoy 中,直线l 的参数方程是132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρθ= (1)写出⊙C 的直角坐标方程;(2)p 为直线l 上的一点,当p 到圆心C 的距离最小时,求的直角坐标方程. 24. (本小题满分10分)选修4—5不等式选讲 已知关于x 的不等式x a b +<的解集为{}24x x <<. (1)求实数,a b 的值;(2的最大值.。

15年高考真题——理科数学(陕西卷)-推荐下载

15年高考真题——理科数学(陕西卷)-推荐下载

(A)0,1 (B) 0,1 (C)0,1 (D) ,1
2.某中学初中部共有 110 名教师,高中部共有 150 名教
师,其性别比例如图所示,则该校女教师的人数为( )
(A)167
(B)137
3.如图,某港口一天 6 时到 18 时的水深变化曲线近
似满足函数
y

3sin

时间水深(单位: m )的最大值为( )
1 2 ,1内有且仅有一个零点(记为 xn ),且
xn

1 2

1 2
n1
xn
;⑵设有一个与上述等比数列的首项、末
项、项数分别相同的等差数列,其各项
和为 gn x,比较 fn x与 gn x的大 A
小,并加以证明。
请在 22、23、24 三题中任选一题作答,
如果多做,则按所做的第一题计分。作 B
答时用 2B 铅笔在答题卡上把所选题目的 题号后的方框涂黑。
22.(本小题满分 10 分)如图, AB 切 A O 于点 B ,直线 AD 交 A O 于 D, E 两点,
BC DE ,垂足为 C 。
⑴证明: CBD DBA ;⑵若 AD 3DC , BC 2 ,求 A O 的直径。
(A)充分不必要条件
(C)充分必要条件

(C)8
(C)6
(C) 2 4
(B)必要不充分条件
(D)既不充分也不必要条件
7.对任意向量 a, b ,下列关系式中不恒成立的是( )
(A)| a b || a || b |
(C)
(A)8
q


1/7

a b
2
|
a

2015年普通高等学校招生全国统一考试数学理试题(陕西卷,含解析)

2015年普通高等学校招生全国统一考试数学理试题(陕西卷,含解析)

故 ABC 的面积为 1 bcsinA = 3 3 .
2
2
考点:1、平行向量的坐标运算;2、正弦定理;3、余弦定理;4、三角形的面积公式.
18.(本小题满分 12 分)如图1 ,在直角梯形 CD 中, D// C, D , 2
C 1, D 2 , 是 D 的中点, 是 C 与 的交点.将 沿 折起到 1 的
因为 A1B=A1E=BC=ED=1, BC ED
所以 B( 2 ,0,0), E(2
2 2
,
0,
0),
A1
(0,
0,
2 ),C(0, 2
2 ,0), 2
得 BC(-
2 , 2 ,0), 22
A1C(0,
2 ,2
2 ) , CD = BE = (2
2,0,0) .
设平面 A1BC 的法向量 n1 = (x1, y1, z1) ,平面 A1CD 的法向量 n2 = (x2, y2, z2 ) ,平面 A1BC 与
又 sin 0 ,从而 tan A = 3 , 由于 0 A ,所以 A
3 (II)解法一:由余弦定理,得 a2 = b2 +c2 - 2bc cos A 而 a = 7 b = 2,
3 得 7 = 4 +c2 - 2c ,即 c2 - 2c - 3 = 0 因为 c > 0 ,所以 c = 3 .
13.中位数 1010 的一组数构成等差数列,其末项为 2015,则该数列的首项为

【答案】 5
【解析】
试题分析:设数列的首项为 a1 ,则 a1 2015 2 1010 2020 ,所以 a1 5 ,故该数列的 首项为 5 ,所以答案应填: 5 .
考点:等差中项.

陕西省兴平西郊高级中学高三数学上学期第一次模拟考试

陕西省兴平西郊高级中学高三数学上学期第一次模拟考试

西郊中学2016届高三第一次模拟考试数学试题一、选择题1.已知集合{|2},{|lg(1)},xS y y T x y x S T ====-I 则=( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞2.方程log 3x +x -3=0的实数解所在的区间是( )A .(0,1)B . (1,2)C .(2,3)D .(3,4)3.“1x >”是“2x x >”的( )A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件4.设函数f(x)是定义在R 上以3为周期的奇函数,若f(1)>1且23(2)1a f a -=+,则( ) A .23a < B .213a a <≠-且 C .213a a ><-或 D .213a -<<5.对于函数f(x)=ax 2+bx+c (a ≠0)作代换x=g (t ),则不改变函数f(x)的值域的代换是( ) A .g (t )=2tB .g(t)=|t |C .g(t)=sintD .g(t)=log 2t6.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,且点A 在直线mx +ny +1=0上(其中m ,n >0),则12m n+的最小值等于( ) A .16 B .12 C .9 D .8 7.设0<a <1,实数x ,y 满足x +y a log =0,则y 关于x 的函数的图象大致形状是A B C D8.【理科】已知定义域为R 的函数()f x 满足()(4)f x f x -=-+,当2x >时,()f x 单调递增,若124x x +<,且12(2)(2)0x x --<,则12()()f x f x +与0的大小关系是( )A .12()()0f x f x +>B .12()()0f x f x +=C .12()()0f x f x +<D .12()()0f x f x +≤8.【文科】 若)(x f 是偶函数,且当1)(,),0[-=+∞∈x x f x 时,则不等式1)1(>-x f 的解集是( )A .}31|{<<-x xB .}3,1|{>-<x x x 或C .}2|{>x xD .}3|{>x x9.对任意[]1,1-∈a ,函数a x a x x f 24)4()(2-+-+=的值总大于0,则x 的取值范围是( )A.{x │31<<x }B.{x │31><x x 或}C.{x │21<<x }D.{x │21><x x 或} 10.【理科】已知f (x )是定义在R 上的函数,f (1)=10,且对于任意x ∈R 都有f (x +20)≥f (x )+20,f (x +1)≤f (x )+1,若g (x )=f (x )+1-x ,则g (10)=( )A .20B .10C .1D .010.【文科】若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是( ) A .)1,41[B .),49(+∞C .)1,43[D .)49,1(二、填空题11.设集合22{5,log (36)}A a a =-+,集合{1,,},B a b =若{2},A B =I 则集合A B U 的真子集的个数是 . 12.先作与函数1ln3y x=-的图象关于原点对称的图象,再将所得图象向右平移3个单位得到图象C 1.又y =f(x)的图象C 2与C 1关于y =x 对称,则y =f(x)的解析式是 .13.若函数)34(log 2++=kx kx y a 的定义域是R,则k 的取值范围是 .14.【理科】已知函数⎩⎨⎧≥+-<=)0(4)3()0()(x a x a x a x f x 满足对任意21x x ≠,都有0)]()()[(2121<--x f x f x x 成立,则a 的取值范围为14.【文科】已知函数2(0)()(3)(0)xx f x f x x ⎧≤=⎨->⎩, 则(5)f =15.给出下列命题:①函数)1,0(≠>=a a a y x与函数x a a y log =)1,0(≠>a a 的定义域相同;②函数3x y =与xy 3=的值域相同;③函数12121-+=x y 与函数xx x y 2)21(2⋅+=均是奇函数; ④函数2)1(-=x y 与12-=x y 在+R 上都是增函数。

