醛和酮的结构、分类和命名.
醛、酮
![醛、酮](https://img.taocdn.com/s3/m/10381760caaedd3383c4d3c4.png)
(2)负氢还原法 ①LiAlH4及NaBH4
氢化铝锂(LiAlH4)是强还原剂,它 对羰基、硝基、氰基、羧基、酯、酰胺、 卤烃等都进行还原。氢化铝锂非常活泼, 遇到含有活泼氢的化合物迅速分解,所 以使用LiAlH4为还原剂时,反应是在醚 溶液中进行的。由于LiAlH4分子中的四 个氢都是负性的,所以它可还原四个分 子醛、酮。LiAlH4对C=C,C≡C键不起 作用,可用于 α,β-不饱和醛、酮的选择 性还原。
R + + C O + H CN (R')H R C (R')H CN OH
醛、甲基脂肪酮和C8以下环酮都能反应。
反应机理:
HCN
R
C R' O + CN
-
OHH+
H
+
+ CN
慢
-
R C R'
R C R'
OCN
OH CN
HCN 快
CN+
加成速率:
H H C O> H3C H C O> H3C H3C C O> H3C R R C O> R' C O
O CH3CH2CH2CCH3 O CH3CH2CCH2CH3 O (CH3)2CHCCH3
四、醛、酮的结构
醛酮的官能团是羰基。
O
C O
π键 σ键
SP2杂化
O
电负性 C < O
O
π电子云偏向氧原子
极性双键
五、醛、酮的物理性质
1.甲醛为气体,其40%的水溶液称为福尔马 林, C12以下的醛、酮是液体,其余为固体; 低碳醛有强烈刺激气味,C6~C14的醛、酮有 花果香味。 C=O 与H2O形成氢键,增加在水中的 2. 溶解度。 H3C H HC
醛和酮
![醛和酮](https://img.taocdn.com/s3/m/129bdb19fad6195f312ba676.png)
应用:保护羰基,缩醛(酮)在酸性水溶液中水解成原 来的醛(酮)和醇。
CH3-CH=CHCHO
HOCH2 HOCH2
CH3-CH2-CH2CHO
O CH2 CH3-CH=CHCH O CH2 CH3-CH2-CH2CH O CH2 O CH2
反应实例
CH3 C O + HCN CH3 CH3OH H+ CH3 CH2 C CO2CH3 甲基丙烯酸甲酯 OH CH3 CH3 H SO 2 4 CH2 C CN C CN OH 聚合 CH3 CH2 C CO2CH3 n 有机玻璃
CH3
(2) 与饱和NaHSO3加成
CH3 H C O + NaHSO3 (饱和)
O 具有 C CH3 OH
Haloform
CH CH3 结构的
化合物都能发生反应。碘仿反应可用于鉴别。
碘仿CHI3
黄色
卤仿反应的应用 a. 鉴别 鉴别具有
O C CH3
、
OH CH CH3
结构的化合物,它们可与I2生成
CHI3,为具有特殊气味的黄色沉淀.
OH CH CH3
可被碘的NaOH溶液中的NaOI(次碘酸钠)氧化,
(1) RMgX R〞COR′ (2) H3 O
+
O (CH3)2CH C CH(CH3)2 + CH3CH2MgBr OH (CH3)2CH C CH(CH3)2 CH2CH3 80%
(1) Et2O (2) H3O+
空间位阻增大时,加成的产率降低 应用:制备伯、仲、叔醇
(5) 与氨的衍生物的反应:
醛和酮的结构、分类和命名.
![醛和酮的结构、分类和命名.](https://img.taocdn.com/s3/m/39acb4e9ba0d4a7302763a67.png)
结构:羰基中的碳原子是sp2杂化的,它的三个sp2杂
化轨道形成的三个σ 键在同一平面上,键角120°,
碳原子还余下一个p轨道和氧的一个p轨道与σ 键所
在的平面垂直,相互交盖形成π 键。因此C=O双键
是由一个σ 键和一个π 键组成的。
O C
(a) sp2杂化的碳
(b)羰基的结构
二苯酮 甲基乙基酮
♪根据烃基的饱和或不饱和:分为饱和醛、酮和不饱和醛、酮
♪根据分子中羰基的数目:分为一元、二元或多元醛、酮 ♪脂环酮:脂环的一个或多个CH2被C=O所置换,如环己酮
命名
1、习惯命名法:醛类按分子中碳原子数称某醛(与 醇相似)。包含支链的醛,支链的位次用希腊字母α,
β,γ……表明。紧接着醛基的碳原子为α 碳原子,
其次的为β 碳原子……,依此类推。例如:
乙醛
丙烯醛
α -氯丙醛
酮类按羰基所连的两个烃基来命名(与醚相似)。 例如:
甲基乙基酮
甲基乙烯基酮
甲基-α -氯乙基酮
2、IUPAC命名法:
选含羰基的最长碳链为主链,从靠近羰基一端给主链
编号。醛基因处在链端,因此编号总为1。酮羰基的
位置要标出(个别例外)。
2-甲基丙醛
丁酮
2-甲基-3-戊酮
不饱和醛酮的命名是从靠近羰基一端给主链编号:
3-甲基-4己烯-2-酮
羰基在环内的脂环酮,称为环某酮;若羰基在环外,则
将环作为取代基。
4-甲基环己酮
2-甲基环己基甲醛
命名含有芳基的醛、酮,总是把芳基看成 取代基:
O C H
O C
CH2CH3
苯甲醛
Hale Waihona Puke 1-苯基-1-丙酮酮还有一种衍生物命名法,把酮看成是“甲酮”的衍 生 物,在“甲酮”前边加上两个取代基的名称,“甲” 字可 省略:
醛 酮
![醛 酮](https://img.taocdn.com/s3/m/6b20f2c3bb4cf7ec4afed01e.png)