2015年陕西省高考数学试卷(理科)答案与解析

2015年陕西省高考数学试卷(理科)答案与解析

2015年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,共12小题,每小题5分,共60分1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]考点:并集及其运算.专题:集合.分析:求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.解答:解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.点评:本题考查了并集及其运算,考查了对数不等式的解法,是基础题.2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.167考点:收集数据的方法.专题:计算题;概率与统计.分析:利用百分比,可得该校女教师的人数.解答:解:初中部女教师的人数为110×70%=77;高中部女教师的人数为40×150%=60,∴该校女教师的人数为77+60=137,故选:C.点评:本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.3.(5分)(2015•陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由题意和最小值易得k的值,进而可得最大值.解答:解:由题意可得当sin(x+φ)取最小值﹣1时,函数取最小值y min=﹣3+k=2,解得k=5,∴y=3sin(x+φ)+5,∴当当sin(x+φ)取最大值1时,函数取最大值y max=3+5=8,故选:C.点评:本题考查三角函数的图象和性质,涉及三角函数的最值,属基础题.4.(5分)(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4考点:二项式定理的应用.专题:二项式定理.分析:由题意可得==15,解关于n的方程可得.解答:解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即=15,解得n=6,故选:B.点评:本题考查二项式定理,属基础题.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+4考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是圆柱体的一半,∴该几何体的表面积为V几何体=π•12+π×1×2+2×2=3π+4.故选:D.点评:本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.6.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由cos2α=cos2α﹣sin2α,即可判断出.解答:解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα”是“cos2α=0”的充分不必要条件.故选:A.点评:本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量数量积的运算和性质逐个选项验证可得.解答:解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B点评:本题考查平面向量的数量积,属基础题.8.(5分)(2015•陕西)根据如图框图,当输入x为2006时,输出的y=()A.2B.4C.10 D.28考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣2时不满足条件x≥0,计算并输出y的值为10.解答:解:模拟执行程序框图,可得x=2006,x=2004满足条件x≥0,x=2002满足条件x≥0,x=2000…满足条件x≥0,x=0满足条件x≥0,x=﹣2不满足条件x≥0,y=10输出y的值为10.故选:C.点评:本题主要考查了循环结构的程序框图,属于基础题.9.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q考点:不等关系与不等式.专题:不等式的解法及应用.分析:由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小关系.解答:解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B点评:本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.10.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元考点:简单线性规划的应用.专题:不等式的解法及应用.分析:设每天生产甲乙两种产品分别为x,y顿,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.解答:解:设每天生产甲乙两种产品分别为x,y顿,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z max=3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是18万元,故选:D.点评:本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣考点:几何概型.专题:概率与统计.分析:由题意易得所求概率为弓形的面积与圆的面积之比,分别求面积可得.解答:解:∵复数z=(x﹣1)+yi(x,y∈R)且|z|≤1,∴|z|=≤1,即(x﹣1)2+y2≤1,∴点(x,y)在(1,0)为圆心1为半径的圆及其内部,而y≥x表示直线y=x左上方的部分,(图中阴影弓形)∴所求概率为弓形的面积与圆的面积之比,∴所求概率P==故选:D.点评:本题考查几何概型,涉及复数以及圆的知识,属基础题.12.(5分)(2015•陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上考点:二次函数的性质.专题:创新题型;函数的性质及应用;导数的综合应用.分析:可采取排除法.分别考虑A,B,C,D中有一个错误,通过解方程求得a,判断是否为非零整数,即可得到结论.解答:解:可采取排除法.若A错,则B,C,D正确.即有f(x)=ax2+bx+c的导数为f′(x)=2ax+b,即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②,又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a为非零整数.若B错,则A,C,D正确,则有a﹣b+c=0,且4a+2b+c=8,且=3,解得a∈∅,不成立;若C错,则A,B,D正确,则有a﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D错,则A,B,C正确,则有a﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立.故选:A.点评:本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.二、填空题,共4小题,每小题5分,共20分13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为5.考点:等差数列.专题:等差数列与等比数列.分析:由题意可得首项的方程,解方程可得.解答:解:设该等差数列的首项为a,由题意和等差数列的性质可得2015+a=1010×2解得a=5故答案为:5点评:本题考查等差数列的基本性质,涉及中位数,属基础题.14.(5分)(2015•陕西)若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=2.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先求出x2﹣y2=1的左焦点,得到抛物线y2=2px的准线,依据p的意义求出它的值.解答:解:双曲线x2﹣y2=1的左焦点为(﹣,0),故抛物线y2=2px的准线为x=﹣,∴=,∴p=2,故答案为:2.点评:本题考查抛物线和双曲线的简单性质,以及抛物线方程y2=2px中p的意义.15.(5分)(2015•陕西)设曲线y=e x在点(0,1)处的切线与曲线y=(x>0)上点P的切线垂直,则P的坐标为(1,1).考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:利用y=e x在某点处的切屑斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标.解答:解:∵f'(x)=e x,∴f'(0)=e0=1.∵y=e x在(0,1)处的切线与y=(x>0)上点P的切线垂直∴点P处的切线斜率为﹣1.又y'=﹣,设点P(x0,y0)∴∴x0=±1,∵x>0,∴x0=1∴y0=1∴点P(1,1)故答案为:(1,1)点评:本题考查导数在曲线切线中的应用,在高考中属基础题型,常出现在选择填空中.16.(5分)(2015•陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 1.2.考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线的定义、性质与方程.分析:建立直角坐标系,求出抛物线方程,然后利用定积分求出泥沙沉积的横截面面积,求出梯形面积,即可推出结果.解答:解:如图:建立平面直角坐标系,设抛物线方程为:y=ax2,因为抛物线经过(5,2),可得a=,所以抛物线方程:y=,横截面为等腰梯形的水渠,泥沙沉积的横截面的面积为:2×=2()=,等腰梯形的面积为:=16,当前最大流量的横截面的面积16﹣,原始的最大流量与当前最大流量的比值为:=1.2.故答案为:1.2.点评:本题考查抛物线的求法,定积分的应用,考查分析问题解决问题的能力,合理建系是解题的关键.三、解答题,共5小题,共70分17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.考点:余弦定理的应用;平面向量共线(平行)的坐标表示.专题:解三角形.分析:(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a=,b=2,通过余弦定理求出c,然后求解△ABC的面积.解答:解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.点评:本题考查余弦定理以及宰相肚里的应用,三角形的面积的求法,考查计算能力.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E 是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,建立空间坐标系,利用向量法即可求平面A1BC与平面A1CD 夹角的余弦值.解答:证明:(Ⅰ)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=,∴BE⊥AC,即在图2中,BE⊥OA1,BE⊥OC,则BE⊥平面A1OC;∵CD∥BE,∴CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,由(Ⅰ)知BE⊥OA1,BE⊥OC,∴∠A1OC为二面角A1﹣BE﹣C的平面角,∴∠A1OC=,如图,建立空间坐标系,∵A1B=A1E=BC=ED=1.BC∥ED∴B(,0,0),E(﹣,0,0),A1(0,0,),C(0,,0),=(﹣,,0),=(0,,﹣),设平面A1BC的法向量为=(x,y,z),平面A1CD的法向量为=(a,b,c),则得,令x=1,则y=1,z=1,即=(1,1,1),由得,取=(0,1,1),则cos<>===,∵平面A1BC与平面A1CD为钝二面角,∴平面A1BC与平面A1CD夹角的余弦值为﹣.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.19.(12分)(2015•陕西)某校新、老校区之间开车单程所需时间为T,T只与道路通畅状况有关,对其容量为100的样本进行统计,结果如下:T(分钟)25 30 35 40频数(次)20 30 40 10(Ⅰ)求T的分布列与数学期望ET;(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)求T的分布列即求出相应时间的频率,频率=频数÷样本容量,数学期望ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟);(Ⅱ)设T1,T2分别表示往、返所需时间,事件A对应于“刘教授在路途中的时间不超过70分钟”,先求出P()=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.09,即P (A)=1﹣P()=0.91.解答:解(Ⅰ)由统计结果可得T的频率分布为T(分钟)25 30 35 40频率0.2 0.3 0.4 0.1以频率估计概率得T的分布列为T 25 30 35 40P 0.2 0.3 0.4 0.1从而数学期望ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟)(Ⅱ)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同,设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”P()=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09故P(A)=1﹣P()=0.91故答案为:(Ⅰ)分布列如上表,数学期望ET=32(分钟)(Ⅱ)0.91点评:本题考查了频率=频数÷样本容量,数学期望,对学生的理解事情的能力有一定的要求,属于中档题.20.(12分)(2015•陕西)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.考点:直线与圆锥曲线的综合问题;曲线与方程.专题:创新题型;直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出经过点(0,b)和(c,0)的直线方程,运用点到直线的距离公式,结合离心率公式计算即可得到所求值;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①设出直线AB的方程,代入椭圆方程,运用韦达定理和弦长公式,结合圆的直径和中点坐标公式,解方程可得b2=3,即可得到椭圆方程.解答:解:(Ⅰ)经过点(0,b)和(c,0)的直线方程为bx+cy﹣bc=0,则原点到直线的距离为d==c,即为a=2b,e===;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①由题意可得圆心M(﹣2,1)是线段AB的中点,则|AB|=,易知AB与x轴不垂直,记其方程为y=k(x+2)+1,代入①可得(1+4k2)x2+8k(1+2k)x+4(1+2k)2﹣4b2=0,设A(x1,y1),B(x2,y2),则x1+x2=.x1x2=,由x1+x2=﹣4,得=﹣4,解得k=,从而x1x2=8﹣2b2,于是|AB|=•|x1﹣x2|=•==,解得b2=3,则有椭圆E的方程为+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的求法和椭圆方程的运用,联立直线方程和椭圆方程,运用韦达定理和弦长公式,同时考查直线和圆的位置关系,以及中点坐标公式和点到直线的距离公式的运用,属于中档题.21.(12分)(2015•陕西)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(Ⅰ)证明:函数F n(x)=f n(x)﹣2在(,1)内有且仅有一个零点(记为x n),且x n=+x;(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n (x)和g n(x)的大小,并加以证明.考点:数列的求和;等差数列与等比数列的综合.专题:综合题;创新题型;导数的综合应用;等差数列与等比数列.分析:(Ⅰ)由F n(x)=f n(x)﹣2=1+x+x2+…++x n﹣2,求得F n(1)>0,F n()<0.再由导数判断出函数F n(x)在(,1)内单调递增,得到F n(x)在(,1)内有且仅有一个零点x n,由F n(x n)=0,得到;(Ⅱ)先求出,构造函数h(x)=f n(x)﹣g n(x)=1+x+x2+…++x n ﹣,当x=1时,f n(x)=g n(x).当x≠1时,利用导数求得h(x)在(0,1)内递增,在(1,+∞)内递减,得到f n(x)<g n(x).解答:证明:(Ⅰ)由F n(x)=f n(x)﹣2=1+x+x2+…++x n﹣2,则F n(1)=n﹣1>0,F n()=1+.∴F n(x)在(,1)内至少存在一个零点,又,∴F n(x)在(,1)内单调递增,∴F n(x)在(,1)内有且仅有一个零点x n,∵x n是F n(x)的一个零点,∴F n(x n)=0,即,故;(Ⅱ)由题设,,设h(x)=f n(x)﹣g n(x)=1+x+x2+…++x n﹣,x>0.当x=1时,f n(x)=g n(x).当x≠1时,.若0<x<1,h′(x)>=.若x>1,h′(x)<=.∴h(x)在(0,1)内递增,在(1,+∞)内递减,∴h(x)<h(1)=0,即f n(x)<g n(x).综上,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).点评:本题考查了函数零点的判定方法,考查了等比数列的前n项和,训练了利用导数研究函数的单调性,考查了数学转化与化归等思想方法,是中档题.四、选修题,请在22、23、24中任选一题作答,如果多做则按第一题计分.选修4-1:几何证明选讲22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.考点:直线与圆的位置关系.专题:直线与圆.分析:(Ⅰ)根据直径的性质即可证明:∠CBD=∠DBA;(Ⅱ)结合割线定理进行求解即可求⊙O的直径.解答:证明:(Ⅰ)∵DE是⊙O的直径,则∠BED+∠EDB=90°,∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED,∵AB切⊙O于点B,∴∠DBA=∠BED,即∠CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD平分∠CBA,则=3,∵BC=,∴AB=3,AC=,则AD=3,由切割线定理得AB2=AD•AE,即AE=,故DE=AE﹣AD=3,即可⊙O的直径为3.点评:本题主要考查直线和圆的位置关系的应用和证明,根据相应的定理是解决本题的关键.五、选修4-4:坐标系与参数方程23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.六、选修4-5:不等式选讲24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.考点:不等关系与不等式.专题:不等式的解法及应用.分析:(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.解答:解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等号,∴所求最大值为4点评:本题考查不等关系与不等式,涉及柯西不等式求最值,属基础题.。