结构,分类和命名醛和酮都是含有羰基官能团的化合物.当羰基与一个羟基和一个氢原子相结合时就是醛,醛基的简写为-CHO.若羰基与两个烃基相结合,就是酮,酮分子中的羰基叫做酮基.醛,酮的通式为:醛: 酮:结构:醛,酮羰基中的碳原子为SP2杂化,而氧原子则是末经杂化的.碳原子的三个SP2杂化轨道相互对称地分布在一个平面上,其中之一与氧原子的2P轨道在键轴方向重叠构成碳氧σ键.碳原子末参加杂化的2P轨道垂直于碳原子三个SP2杂化轨道所在的平面,与氧原子的另一个2P轨道平等重叠,形成π键,即碳氧双键也是由一个σ键和一个π键组成.由于氧原子的电负性比碳原子大,羰基中的π电子云就偏向于氧原子,羰基碳原子带上部分正电荷,而氧原子带上部分负电荷.分类:根据烃基的不同可以分为脂肪醛酮,芳香醛酮.根据羰基的个数可以分为一元醛酮,多元醛酮.命名:普通命名法:醛的命名与醇的习惯命名法相似,称某醛.如:CH3CH2OH CH3CHO乙醇乙醛CH3CH(CH3)CH2OH CH3CH(CH3)CHO异丁醇异丁醛脂肪酮则按酮基所连接的两个烃基而称为某(基)某(基)酮.例如:CH3OCH3 CH3COCH3甲醚二甲酮CH3OCH2CH3 CH3COCH2CH3甲乙醚甲乙酮系统命名法:选择含有羰基的最长碳链作为主链,称为某醛或某酮.由于醛基是一价原子团,必在链端,命名时不必用数字标明其位置.酮基的位置则需用数字标明,写在\"某酮\"之前,并用数字标明侧链所在的位置及个数,写在母体名称之前.例如:CH3CH(CH3)CHO CH3CH2COCH(CH3)CH2CH32-甲基丙醛4-甲基-3-已酮CH3CH═CHCHO CH3CH(CH3)CH═CHCOCH32-丁烯醛5-甲基-3-已烯-2-酮环已基甲醛3-甲基环已酮3-苯丙烯醛1-苯-2-丁酮醛酮命名时习惯上还采用希腊字母α,β,γ等,α碳指与醛基或酮基直接相连的碳原子.例如:CH3CH2CH2CH(CH3)CHO α-甲基戊醛醛和酮的制法醇氧化法伯醇和仲醇氧化可分别得到醛或酮.例如:CH3CH2CH2OH + K2Cr2O7 + H2SO4 CH3CH2CHO实验室中常用的氧化剂是重铬酸钾与稀硫酸或铬酐与吡啶等.因醛比醇更容易氧化,为避免生成的醛进一步氧化成羧酸,应将生成的羧酸尽快与氧化剂分离.酮不易继续氧化,无需立即分离.例如:+ K2Cr2O7 + H2SO4工业上把醇的蒸气通过加热的铜或银等催化剂,发生脱氢生成相应的醛或酮.例如:CH3CH2OH CH3CHO + H2另一种从醇氧化制备酮的方法就是欧芬脑尔氧化法,它是从不饱和醇制备不饱和酮的良好方法.它是把仲醇,叔丁醇铝(或异丙醇铝)与丙酮一起加热回流,仲醇脱去氢,被氧化成相应的酮,而丙酮被还原为异丙醇,并且只氧化羟基成羰基,碳碳双键不受影响.反应通式如下:醛和酮也可由烯烃双键氧化断裂制备,尤其是臭氧化还原后可制得两分子的羰基化合物.例如:CH3CH2CH═C(CH3)CH2CH3 CH3CH2CHO + CH3COCH2CH3炔烃水合法炔烃进行水合时产生不稳定的中间体烯醇,后者重排可得到相应的酮.反应在汞盐和硫酸催化下进行.例如:CH3(CH2)3C≡CH CH3(CH2)3COCH34,直接羰基化法傅-克酰基化反应:在芳烃一章已经讨论过这一反应.例如:+ CH3CH2CH2COCl盖特曼-柯赫合成法:以一氧化碳及干燥氯化氢为原料,在无水三氯化铝及氯化亚铜存在下引入醛基的反应称为盖特曼-柯赫反应.例如:+ CO + HCl物理性质状态:甲醛在室温下为气体,市售的福尔马林是40℅的甲醛水溶液.除甲醛为气体外,12个碳原子以下的脂肪醛,酮均为液体.高级脂肪醛,酮和芳香酮多为固体.水溶性:低级的醛,酮易溶于水.这是由于醛,酮可与水分子形成分子间氢键之故.当分子中烃基的部分增大时,水溶性迅速下降,含6个碳原子以上的醛,酮几乎不溶于水.四,化学性质亲核加成反应醛,酮羰基与碳碳双键一样也是由一个σ键和一个π键组成.由于羰基中氧原子的电负性比碳原子大,π电子云偏向于电负性较大的氧原子,使得氧原子带上部分负电荷,碳原子带上部分正电荷.由于氧原子容纳负电荷的能力较碳原子容纳正电荷的能力大,故发生加成反应时,应是带有一对末共用电子对的亲核试剂(可以是负离子或带有末共有电子对的中性分子)提供一对电子进攻带部分正电荷的羰基碳原子,生成氧负离子.即羰基上的加成反应决定反应速度的一步是由亲核试剂进攻引起的,故羰基的加成反应称为亲核加成反应.与氢氰酸加成醛,脂肪族甲基酮及8个碳以下的环酮能与氢氰酸发生加成反应生成α-氰醇.反应通式为:+ HCN丙酮与氢氰酸作用,无碱存在时,3-4内只有一半反应物作用掉.但如加一滴氢氧化钾,则反应2分钟内即完成.若加入酸,反应速度减慢,加入大量的酸,放置几天也不发生作用.根据以上事实可以推论,在醛,酮与氢氰酸加成反应中,真正起作用的是氰基负离子这一亲核试剂.碱的加入增加了反应体系的氰基负离子浓度,酸的加入则降低了氰基负离子浓度,这是由于弱酸氢氰酸在溶液中存在下面的平衡.HCN CN— + H+醛,酮与亲核试剂的加成反应都是试剂中带负电部分首先向羰基带正电荷碳原子进攻,生成氧负离子,然后试剂中带正电荷部分加到氧负离子上去.在这两步反应中,第一步需共价键异裂,是反应慢的一步,是决定反应速度的一步.可用通式表示如下:+ : Nu—不同结构的醛,酮进行亲核加成反应的难易程度不同,其由易到难的顺序为:HCHO > RCHO > RCOCH3 > RCOR影响醛酮亲核加成反应的速度的因素有两方面,其一是电性因素,烷基是供电子基,与羰基碳原子连接的烷基会使羰基碳原子的正电性下降,对亲核加成不利.