2015年高考陕西省理科数学真题含答案解析(超完美版)

2015年高考陕西省理科数学真题含答案解析(超完美版)

2015年高考陕西省理科数学真题一、选择题1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .933.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( ) A .5B .6C .8D .104.二项式(1)()nx n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .75.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+ 6. “sin cos αα=”是“cos20α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要 7.对任意向量,a b ,下列关系式中不恒成立的是( ) A .|?|||||a b a b ≤B .||||||||a b a b -≤-C .22()||a b a b +=+D .22(a b)(a b)a b +-=-8.根据下边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D .29.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>10.某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B .1142π- C .112π- D .112π+ 12.对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值D .点(2,8)在曲线()y f x =上二、填空题13.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p=15.设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标为 16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为三、解答题17.C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c . 向量(),3m a b =与()cos ,sin n =A B 平行.()I 求A ; ()II 若7a =,2b =求C ∆AB 的面积.18.如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.()I 证明:CD⊥平面1CA O;()II若平面1A BE⊥平面CDB E,求平面1CA B与平面1CDA夹角的余弦值.19.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:()I求T的分布列与数学期望ET;()II刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20.已知椭圆:E22221x ya b+=(0a b>>)的半焦距为c,原点O到经过两点(),0c,()0,b的直线的距离为12c.()I求椭圆E的离心率;()II如图,AB是圆:M()()225212x y++-=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.21.设()nf x是等比数列1,x,2x,⋅⋅⋅,n x的各项和,其中0x>,n∈N,2n≥.()I证明:函数()()F2n nx f x=-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为nx),且11122nn nx x+=+;()II设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()ng x,比较()nf x与()ng x的大小,并加以证明.22.如图,AB切O于点B,直线DA交O于D,E两点,C DB⊥E,垂足为C.()I证明:C D D∠B=∠BA;()II若D3DCA=,C2B=,求O的直径.23.在直角坐标系x yO中,直线l的参数方程为13232x ty t⎧=+⎪⎪⎨⎪=⎪⎩(t为参数).以原点为极点,x轴正半轴为极轴C ()I 写出C 的直角坐标方程;()II P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.2015年高考陕西省理科数学真题答案一、选择题 1.答案:A 解析过程: 由==⇒=2{x }{0,1},M xx M=≤⇒=<≤N {x lg 0}N {x 0x 1}x所以0,1MN ⎡⎤=⎣⎦,选A2.答案:B解析过程:由图可知该校女教师的人数为,选B3.答案:C 解析过程:试题分析:由图像得, 当时,求得, 当时,,选C4.答案:B 解析过程:二项式(1)nx +的展开式的通项是1r rr n T C x +=,令2r =得2x 的系数是2n C ,因为2x 的系数为15,所以215n C =,即2300n n --=,解得:6n =或5n =-,11070%150(160%)7760137⨯+⨯-=+=sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=因为n N +∈,所以6n =,选C 5.答案:D 解析过程:试题分析:由几何体的三视图可知该几何体为圆柱的截去一半, 所以该几何体的表面积为,选 6. 答案:A 解析过程:ααα=⇒-=22cos 20cos sin 0αααα⇒-+=(cos sin )(cos sin )0所以sin cos 或sin =-cos αααα=,选A 7.答案:B 解析过程:因为cos ,a b a b a b a b ⋅=<>≤,所以选项A 正确;当a 与b 方向相反时,a b a b -≤-不成立,所以选项B 错误; 向量的平方等于向量的模的平方,所以选项C 正确;22(a b)(a b)a b +-=-所以选项D 正确,选B8.答案:C 解析过程:初始条件:;第1次运行:;第2次运行:; 第3次运行:;;第1003次运行:; 第1004次运行:.不满足条件,停止运行, 所以输出的,故选 B .9.答案:B 解析过程:()ln p f ab ab ==,()ln22a b a bq f ++==, 11(()())ln ln 22r f a f b ab ab =+==函数()ln f x x =在()0,+∞上单调递增,21121222342πππ⨯⨯+⨯⨯⨯+⨯=+D 2006x =2004x =2002x =2000x =⋅⋅⋅⋅⋅⋅0x =2x =-0?x ≥23110y =+=因为2a b ab +>,所以()()2a bf f ab +>, 所以q p r >=,故选C10.答案:D 解析过程:设该企业每天生产甲、乙两种产品分别为、吨,则利润由题意可列,其表示如图阴影部分区域:当直线过点时,取得最大值, 所以,故选D 11.答案:D解析过程:如图可求得,,阴影面积等于 若,则的概率是,故选B . 12.答案:A 解析过程:假设选项A 错误,则选项B 、C 、D 正确,()2f x ax b '=+, 因为1是()f x 的极值点,3是()f x 的极值,所以(1)0(1)3f f '=⎧⎨=⎩,203a b a b c +=⎧⎨++=⎩,解得23b ac a=-⎧⎨=+⎩,因为点(2,8)在曲线()y f x =上,所以428a b c ++=, 解得:5a =,所以10b =-,8c =, 所以2()5108f x x x =-+x y 34z x y =+32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩340x y z +-=(2,3)A z max 324318z =⨯+⨯=2222(1)||(1)1(1)1z x yi z x y x y =-+⇒=-+≤⇒-+≤(1,1)A (1,0)B 21111114242ππ⨯-⨯⨯=-||1z ≤y x ≥211142142πππ-=-⨯因为()215(1)10(1)8230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以假设成立,选A 二、填空题 13.答案:5 解析过程:设数列的首项为,则, 所以,故该数列的首项为 14.答案:解析过程:抛物线22(0)y px p =>的准线方程是2px =-, 双曲线221x y-=的一个焦点1(F , 因为抛物线22(0)y px p =>的准线 经过双曲线221x y -=的一个焦点, 所以2p-=p =15.答案:(1,1) 解析过程:因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则, 因为,所以, 所以曲线在点处的切线的斜率, 因为,所以,即,解得, 因为,所以,所以,即的坐标是1a 12015210102020a +=⨯=15a =5xy e =xy e '=xy e =()0,10101x k y e ='===P ()00,x y 00x >001y x =1y x =21y x'=-1y x=P 02201x x k y x ='==-121k k ⋅=-211x -=-201x =01x =±00x >01x =01y =P ()1,116.答案:1.2 解析过程:建立空间直角坐标系,如图所示:原始的最大流量是, 设抛物线的方程为(), 因为该抛物线过点,所以,解得,所以,即, 所以当前最大流量是,故原始的最大流量与当前最大流量的比值是三、解答题 17.答案:(I );(II ).解析过程:(I )因为,所以,由正弦定理,得 又,从而,由于,所以(II)解法一:由余弦定理,得而得,即因为,所以.故ABC 的面积为()11010222162⨯+-⨯⨯=22x py =0p >()5,22225p ⨯=254p =2252x y =2225y x =()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰161.2403=3π332//m n sin 3cos 0a B b A sinAsinB 3sinBcos A 0sin 0B ≠tan 3A 0A π<<3A π=2222cos a b c bc A 7b 2,a 3πA =2742c c 2230c c 0c3c ∆133bcsinA 22解法二:由正弦定理得72sin sin3Bπ=,从而21sin 7B =,又由a b >,知A B >,所以27cos 7B = 故sin sin()C A B =+sin()3B π=+sin coscos sin33B B ππ=+32114=所以ABC ∆的面积为133sin 22bc A = 18.答案:(I )证明见解析;(II )解析过程:(I )在图1中,因为AB=BC=1,AD=2,E 是AD 的中点,BAD=,所以BE AC 即在图2中,BE ,BE OC 从而BE 平面又CD BE ,所以CD 平面. (II)由已知,平面平面BCDE , 又由(1)知,BE ,BE OC所以为二面角的平面角,所以.如图,以O 为原点,建立空间直角坐标系,因为, 所以 63∠2π⊥⊥1OA ⊥⊥1A OC ⊥1A OC 1A BE ⊥⊥1OA ⊥1A OC ∠1--C A BE 1OC 2A π∠=11B=E=BC=ED=1A A BC ED 12222(,0,0),E(,0,0),A (0,0,),C(0,,0),2222B得 ,.设平面的法向量, 平面的法向量,平面与平面夹角为,则,得,取,,得,取, 从而, 即平面与平面夹角的余弦值为 19.答案:()I T 的分布列为:ET=32(分钟)()II解析过程:从而 (分钟) (II)设分别表示往、返所需时间,的取值相互独立,且与T 的分布列相同.22BC(,,0),22122A C(0,)22CD BE (2,0,0)1BC A 1111(,,)n x y z 1CD A 2222(,,)n x y z 1BC A 1CD A θ11100n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩111100x y yz -+=⎧⎨-=⎩1(1,1,1)n 2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩22200xy z =⎧⎨-=⎩2(0,1,1)n =12cos |cos ,|3n n θ=〈〉==1BC A 1CD A 30.910.4400.132⨯+⨯=12,T T 12,T T设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟, 所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:.解法二:故.20.答案:()I 2()II 22x y +=1123解析过程:(I )过点(c,0),(0,b)的直线方程为,则原点O 到直线的距离,由, 得,解得离心率. (II)解法一:由(I )知,椭圆E 的方程为. (1) 依题意,圆心M(-2,1)是线段AB 的中点,且.易知,AB 不与x 轴垂直, 设其直线方程为,代入(1)得设 则 由,得解得. 从而.121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=121212(A)P(70)P(35,40)P(40,35)P T T T T T T 12P(40,40)T T 0.40.10.10.40.10.10.09=⨯+⨯+⨯=(A)1P(A)0.91P 0bx cy bc bcd a ==12d c 2222ab ac 32c a22244x y b |AB |10(2)1yk x 2222(14)8(21)4(21)40k x k k x k b 1122(,y ),B(,y ),A x x 221212228(21)4(21)4,.1414k k k b x x x x k k 124x x 28(21)4,14k k k 12k21282x x b于是. 由,得,解得.故椭圆E 的方程为.解法二:由(I )知,椭圆E 的方程为. (2) 依题意,点A ,B 关于圆心M(-2,1)对称,且.设 则,,两式相减并结合得.易知,AB 不与x 轴垂直,则, 所以AB 的斜率 因此AB 直线方程为, 代入(2)得 所以,.于是. 由,得,解得.故椭圆E 的方程为.21.答案:(I )证明见解析;(II )当时, ,12|AB ||x x =-==|AB |1022)1023b 221123x y 22244x y b |AB |101122(,y ),B(,y ),A x x 2221144x y b 2222244x y b 12124,y 2,x x y 1212-4()80x x y y 12x x ≠12121k .2AB y y x x 1(2)12yx 224820.xx b 124x x 21282x x b 12|AB ||x x =-==|AB |1022)1023b 221123x y 1x ()()n n f x g x当时,,证明见解析.解析过程: (I )则所以在内至少存在一个零点. 又,故在内单调递增,所以在内有且仅有一个零点. 因为是的零点,所以,即,故.(II)解法一:由题设,设当时,当时,若,1x ≠()()n n f x g x 2()()212,n n n F x f x x x x (1)10,n F n 1211111112()1220,12222212n nn n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-()n F x 1,12⎛⎫⎪⎝⎭n x 1()120n n F x x nx -'=++>1,12⎛⎫⎪⎝⎭()n F x 1,12⎛⎫⎪⎝⎭n x n x ()n F x ()=0n n F x 11201n n nx x 111=+22n n n x x 11().2nn n x g x 211()()()1,0.2nnn n n x h x f x g x x x x x 1x ()()n n f x g x 1x ≠()111()12.2n n n n x h x x nx--+'=++-01x ()11111()22n n n n n n h x x x nx x ----+'>++-11110.22nnn n n n x x若,所以在上递增,在上递减, 所以,即.综上所述,当时, ;当时解法二 由题设,当时,当时, 用数学归纳法可以证明.当时, 所以成立.假设时,不等式成立,即.那么,当时,.又令,则所以当,,在上递减;当,,在上递增. 1x ()11111()22n n n n n n h x xx nx x ----+'<++-11110.22nnn n n n x x ()h x (0,1)(1,)+∞()(1)0h x h ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x 211()1,(),0.2nn n n n x f x x x x g x x 1x ()()n n f x g x 1x ≠()()n n f x g x 2n2221()()(1)0,2f xg x x 22()()f x g x (2)n k k =≥()()k k f x g x +1nk 111k+1k 11()()()2kk kk k k x f x f x x g x x x 12112kk x k x k 11k+121111()22kk kk x k x k kx k x g x 1()11(x 0)kk k h x kx k x ()()11()(k 1)11(x 1)kk k k h x k x k k x k k x --'=+-+=+-01x ()0k h x '<()k h x (0,1)1x ()0kh x '>()k h x (1,)+∞所以,从而故.即,不等式也成立.所以,对于一切的整数,都有.解法三:由已知,记等差数列为,等比数列为,则,,所以, 令当时, ,所以.当时, 而,所以,.若, ,,当,,, 从而在上递减,在上递增.所以,所以当又,,故综上所述,当时, ;当时22.答案:()I 见解析()II 直径为3 解析过程:(Ⅰ)因为是的直径,则,又,所以, 又切于点,得,所以;(Ⅱ)由(Ⅰ)知平分,则, ()(1)0k k h x h 1k+1211()2kk x k x k g x 11()()k k f x g x +1n k 2n ≥()()n n f x g x k a k b k 1,2,, 1.n 111a b 11n n na b x ()11+1(2n)n k x a k k n-=-⋅≤≤1(2),k k b x k n -=≤≤()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤1x =k k a b ()()n n f x g x 1x ≠()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=--2k n ≤≤10k 11n k -+≥01x 11nk x ()0k m x '<1x 11nk x()0km x '>()k m x (0,1)()k m x (1,)+∞()(1)0k k m x m 01(2),k k x x a b k n >≠>≤≤且时,11a b 11n n a b ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x DE O 90BED EDB ∠+∠=︒BC DE ⊥90CBD EDB ∠+∠=︒AB O B DBA BED ∠=∠CBD DBA ∠=∠BD CBA ∠3BA ADBC CD==又,从而,由,解得,所以,由切割线定理得,解得, 故,即的直径为3.23.答案:()I 22(-3x y +=()II (3,0)解析过程:(1)由,得,从而有,所以(2)设,又, 则24.已知关于x 的不等式x a b +<的解集为{}24x x <<.()I 求实数a ,b 的值;()II答案:()I a=-3,b=1()II 4 解析过程:(Ⅰ)由,得,由题意得,解得;,时等号成立, 故BC=AB =222AB BC AC =+4AC =3AD =2AB AD AE =⋅6AE =3DE AE AD =-=O ρθ=2sin ρθ=22x y +=(223x y +-=132P t ⎛⎫+⎪⎝⎭C PC ==x a b +<b a x b a --<<-24b a b a --=⎧⎨-=⎩3,1a b =-==+≤4===1t =min4=。