其二是立体因素,当烷基与羰基相连,不但降低羰基碳的正电性,而且烷基的空间阻碍作用,也不便于亲核试剂接近羰基,不利于亲核加成反应的进行.2,与亚硫酸氢钠加成醛,甲基酮以及环酮可与亚硫酸氢钠的饱和溶液发生加成反应,生成α-羟基磺酸钠,它不溶于饱和的亚硫酸氢钠溶液中而析出结晶.+ NaHSO3 ↓本加成反应可用来鉴别醛,脂肪族甲基酮和8个碳原子以下的环酮.由于反应为可逆反应,加成物α-羟基磺酸钠遇酸或碱,又可恢复成原来的醛和酮,故可利用这一性质分离和提纯醛酮.3,与醇加成在干燥氯化氢或浓硫酸作用下,一分子醛和一分子醇发生加成反应,生成半缩醛.例如:CH3CH2CHO + CH3OH CH3CH2CH(OH)OCH3半缩醛一般不稳定,它可继续与一分子醇反应,两者之间脱去一分子水,而生成稳定的缩醛.在结构上,缩醛跟醚的结构相似,对碱和氧化剂是稳定的,对稀酸敏感可水解成原来的醛.RCH(OR)2 + H2O RCHO在有机合成中可利用这一性质保护活泼的醛基.例如由对羟基环已基甲醛合成对醛基环已酮时,若不将醛基保护起来,当用高锰酸钾氧化时,醛基也会被氧化成羧酸.+ CH3OH与格氏试剂加成醛,酮与格氏试剂加成,加成产物不必分离,而直接水解可制得相应的醇.格氏试剂与甲醛作用生成伯醇,生成的醇比用作原料的格氏试剂多一个碳原子.HCHO + RMgX RCH2OMgX + H2O RCH2OH格氏试剂与其它醛作用生成仲醇.例如:RCHO + RMgX R2CHOMgX + H2O R2CHOH格氏试剂与酮作用生成叔醇.例如:RCOR + RMgX R3COMgX + H2O R3COH与氨的衍生物加成氨的衍生物可以是伯胺,羟胺,肼,苯肼,2,4-二硝基苯肼以及氨基脲.醛,酮能与氨的衍生物发生加成作用,反应并不停留在加成一步,加成产物相继发生脱水形成含碳氮双键的化合物.反应式如下:+ H2N—R+ H2NOH+ H2NNH2++ H2NNHCONH2上述的氨衍生物可用于检查羰基的存在,又叫羰基试剂.特别是2,4-二硝基苯肼几乎能与所有的醛,酮迅速反应,生成橙黄色或橙红色的结晶,常用来鉴别.6,与魏悌锡试剂加成魏惕锡试剂是由亲核性的三苯基膦(C6H5)3P与卤代烷进行亲核取代反应制得的膦盐,再用强碱例如苯基锂处理除去α-氢而制得.醛,酮与魏悌锡试剂作用脱去一分子氧化三苯基膦生成烯烃,称为魏悌锡反应.反应通式为:+应用魏悌锡反应制备烯烃条件温和,双键位置确定.例如合成亚甲基环已烷,若采用醇脱水的方法难以得到.α-活泼氢的反应醛酮α-碳原子上的氢原子受羰基的影响变得活泼.这是由于羰基的吸电子性使α-碳上的α-H键极性增强,氢原子有变成质子离去的倾向.或者说α-碳原子上的碳氢σ键与羰基中的π键形成σ-π共轭(超共轭效应),也加强了α-碳原子上的氢原子解离成质子的倾向.1,卤代和卤仿反应醛,酮可以和卤素发生卤代反应.在酸的存在下,卤代反应可控制在一卤代产物.+ Br2在碱性催化下,卤代反应不能控制在一卤代产物,而是生成多卤代产物.α-碳原子上连有三个氢原子的醛酮,例如,乙醛和甲基酮,能与卤素的碱性溶液作用,生成三卤代物.三卤代物在碱性溶液中不稳定,立即分解成三卤甲烷和羧酸盐,这就是卤仿反应.常用的卤素是碘,反应产物为碘仿,上述反应就称为碘仿反应.碘仿是淡黄色结晶,容易识别,故碘仿反应常用来鉴别乙醛和甲基酮.次碘酸钠也是氧化剂,可把乙醇及具有CH3CH(OH)—结构的仲醇分别氧化成相应的乙醛或甲基酮,故也可发生碘仿反应.羟醛缩合反应在稀碱的催化下,一分子醛因失去α-氢原子而生成的碳负离子加到另一分子醛的羰基碳原子上,而氢原子则加到氧原子上,生成β-羟基醛,这一反应就是羟醛缩合反应.它是增长碳链的一种方法.例如:CH3CHO + CH3CHO CH3CH(OH)CH2CHO若生成的β-羟基醛仍有α-H时,则受热或在酸作用下脱水生成α,β-不饱和醛.CH3CH(OH)CH2CHO CH3CH═CHCHO酮也能发生醇酮缩合反应,但平衡不利于醇酮的生成.例如丙酮的醇酮缩合需在氢氧化钡的催化下,并采用特殊设备将生成的产物及时分出,使用权平衡向生成产物的方向移动.当两种不同的含α-H的醛(或酮)在稀碱作用下发生醇醛(或酮)缩合反应时,由于交叉缩合的结果会得到4种不同的产物,分离困难,意义不大.若选用一种不含α-H的醛和一种含α-H的醛进行缩合,控制反应条件可和到单一产物.例如:HCHO + (CH3)2CHCHO HOCH2C(CH3)2CHO由芳香醛和脂肪醛酮通过交叉缩合制得α,β-不饱和醛酮,称克莱森-斯密特反应.例如:+ CH3COCH3醇醛缩合反应若在分子内进行则生成环状化合物,是生成环化合物的重要方法.如:(三)氧化与还原反应1,氧化反应醛由于其羰基上连有氢原子,很容易被氧化,不但可被强的氧化剂高锰酸钾等氧化,也可被弱的氧化剂如托伦试剂和斐林试剂所氧化,生成含相同数碳原子的羧酸,而酮却不被氧化.托伦试剂是由氢氧化银和氨水制得的无色溶液.托伦试剂与醛共热,醛被氧化成羧酸而弱氧化剂中的银被还原成金属银析出.若反应试管干净,银可以在试管壁上生成明亮的银境,故又称银境反应. RCHO + *Ag(NH3)2++ RCOONH4 + Ag↓ + NH3 + H2O斐林试剂是由硫酸铜和洒石酸钾钠的氢氧化钠溶液配制而成的深蓝色二价铜络合物,与醛共热则被还原成砖红色的氧化亚铜沉淀.RCHO + Cu2+ + NaOH + H2O RCOONa + Cu2O↓甲醛与斐林试剂作用,有铜析出可生成铜境,故此反应又称铜境反应.HCHO + Cu2+ + NaOH + H2O HCOONa + Cu↓利用托伦试剂可把醛与酮区别开来.但芳醛不与斐林试剂作用,因此,利用斐林试剂可把脂肪醛和芳香醛区别开来.2,还原反应采用不同的还原剂,可将醛酮分子中的羰基还原成羟基,也可以脱氧还原成亚甲基.(1)羰基还原成醇羟基醛酮羰基在催化剂铂,镉,镍等存在下,可催化加氢,将羰基还原成羟基.若分子结构中有碳碳双键也同时被还原.如:CH3CH═CHCHO + H2 CH3CH2CH2CH2OH用金属氢化物如硼氢化钠,氢化锂铝等则只选择性地把羰基还原成羟基,而分子中的碳碳双键不被还原,例如:CH3CH═CHCH2CHO CH3CH═CHCH2CH2OH(2)羰基还原成亚甲基醛,酮与锌汞齐及浓盐酸回流反应,羰基被还原成亚甲基,这一反应称为克莱门森还原.例如:+ HCl(3)康尼查罗反应没有α-氢原子的醛在浓碱作用下发生醛分子之间的氧化还原反应,即一分子醛被还原成醇,另一分子醛被氧化成羧酸,这一反应称为康尼查罗反应,属歧化反应.例如:2HCHO + NaOH(浓) CH3OH + HCOONa如果是两种不含α-H的醛在浓碱条件下作用,若两种醛其中一种是甲醛,由于甲醛是还原性最强的醛,所以总是甲醛被氧化成酸而另一醛被还原成醇.这一特性使得该反应成为一种有用的合成方法. + HCHO + NaOH(浓) + HCOONa+ HCHO + NaOH + HCOONa(四)与品红亚硫酸试剂的显色反应把二氧化硫通入红色的品红水溶液中,至红色刚好消失,所得的溶液称为品红亚硫酸试剂,又称希夫试剂.醛与希夫试剂作用显紫红色,酮则不显色,故可用于区别醛和酮.五,重要的醛和酮1,甲醛又名蚁醛.甲醛在常温下是气体,易溶于水.它有杀菌防腐能力.福尔马林是40℅甲醛水溶液,用作消毒剂和防腐剂.甲醛溶液与氨共同蒸发,生成环六亚甲基四胺,药名为乌洛托品.乌洛托品为白色结晶粉末,易溶于水,在医药上用作利尿剂及尿道消毒剂.2,乙醛是无色,有刺激臭味,易挥发的液体,可溶于水,乙醇,乙醚中.三氯乙醛是乙醛的一个重要衍生物,是由乙醇与氯气作用而得.三氯乙醛由于三个氯原子的吸电子效应,使羰基活性大为提高,可与水形成稳定的水合物,称为水合三氯乙醛,简称水合氯醛.其10℅水溶液在临床上作为长时间作用的催眠药,用于失眠,烦躁不安等.3,苯甲醛为无色液体,微溶于水,易溶于乙醇和乙醚中.苯甲醛易被空气中的氧氧化成白色的苯甲酸固体.4,丙酮为无色易挥发易燃的液体,具有特殊的气味,与极性及非极性液体均能混溶,与水能以任何比例混溶.6,丙烯醛是无色有刺激性的挥发性液体,脂肪过热时所产生的刺激性气味是由于其甘油成分变成丙烯醛之故.。
醛和酮的分类、结构和命名
![醛和酮的分类、结构和命名](https://img.taocdn.com/s3/m/d27af9dbdbef5ef7ba0d4a7302768e9951e76e80.png)
01
02
03
酮基
酮的官能团是酮基,其结 构为C=C=O,其中2个C 原子之间形成双键,并与 氧原子形成双键。
酮基的电子分布
酮基中的碳原子为sp杂化, 与氧原子形成双键,同时 与另一个碳原子形成单键。
酮的稳定性
酮的稳定性与其取代基的 性质有关,如甲基、乙基 等烷基可以稳定酮的结构。
醛和酮的反应活性
亲核加成反应
醛和酮可以与亲核试剂发生加成反应,如醇、 胺等。
氧化反应
醛容易被氧化,如被氧化成羧酸;而酮则相 对稳定,不易被氧化。
亲电加成反应
在一定条件下,醛和酮可以发生亲电加成反 应,如与氢氰酸、格氏试剂等反应。
还原反应
醛和酮都可以被还原成醇,如用氢化铝锂还 原。
05 醛和酮的应用
醛在工业上的应用
合成香料
醛是许多香料的主要组成 部分,如香草醛和香豆素 等,用于制造香水和食品 添加剂。
醛和酮在生物体内的生理作用 和代谢机制也是未来研究的重 点,有助于发现新的药物靶点 和生物活性分子。
THANKS FOR WATCHING
感谢您的观看
对未来研究的展望
随着有机化学的发展,醛和酮 的研究将不断深入,有望发现 更多具有重要应用价值的醛和
酮化合物。
对于醛和酮的反应机制和反应 条件的研究,将有助于更好地 理解和控制化学反应,提高化
合物的合成效率。
随着计算化学的发展,计算机 模拟和理论计算在醛和酮的研 究中将发挥越来越重要的作用 ,有助于深入理解其结构和反 应性质。
脂肪族醛是指碳原子之间通过单键连接的醛类化 合物,其通式为R-CHO。
命名规则
脂肪族醛的命名通常采用系统命名法,将醛基作 为取代基,以烃基名称作为母体,在烃基名称后 加上“醛”字。
第7章 醛和酮
![第7章 醛和酮](https://img.taocdn.com/s3/m/311672335727a5e9856a6163.png)
能性时,位次号数可省略)。如有支链时,将支链的位次及
名称写在某醛(酮)的前面。
有机化学
第二节 醛、酮的物理性质
1 2 3 4
物态
沸点 溶解性
相对密度
有机化学
一、物态
温下除甲醛是气体外,十二个碳原子以下的醛、酮 都是液体,高级醛、酮是固体。低级醛带刺鼻气味,中 级醛 具有果香味,常用于香料工业。中级酮有