2015年高考真题——理科数学(陕西卷)解析版

2015年高考真题——理科数学(陕西卷)解析版

2015年普通高等学校招生全国统一考试(陕西卷)理一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =U ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A 【解析】试题分析:{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =U ,故选A .考点:1、一元二次方程;2、对数不等式;3、集合的并集运算.2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( ) A .167 B .137 C .123 D .93【答案】B考点:扇形图.3.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C 【解析】试题分析:由图象知:min 2y =,因为min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C . 考点:三角函数的图象与性质.4.二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C考点:二项式定理.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D 【解析】试题分析:由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 考点:1、三视图;2、空间几何体的表面积.6.“sin cos αα=”是“cos20α=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:因为22cos 2cos sin 0ααα=-=,所以sin cos αα=或sin cos αα=-,因为“sin cos αα=”⇒“cos20α=”,但“sin cos αα=”⇐/“cos20α=”,所以“sin cos αα=”是“cos20α=”的充分不必要条件,故选A . 考点:1、二倍角的余弦公式;2、充分条件与必要条件.7.对任意向量,a b r r,下列关系式中不恒成立的是( )A .||||||a b a b ⋅≤r r r rB .||||||||a b a b -≤-r r r rC .22()||a b a b +=+r r r rD .22()()a b a b a b +-=-r r r r r r【答案】B考点:1、向量的模;2、向量的数量积.8.根据右边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D .2【答案】B 【解析】试题分析:初始条件:2006x =;第1次运行:2004x =;第2次运行:2002x =;第3次运行:2000x =;⋅⋅⋅⋅⋅⋅;第1003次运行:0x =;第1004次运行:2x =-.不满足条件0?x ≥,停止运行,所以输出的23110y =+=,故选B . 考点:程序框图.9.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C考点:1、基本不等式;2、基本初等函数的单调性.10.某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最 大利润为( )A .12万元B .16万元C .17万元D .18万元甲乙原料限额A(吨)3212B(吨)128【答案】D 【解析】试题分析:设该企业每天生产甲、乙两种产品分别为x 、y 吨,则利润34z x y =+由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,故选D .考点:线性规划.11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( )A .3142π+B .1142π-C .112π- D .112π+【答案】B 【解析】试题分析:2222(1)||(1)1(1)1z x yi z x y x y =-+⇒=-+≤⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=- 若||1z ≤,则y x ≥的概率是211142142πππ-=-⨯,故选B . 考点:1、复数的模;2、几何概型.12.对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D . 点(2,8)在曲线()y f x =上 【答案】A考点:1、函数的零点; 2、利用导数研究函数的极值.二、填空题(本大题共4小题,每小题5分,共20分.)13.中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 【答案】5 【解析】试题分析:设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5. 考点:等差中项.14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p= .【答案】22考点:1、抛物线的简单几何性质;2、双曲线的简单几何性质. 15.设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标为 .【答案】()1,1 【解析】试题分析:因为xy e =,所以xy e '=,所以曲线xy e =在点()0,1处的切线的斜率0101x k y e ='===,设P 的坐标为()00,xy (00x >),则001y x =,因为1y x =,所以21y x '=-,所以曲线1y x=在点P 处的切线的斜率02201x x k y x ='==-,因为121k k ⋅=-,所以211x -=-,即201x =,解得01x =±,因为00x >,所以01x =,所以01y =,即P 的坐标是()1,1,所以答案应填:()1,1.考点:1、导数的几何意义;2、两条直线的位置关系.16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【答案】1.2 【解析】试题分析:建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰,故原始的最大流量与当前最大流量的比值是161.2403=,所以答案应填:1.2. 考点:1、定积分;2、抛物线的方程;3、定积分的几何意义.三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤.)17.(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量(),3m a b =r与()cos ,sin n =A B r平行.(I )求A ; (II )若7a =,2b =求C ∆AB 的面积.【答案】(I )3π;(II )332.试题解析:(I )因为//m n r r,所以sin 3cos 0a B b A -=,由正弦定理,得sinAsinB 3A 0-=又sin 0B ≠,从而tan 3A =, 由于0A π<<,所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+- 而72,a =3πA =得2742c c =+-,即2230c c --= 因为0c >,所以3c =. 故∆ABC 的面积为133bcsinA 2=考点:1、平行向量的坐标运算;2、正弦定理;3、余弦定理;4、三角形的面积公式. 18.(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.(I )证明:CD ⊥平面1C A O ;(II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值. 【答案】(I )证明见解析;(II )6.试题解析:(I )在图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=2π,所以BE ⊥AC即在图2中,BE ⊥1OA,BE ⊥OC从而BE⊥平面1A OC又CD P BE,所以CD⊥平面1A OC.(II)由已知,平面1A BE⊥平面BCDE,又由(1)知,BE ⊥1OA,BE ⊥OC所以1A OC∠为二面角1--CA BE的平面角,所以1OC2Aπ∠=.如图,以O为原点,建立空间直角坐标系,因为11B=E=BC=ED=1A A, BC EDP所以12222(E(A(0,0,),C(0,,0),2222B-得22BC(,,0),22-u u u r122A C(0,,22-u u u u r,CD BE(2,0,0)==-u u u r u u u r.设平面1BCA的法向量1111(,,)n x y z=u r,平面1CDA的法向量2222(,,)n x y z=u u r,平面1BCA与平面1CDA夹角为θ,则111n BCn A C⎧⋅=⎪⎨⋅=⎪⎩u r u u u ru r u u u r,得1111x yy z-+=⎧⎨-=⎩,取1(1,1,1)n=u r,221n CDn A C⎧⋅=⎪⎨⋅=⎪⎩u u r u u u ru u r u u u r,得222xy z=⎧⎨-=⎩,取2(0,1,1)n=u u r,从而126cos|cos,|332n nθ=〈〉==⨯u r u u r,即平面1BCA与平面1CDA6考点:1、线面垂直;2、二面角;3、空间直角坐标系;4、空间向量在立体几何中的应用. 19.(本小题满分12分)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,(II )刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 【答案】(I )分布列见解析,32;(II )0.91. 【解析】试题分析:(I )先算出T 的频率分布,进而可得T 的分布列,再利用数学期望公式可得数学期望ET ;(II )先设事件A 表示“刘教授从离开老校区到返回老校区共用时间不超过120分钟”,再算出A 的概率.从而 0.4400.132⨯+⨯=(分钟)(II)设12,T T 分别表示往、返所需时间,12,T T 的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=.解法二:121212(A)P(70)P(35,40)P(40,35)P T T T T T T =+>===+==12P(40,40)T T +== 0.40.10.10.40.10.10.09=⨯+⨯+⨯=故(A)1P(A)0.91P =-=.考点:1、离散型随机变量的分布列与数学期望;2、独立事件的概率.20.(本小题满分12分)已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (I )求椭圆E 的离心率;(II )如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方 程.【答案】(I 3II )221123x y +=. 【解析】试题分析:(I )先写过点(),0c ,()0,b 的直线方程,再计算原点O 到该直线的距离,进而可得椭圆E 的离心率;(II )先由(I )知椭圆E 的方程,设AB 的方程,联立()2222144y k x x y b⎧=++⎪⎨+=⎪⎩,消去y ,可得12x x +和12x x 的值,进而可得k ,再利用10AB =可得2b 的值,进而可得椭圆E 的方程.