的羰基氧原子上,其余部分加到羰基的碳原子上,生成β -羟
基醛,分子中既含有羟基,又含有醛基,所以这个反应称羟 醛缩合反应或醇醛缩合反应,例如:
2. 卤代反应与卤仿反应
醛、酮分子中的α -氢原子容易被卤素取代,生成α -卤 代醛、酮,例如:
有机化学
三、a-氢原子的反应
在碱作用下,取代物发生分解,生成卤仿和羧酸盐,
花香气味。
有机化学
二、沸点
醛、酮的沸点比相对分子质量相近的醇低,而比相 对分子质量。相近的烃类高。相对分子质量相近的烷、 醚、醛、酮、醇的沸点见表7-1。
有机化学
三、溶解性
低级的醛、酮易溶于水,甲醛、乙醛、丙酮都能与
水混溶,这是由于醛、酮可以与水形成氢键。其他醛、 酮在水中的溶解度随碳原子数增加而递减, 以上的醛 、酮基本上不溶于水。醛、酮都溶于苯、醚、四氯化碳 等有机溶剂中。
有机化学
三、丙酮
丙酮的制备方法很多,我国目前除用玉米或蜂蜜发酵
制备外,可通过异丙苯氧化法生产苯酚的同时可得到丙酮 ,还可以用丙烯催化氧化直接得到丙酮。反应如下:
丙酮是一种优良的溶剂,广泛用于涂料、电影胶片、
化学纤维等生产中,它又是重要的有机合成原料,用来制 备有机玻璃、卤仿、环氧树脂等。
有机化学
四、环己酮
醛、酮的结构、命名
![醛、酮的结构、命名](https://img.taocdn.com/s3/m/55aaa67c3c1ec5da50e270ce.png)
不饱和醛
3.按分子中羰基数目:
CH2CHO 二元醛 CH2CHO O O 二元酮 CH3-C-CH2-C-CH3
(三)醛酮的命名 1.习惯命名法 醛与烷烃相似。
CH3CH2CH3 丙烷 CH3CH2CHO 丙醛
酮根据羰基所连的两个烃基名来命名,把较
简单的烃基名称放在前面,较复杂的烃基名称
放在后面,最后加“酮”字。
δ γ β α CH 3CH=CHCH 2CHO β —戊烯醛 丁烯醛
O C C C C C H
OH CH3—CH—CH2CHO β-羟基丁醛
O CH3CH—C—CHCH3 Br Br α,α'-二溴-3-戊酮
(2)不饱和醛、酮的命名
从靠近羰基一端给主链编号。命名 称为“某烯醛(酮)”或“某炔醛 (酮)”。
3—氧代丁醛
CH3CCH2CCH3 2 3
2,4—戊二酮
三、醛和酮的物理性质
常温下,甲醛是气体,十二个碳原子以下的 醛、酮都是液体,高级的醛、酮是固体。 低级醛常带有刺鼻的气味 中级醛则有花果香,所以C8-C13的醛常 用于香料工业。 低级酮有清爽味 中级酮也有香味。
O CH3-C-CH2CH3 甲基乙基酮(甲乙酮)
O CH3-C-CH3 二甲酮
O CH2=CH-C-CH3 甲基乙烯基酮(丁烯酮)
2.系统命名法
(1)脂肪族醛酮的命名 选择包含羰基的最长碳链为主链,从靠近羰基的 一端开始编号,依次标明碳原子的位次。在名称中要 注明羰基的位置。
H3C
CHCH2 CHO H3C
O CH2=CH—CH—CH—CHO CH3 CH3
2,3-二甲基-4-戊烯醛
CH3—CH=CH—CH—C—CH3 CH3
醛和酮
![醛和酮](https://img.taocdn.com/s3/m/83239586ec3a87c24028c437.png)
醛和酮
醛和酮的定义、分类、 一、 醛和酮的定义、分类、命名 二、 醛和酮的结构 三、 醛和酮的物理性质 四、 醛和酮的化学性质 不饱和醛、 五、 α,β-不饱和醛、酮的特性 不饱和醛
一、醛和酮的定义、分类、命名 醛和酮的定义、分类、
醛和酮统称为羰基化合物。 醛和酮统称为羰基化合物。 定义:羰基上至少连有一个H原子的化合 定义:羰基上至少连有一个 原子的化合 物为醛 羰基上同时连有两个烃基的化合物为酮
CH=CH-CHO 3- 苯基丙烯醛
(肉桂醛)
3
2
1
C3 H C C C 2C O HHH H C3 H
3-甲基-4-环己基戊醛
O O CH3C-CH2-CCH3 2,4- 戊二酮 β−戊二酮
CH3CH=CHCHO 2-丁烯醛
(巴豆醛)
4
3
2 1
CH3 CH-CHO 2− 苯基丙醛 α−苯基丙醛
O C 3C C H H H HCC3 C C l l
。 60-70 C
H2SO4
[ CH2-CH O
CH2 CH2Βιβλιοθήκη CH ]n + nH2O O
维尼纶 不溶于水
聚乙烯醇缩甲醛
(丁) 与格氏试剂加成 丁
加RMgX
δ
−
C=O + R-MgX
δ
+
δ
+
干醚
δ
−
R-C-OMgX
烷氧基卤化镁
H2O/H+
R-C-OH
RMgX与甲醛反应,水解后得到1°醇; 与甲醛反应,水解后得到 ° 与甲醛反应 RMgX与其他醛反应,水解后得到 °醇; 与其他醛反应, 与其他醛反应 水解后得到2° RMgX与酮反应,水解后得到 °醇。 与酮反应, 与酮反应 水解后得到3°
第十二章 醛和酮
![第十二章 醛和酮](https://img.taocdn.com/s3/m/08ae5dd669dc5022aaea00bf.png)
二.醛酮的化学性质
醛酮的化学性质主要取决于羰基,因为醛、 酮都含有羰基,但醛和酮的结构并不完全相同, 醛基中的羰基与氢原子相连,而酮基则没有与氢 原子相连。因此醛和酮的化学性质上又存在着明 显的差异。醛和酮的主要反应部位如下:
HO
R C CH (R')
H
化学工业出版社
思考:分析醛基的结构,推测其 在化学反应中的断裂方式
化学工业出版社
O R C H(CH3) + HCN
O
OH
R C H(CH3) CN OH
CH3 C H + HCN
CH3 C H
CN
醛、酮与氢氰酸的加成反应是有机合成中增
长碳链的一种方法 。但由于氢氰酸和氰化钾均有
剧毒,实际上很少使用这一方法。α-羟基腈在酸
性条件下可以水解生成α-羟基酸或不饱和烯酸。
CHO
O
化学工业出版社
三、醛、酮的命名
简单的醛、酮使用普通命名法。结构复 杂的醛、酮则使用系统命名法
(一)普通命名法
醛的普通命名法与醇相似,只需根据碳原子数 称为“某醛”。例如:
HCHO CH3CHO CH3CH2CHO
甲醛
乙醛
丙醛
化学工业出版社
酮的普通命名法与醚相似,按酮基所连的 两个烃基来命名。例如:
O CH3 C CH2CH3
O CH3CH2 C CH2CH3
甲(基)乙(基)酮 二乙(基)酮
O
O
C CH2CH3
C
苯(基)乙(基)酮
二苯(基)酮
化学工业出版社
(二)系统命名法
1.脂肪醛、酮命名:
(1).选主链:选择含有羰基的最长碳链为主链,根据 主链碳原子数目称为“某醛”或“某酮”.
有机化学 第十一章 醛和酮
![有机化学 第十一章 醛和酮](https://img.taocdn.com/s3/m/ad27c6e8f8c75fbfc77db247.png)
酮羰基约在1715cm-1。
羰基与芳环或烯键共轭,频率降低。
1HNMR
O C H 9~10ppm
O CH2 C H 2.0~2.5ppm
MS
O R C R + C6H5C O m/z = 105
C6H5C O
C6H5 + CO m/z = 77
第三节
醛酮的化学性质
醛酮的结构与反应性
羰基亲核加成 及氢化还原
酸催化
C=O + H
+
C=OH
+
-H+ H2N-Z,
H+
H2O
+
H
C----N-Z
C=N-Z + H2O + H+
反应需在弱酸性的条件下进行。
应用:
a 提纯、鉴别醛酮
重结晶 稀酸
C=O + H2N-Z
C=N-Z
C=O
b 保护羰基
A B C=O + H2NR
A B
C=NR
参与反应
稀酸
A' B'
C=O
Nu C OH
[
+ C=OH
+ ] C-OH
Nu-
醛、酮的反应活性:
R H
R C=O > R'
C=O >
Ar R'
C=O
1. 与氢氰酸的加成反应
OH C=O
+ H
CN
C CN
α -羟基腈
例:
O CH 3CCH 3
N aCN , H 2 SO 4
OH CH 3CCH 3 CN
α -羟基腈是很有用的中间体,由它可
有机化学 醛和酮
![有机化学 醛和酮](https://img.taocdn.com/s3/m/29185a385a8102d276a22f8c.png)
二、同分异构
1.醛的同分异构:碳链的异构引起的。 2.酮的同分异构:碳链的异构引起的和酮羰基的位置不同引 起的异构。 3.相同碳数的饱和一元醛、酮互为同分异构体。
三、醛酮命名 醛的命名
1. 脂肪醛的系统命名:含醛基的最长碳链为主 链,从醛基开始编号,称某醛。
HCHO
甲醛 Organic Chemistry
磷叶立德 又称维蒂希试剂
机理:
R1 Ph3P- CHR + R2 CO R1 R2 C O CHR PPh3 R1 R2 C O CHR PPh3
教材没有反应机理过程指示(箭头)
R1 R
2
C CHR + Ph3P=O
Wittig反应条件温和,产率高,生成的双键位置 确定,没有重排。反应活性:醛>酮>酯
无水HCl OC2H5 OC2H5
+
CH =CH CH =CHCH 22 OC OC H 2H 2 55
OC H OC 2 55 2H [O ]
H ,H2O CH2 OH
CHCHO OH
3、与含氮亲核试剂的加成 1.4 与氨的衍生物加成缩合:氨及其衍生物是含氮的 亲核试剂,可与羰基加成,再分子内失去一分子水形 成碳氮双键
CH3CHCH2CHO OH
β-羟基丁醛
4.含有芳香环的醛,则将芳香环当作取代基。
CHO
CH CHCHO
CHO OH
苯甲醛
β-苯基丙烯醛
邻羟基苯甲醛
(苦杏仁油)
(肉桂醛)
(水杨醛)
Organic Chemistry HUAIHUA UNIVERSITY
酮的命名
1. 脂肪酮的系统命名:与醇的命名相同,连有羰 基的最长碳链为主链:
第十一章醛和酮
![第十一章醛和酮](https://img.taocdn.com/s3/m/20ec8228700abb68a882fbc6.png)
(二)炔烃水合
R-C≡C-R’ + H2O
Hg2+ H2SO4
O R-C-CH2-R’
HC≡CH + H2O
HgSO4 CH3CHO
H2SO4
炔烃的硼氢化-氧化也可制备醛酮:
R-C≡C-H B2H6
H2O2 OH-
RCH2CHO
第十一章醛和酮
(三)同碳二卤化物水解
由于芳环侧链上的α-H容易被卤代,此法主要用 于制备芳香族醛和酮。如:
CH3(CH2)6CH2OH CH2CH2,25℃ CH3(CH2)6CHO
3、一个特殊的氧化剂—oppenauer氧化剂 它可将不饱和醇氧化成不饱和醛酮,而保留双键
(CH3)2C=CH +(CH3)2C=O [(CH3)2CHO]3Al (CH3)2C=CH +(CH3)2COH
CH2CH2OH
苯回流
RCOCl
R’MgX
H2O
RCOR’
R’C≡CNa
RCOC≡CR’
以上是制备醛酮的主要方法,此外,还有烯烃的 氧化等。