试题解析:(I )过点(c,0),(0,b)的直线方程为0bx cy bc +-=, 则原点O 到直线的距离22bcd ab c ==+, 由12d c =,得2222a b a c ==-,解得离心率3c a =. (II)解法一:由(I )知,椭圆E 的方程为22244x y b +=. (1) 依题意,圆心M(-2,1)是线段AB 的中点,且|AB |10=易知,AB 不与x 轴垂直,设其直线方程为(2)1y k x =++,代入(1)得2222(14)8(21)4(21)40k x k k x k b +++++-=设1122(,y ),B(,y ),A x x 则221212228(21)4(21)4,.1414k k k b x x x x k k++-+=-=-++由124x x +=-,得28(21)4,14k k k +-=-+解得12k =. 从而21282x x b =-.于是12|AB ||x x =-==由|AB |23b =.故椭圆E 的方程为221123x y +=. 解法二:由(I )知,椭圆E 的方程为22244x y b +=. (2) 依题意,点A ,B关于圆心M(-2,1)对称,且|AB |=设1122(,y ),B(,y ),A x x 则2221144x y b +=,2222244x y b +=,两式相减并结合12124,y 2,x x y +=-+=得()1212-4()80x x y y -+-=. 易知,AB 不与x 轴垂直,则12x x ≠,所以AB 的斜率12121k .2AB y y x x -==-因此AB 直线方程为1(2)12y x =++,代入(2)得224820.x x b ++-= 所以124x x +=-,21282x x b =-.于是12|AB ||x x =-==由|AB |23b =.故椭圆E 的方程为221123x y +=. 考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.21.(本小题满分12分)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,nx 的各项和,其中0x >,n ∈N , 2n ≥.(I )证明:函数()()F 2n n x f x =-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为n x ),且11122n n n x x +=+; (II )设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x与()n g x 的大小,并加以证明.【答案】(I )证明见解析;(II )当1x =时, ()()n n f x g x =,当1x ≠时,()()n n f x g x <,证明见解析. 【解析】试题分析:(I )先利用零点定理可证()F n x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点,再利用函数的单调性可证()F n x 在1,12⎛⎫⎪⎝⎭内有且仅有一个零点,进而利用n x 是()F n x 的零点可证11122n n n x x +=+;(II )先设()()()n n h x f x g x =-,再对x 的取值范围进行讨论来判断()h x 与0的大小,进而可得()n f x 和()n g x 的大小.试题解析:(I )2()()212,nn n F x f x x x x =-=+++-L 则(1)10,n F n =->1211111112()1220,12222212n nn n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-L 所以()n F x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点n x . 又1()120n n F x x nx-'=++>L ,故在1,12⎛⎫⎪⎝⎭内单调递增,所以()n F x 在1,12⎛⎫⎪⎝⎭内有且仅有一个零点n x . 因为n x 是()n F x 的零点,所以()=0n n F x ,即11201n n nx x +--=-,故111=+22n n n x x +.(II)解法一:由题设,()()11().2nn n x g x ++=设()()211()()()1,0.2nn n n n x h x f x g x x x x x ++=-=+++->L当1x =时, ()()n n f x g x = 当1x ≠时, ()111()12.2n n n n x h x x nx --+'=++-L若01x <<,()11111()22n n n n n n h x x x nx x ----+'>++-L ()()11110.22n n n n n n x x --++=-= 若1x >,()11111()22n n n n n n h x xx nx x ----+'<++-L ()()11110.22n n n n n n x x --++=-= 所以()h x 在(0,1)上递增,在(1,)+∞上递减, 所以()(1)0h x h <=,即()()n n f x g x <.综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x <解法二 由题设,()()211()1,(),0.2nnn nn x f x x x x g x x ++=+++=>L 当1x =时, ()()n n f x g x =当1x ≠时, 用数学归纳法可以证明()()n n f x g x <. 当2n =时, 2221()()(1)0,2f xg x x -=--<所以22()()f x g x <成立. 假设(2)n k k =≥时,不等式成立,即()()k k f x g x <. 那么,当+1n k =时,()()111k+1k 11()()()2kk k k k k x f x f x x g x x x+++++=+<+=+()12112k k x k x k +++++=.又()()11k+121111()22k k k k x k x k kx k x g x ++++++-++-=令()1()11(x 0)k k k h x kx k x +=-++>,则()()11()(k 1)11(x 1)k k k k h x k x k k x k k x --'=+-+=+-所以当01x <<,()0kh x '<,()k h x 在(0,1)上递减;当1x >,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h >=,从而()1k+1211()2k k x k x k g x +++++>故11()()k k f x g x ++<.即+1n k =,不等式也成立. 所以,对于一切2n ≥的整数,都有()()n n f x g x <.解法三:由已知,记等差数列为{}k a ,等比数列为{}k b ,k 1,2,, 1.n =+L 则111a b ==,11n n n a b x ++==,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤ 令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x =时, =k k a b ,所以()()n n f x g x =.当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=-- 而2k n ≤≤,所以10k ->,11n k -+≥.若01x <<, 11n k x -+<,()0k m x '<,当1x >,11n k x-+>,()0km x '>, 从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m >=, 所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b =,11n n a b ++=,故()()n n f x g x < 综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x < 考点:1、零点定理;2、利用导数研究函数的单调性.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 切O e 于点B ,直线D A 交O e 于D ,E 两点,C D B ⊥E ,垂足为C . (I )证明:C D D ∠B =∠BA ;(II )若D 3DC A =,C B =O e 的直径.【答案】(I )证明见解析;(II )3. 【解析】试题分析:(I )先证C D D ∠B =∠BE ,再证D D ∠BA =∠BE ,进而可证C D D ∠B =∠BA ;(II )先由(I )知D B 平分C ∠BA ,进而可得D A 的值,再利用切割线定理可得AE 的值,进而可得O e 的直径.试题解析:(I )因为DE 为圆O 的直径,则BED EDB ∠+∠=90o, 又BC ⊥DE ,所以∠CBD+∠EDB=90°,从而∠CBD=∠BED. 又AB 切圆O 于点B ,得∠DAB=∠BED ,所以∠CBD=∠DBA. (II )由(I )知BD 平分∠CBA ,则=3BA AD BC CD=,又2BC ,从而32AB =, 所以224AC AB BC -=,所以D=3A .由切割线定理得2=AD AB AE ×,即2=ADAB AE =6,故DE=AE-AD=3,即圆O 的直径为3.考点:1、直径所对的圆周角;2、弦切角定理;3、切割线定理. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x y O 中,直线l 的参数方程为13232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,C e 的极坐标方程为23ρθ=.(I )写出C e 的直角坐标方程;(II )P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 【答案】(I )(2233x y +-=;(II )()3,0.【解析】试题分析:(I )先将23ρθ=两边同乘以ρ可得223sin ρρθ=,再利用222x y ρ=+,sin x ρθ=可得C e 的直角坐标方程;(II )先设P 的坐标,则2C 12t P =+,再利用二次函数的性质可得C P 的最小值,进而可得P 的直角坐标.试题解析:(I )由2,sin ρθρθ==得,从而有(2222+,+3x y x y ==所以.(II)设1(3t),2P +又,则|PC |== 故当t=0时,|PC|取最小值,此时P 点的直角坐标为(3,0).考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质. 24.(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式x a b +<的解集为{}24x x <<. (I )求实数a ,b 的值;(II + 【答案】(I )3a =-,1b =;(II )4. 【解析】试题分析:(I )先由x a b +<可得b a x b a --<<-,再利用关于x 的不等式x a b +<的解集为{}24x x <<可得a ,b 的值;(II ),试题解析:(I )由||x a b +<,得b a x b a --<<-则2,4,b a b a --=⎧⎨-=⎩解得3a =-,1b =(II =≤4==1=,即1t =时等号成立,故max4=.考点:1、绝对值不等式;2、柯西不等式.。