H2C=CH2 + O2
CuCl2-PdCl2 CH3CHO
乙醛的工业制法
第十一章醛和酮
异丙醇铝+异丙醇的还原机理
R
R
O=C— R’
[(CH3)2CHO]3Al + R’—C=O
Cl
-CH2-
Cl2
光
-C-
Cl
Clቤተ መጻሕፍቲ ባይዱ
O
-C-
+ H2O CaCO3
-C-
Cl
第十一章醛和酮
(四)付-克酰基化反应
付-克酰基化反应
AlCl3
醛酮的结构
![醛酮的结构](https://img.taocdn.com/s3/m/8ee50c02fc4ffe473368aba9.png)
式中R也可以是Ar。故此反应是制备结构复杂的醇的重要方法。 这类加成反应还可在分子内进行。 例如;
BrCH2CH2CH2COCH 3 Mg,微量HgCl 2 THF OH CH3 60%
3.与饱和亚硫酸氢钠(40%)的加成反应
C O O + NaO-S-OH 醇钠 C ONa SO3H 强酸 C OH SO3Na 强酸盐(白 )
产物α-羟基磺酸盐为白色结晶,不溶于饱和的亚硫酸氢钠溶液中, 容易分离出来;与酸或碱共热,又可得原来的醛、酮。故此反应可 用以提纯醛、酮。 1°反应范围 醛、甲基酮、七元环以下的脂环酮。 2°反应的应用 a 鉴别化合物 b 分离和提纯醛、酮 c 用与制备羟基腈,是避免使用挥发性的剧毒物HCN而合成羟基腈的 好方法。
π
C
O
C
O
δ C
δ O
电负性 C < O
π 电子云偏向氧原子
极性双键
二、 物理性质 、 三、光谱性质 UV C O
C CH C O
n π
π* π*
200~400nm 有弱吸收 ε = 20 200~400nm 有强吸收 ε >1000
-1
IR
υ C=O
1850~1650cm-1
有强吸收(一般在 1740~1705cm )
H2O CH 2=C-CN (CH3)2CCOOH OH (CH3)2CCH2NH2 OH CH 3OH H CH 2=C-COOCH 3 (CH3)2CCN OH H2O/H H
2.与格式试剂的加成反应
C O + R MgX
δ δ δ δ
无水乙醚
OMgX C R
H2O
R C OH + HOMgX
醛和酮
![醛和酮](https://img.taocdn.com/s3/m/af7099d4240c844769eaee18.png)
O
R C R'(H)
+
HCN
R C R'(H)
-羟腈 ( -氰醇)
NaCN + H2SO4
CN
水解 OH α-羟基腈可进一步反应 烯HCl CH3CH2 C COOH OH O H2O CH3 α-羟基酸 CH3CH2 C CN CH3CH2 C CH3 +HCN CH3 浓H22SO4 CH3CH C COOH -H O 反应条件:碱催化 α-羟基腈 脱水 CH3 α-烯酸 产物比反应物增加了一个碳原子,作用:有机合成中增长碳链。
注意:只有醛、脂肪族甲基酮、八个碳原子以下的环酮才能反应。 下列各化合物可否与HCN加成? (A) CH3(CH 2)2CHO O
(B)
O
(C) C6H5CHO
(D) CH3
C CH2CH3
(E) C6H5COCH3
(A)、 (B) 、(C) 、(D) 均可
亲核加成反应难易的影响因素:电子效应、空间效应和亲核试 剂的亲核能力 发生亲核加成反应时由易到难的顺序:
NH2
(R')H
C N NH C NH2
缩氨脲
常用试剂:2,4-二硝基苯肼鉴别醛、酮
实验
醛、酮与2,4-二硝基苯肼的反应
均加入2,4-二硝基苯肼
试管①—乙醛
试管②—丙酮
① ② ③
试管③—苯甲醛
振摇
均出现黄
羰基化合物与羟胺、苯肼、2,4-二硝基苯肼及氨基脲的加成消除产物大多是黄色晶体,有固定的熔点,收率高,易于提纯, 在稀酸的作用下能水解为原来的醛、酮。可用来分离、提纯、鉴 别羰基化合物。 常用试剂:2,4-二硝基苯肼鉴别醛、酮
H H C O >
有机化学-醛和酮
![有机化学-醛和酮](https://img.taocdn.com/s3/m/e65af21d3a3567ec102de2bd960590c69ec3d800.png)
O R CH2 C CH CHO
HR
O
H2O
R CH2 C CH CHO
HR
OH
R CH2
C
α
CH CHO
+ OH-
HR (-羟基醛)
Problem: 完成下列反应式:
稀碱
H3C CH2 CH2 CHO 4~5oC
OH O H3C CH2 CH2 CH CH C H
H2C CH2CH3
干燥HCl
R C H+ R’- OH
R C H + H2O
OR'
OR' 缩醛
例:
O
HCl
C H + 2 CH3CH2OH
CH OCH2CH3 OCH2CH3
苯甲醛缩 二乙醇
◆ 酮不易生成缩酮,但环状缩酮较易生成。
R
C=O + CH2OH 干燥HCl
R
O C
CH2
R
CH2OH
R O CH2
应用: 缩醛和缩酮对碱、氧化剂稳定,常用 于有机合成中保护醛(酮)基。缩醛(酮) 在酸性条件下水解回原来的醛(酮)和醇。
沉淀。
通常
R
为橙黄色
C NNH
NO2
的沉淀
R' NO2
(二) - 碳和 -氢的反应
-H,有弱酸性
HO
R-CH2-CH-C-H βα
p- 共轭,使碳 负离子稳定
R-CH2-CHO
NaOH
O R CH- C H
碳负离子
1. 醇醛缩合