2015年陕西高考数学理

2015年陕西高考数学理

2015年陕西高考数学(理)试题及解析一、选择题1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 答案:A解析:{0,1},{|01}M N x x ==<≤所以[0,1]M N = ,因此此题选A2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为A .167B .137C .123D .93答案:B解析:根据扇形统计图表知识可知初中部女教师共有11070%77⨯=人,高中部共有女教师150(160%)60⨯-=人,所以该校女教师共有137人。

3.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为 A .5 B .6 C .8 D .10答案:C解析:由图可知3sin()6y x k πϕ=++的最小值为2,当sin()16πϕ+=-时取最小值,即32k -=所以5k =。

所以当sin()16πϕ+=时取的最大值8.4.二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n = A .4 B .5 C .6 D .7 答案:C解析:(1)nx +的二项展开式通项为:1r n rr n T C x -+=,由已知2x 的系数为15可知215n nC -=即215n C =解得6n =5.一个几何体的三视图如图所示,则该几何体的表面积为 A .3π B .4π C .24π+ D .34π+答案:D解析:由三视图知识可知该几何体为底面半径为1,高为2的半个圆柱。

所以该几何体的表面积22234S πππ=+⨯+⨯=+6.“sin cos αα=”是“cos 20α=”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要 答案:A解析:由cos 20α=可得22cos sin 0αα-=,(cos sin )(cos sin )0αααα+-=即:c o s s i n αα=±.所以cos sin αα=是cos 20α=的充分不必要条件。

陕西省咸阳市兴平西郊中学2019-2020学年高三数学理上学期期末试卷含解析

陕西省咸阳市兴平西郊中学2019-2020学年高三数学理上学期期末试卷含解析

陕西省咸阳市兴平西郊中学2019-2020学年高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. “实数a=1”是“复数( a∈R ,i为虚数单位)的模为”的( ).A.充分非必要条件B.必要非充分条件C.充要条件D.既不是充分条件又不是必要条件参考答案:A2. 的三个内角对应的边分别,且成等差数列,则角等于()A . B. C. D.参考答案:B3. 集合,,若,则的值为A.0 B.1 C.2D.4参考答案:D4. 已知为上的减函数,则满足的实数的取值范围是()....参考答案:C略5. 右边是一个算法的程序框图,当输入的值为3时,输出y的结果也恰好是3,则?处的关系式是()A. B. C. D.参考答案:C6. 设,,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:A【分析】根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.7. 已知向量,,则“”是“与夹角为锐角”的()。

A.必要而不充分条件 B.充分而不必要条件C.充分必要条件 D.既不充分也不必要条件参考答案:A8. 已知集合,,则“”是“”的()..充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件参考答案:C略9. 等差数列{a n}中,a1,a4025是函数的极值点,则log2a2013等于()A.2 B.3 C.4 D.5参考答案:A【考点】等差数列的通项公式;利用导数研究函数的极值.【分析】求出原函数的导函数,由导函数为0求得a1+a4025=8,结合等差数列的性质求得a2013,代入log2a2013得答案.【解答】解:由,得f′(x)=x2﹣8x+6.由f′(x)=x2﹣8x+6=0,得x1+x2=8,又a1,a4025是函数的极值点,∴a1+a4025=8,则,∴log2a2013=log24=2.故选:A.10. cos2xdx=()A.B.1 C.2 D.参考答案:A由于cos2x的一个原函数为sin2x故根据牛顿﹣莱布尼茨公式即可求解.解:cos2xdx=sin2x=(sin﹣sin0)=.故选A .11. 集合,集合,,设集合是所有的并集,则的面积为________.参考答案:,所以抛物线的顶点坐标为,即顶点在直线上,与平行的直线和抛物线相切,不妨设切线为,代入得,即,判别式为,解得,所以所有抛物线的公切线为,所以集合的面积为弓形区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档