在稀碱溶液中, 含α-H的醛的α-碳可以与另一 醛的羰基碳加成形成新的碳碳键,生成β-羟基醛 类化合物,该反应称为醇醛缩合。
第十一章 醛和酮
![第十一章 醛和酮](https://img.taocdn.com/s3/m/4c6702ce6f1aff00bed51e8f.png)
Chapter 11 Aldehyde and Ketone
C
δ
+
O
Company Logo
δ
Contents
1
醛和酮的分类和命名★
醛和酮的物理性质◎
2
3 4
2
醛和酮的化学性质★
醛和酮的制备◎
Company Logo
第一节 醛和酮的分类和命名 O 醛和酮均含有羰基的化合物 C
羰基碳原子上同时连有两个烃基的叫酮 羰基碳原子上至少连有一个氢原子的叫醛。
H3C CH CHO
3
2
1
CHO
2-苯基丙醛
12
苯甲醛
Company Logo
第一节 醛和酮的分类和命名 用系统命名法命名下列化合物
O
O
4-戊烯-2-酮
13
1-苯基丙酮
Company Logo
第一节 醛和酮的分类和命名
CHO OH
2-羟基苯甲醛
(水杨醛)★
O
8-甲基二环[3.2.1]-6-辛烯-3-酮
O R C H
羰基 carbonyl
R
O C R'
醛(aldehyde)
3
酮(Ketone)
Company Logo
第一节 醛和酮的分类和命名
一、醛、酮的命名 1、普通命名法 醛:脂肪醛按分子中含碳数称某醛。
HCHO
甲醛 丙醛
CH3CH2CHO
4
Company Logo
第一节 醛和酮的分类和命名
42
Company Logo
第三节 醛和酮的化学性质
CH3 CH3 C =CH(CH2)2CHCH2CHO CH3 HOOC(CH2)2CHCH2CHO CH3
醛与酮分子中都含有羰基()官能团,它们都是羰基化合物醛与酮
![醛与酮分子中都含有羰基()官能团,它们都是羰基化合物醛与酮](https://img.taocdn.com/s3/m/973d5e19bb4cf7ec4afed0e9.png)
第十章 醛和酮醛和酮分子中都含有羰基()官能团,它们都是羰基化合物。
第一节 醛和酮的结构、分类和命名羰基碳原子上至少连有一个氢原子的化合物叫做醛,可用通式表示。
在羰基的两头都连有烃基的化合物叫做酮,可用通式 表示。
一、醛和酮的结构羰基是醛和酮的官能团。
在羰基中,碳和氧以双键相连,与碳碳双键类似,碳氧双键也是由一个б键和一个π键组成,而且羰基也具有三角形平面结构。
(a) 羰基π键的形成 (b)甲醛的平面结构 (c)羰基π电子云散布示用意 二、醛和酮的分类按照羰基所连接的烃基结构和方式不同,醛和酮可分类如下:CH 3CHOOHCCH 2CHO 根据烃基结构分类根据烃基是否饱和分类根据羰基数目分类脂环族醛(酮) 例如:芳香族醛(酮) 例如:一元醛(酮) 例如:多元醛(酮) 例如:醛(酮)(乙醛)(环己酮)(苯甲醛)(丁酮)(丙烯醛)(丙酮)(丙二醛)脂肪族醛(酮) 例如:饱和醛(酮) 例如:不饱和醛(酮) 例如:三、醛和酮的命名1. 习惯命名法醛的习惯命名法与伯醇相似,只需把“醇”字改成“醛”字即可。
例如:H____OH RO CHO CH 3CH 2CCH 3OCH 2CHCHO__OC __CH 3CH 3COR R'____OC O C δδ+-O C (CH 3)2CHCH 2OH CH 2OHCH 3CH 2CH 2CH 2OH正丁醇 异丁醇苯甲醇正丁醛 异丁醛 苯甲醛还有一些醛的名称,是由相应羧酸的名称而来。
例如:蚁醛 肉桂醛 水扬醛酮的命名:在羰基所连接的两个烃基名称后再加上“甲酮”两字,“甲”字习惯上可以省略。
脂肪混酮命名时,要把“顺序规则”中较优先烃基写在后面。
但芳基和脂基的混酮,要把芳基写在前面。
例如:二甲基(甲)酮(二甲酮) 甲基乙基(甲)酮(甲乙酮) 苯基乙烯基(甲)酮2.系统命名法 其要点如下:(1) 选取主链(母体) 选择含有羰基的最长碳链作为主链。
不饱和醛酮的命名,主链须包括不饱和键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构:羰基中的碳原子是sp2杂化的,它的三个sp2杂
化轨道形成的三个σ 键在同一平面上,键角120°,
碳原子还余下一个p轨道和氧的一个p轨道与σ 键所
在的平面垂直,相互交盖形成π 键。因此C=O双键
是由一个σ 键和一个π 键组成的。
O C
(a) sp2杂化的碳
饱和醛酮的命名是从靠近羰基一端给主链编号:
3-甲基-4己烯-2-酮
羰基在环内的脂环酮,称为环某酮;若羰基在环外,则
将环作为取代基。
4-甲基环己酮
2-甲基环己基甲醛
命名含有芳基的醛、酮,总是把芳基看成 取代基:
O C H
O C
CH2CH3
苯甲醛
1-苯基-1-丙酮
酮还有一种衍生物命名法,把酮看成是“甲酮”的衍 生 物,在“甲酮”前边加上两个取代基的名称,“甲” 字可 省略:
二苯酮 甲基乙基酮
其次的为β 碳原子……,依此类推。例如:
乙醛
丙烯醛
α -氯丙醛
酮类按羰基所连的两个烃基来命名(与醚相似)。 例如:
甲基乙基酮
甲基乙烯基酮
甲基-α -氯乙基酮
2、IUPAC命名法:
选含羰基的最长碳链为主链,从靠近羰基一端给主链
编号。醛基因处在链端,因此编号总为1。酮羰基的
位置要标出(个别例外)。
2-甲基丙醛
♪根据烃基的饱和或不饱和:分为饱和醛、酮和不饱和醛、酮
♪根据分子中羰基的数目:分为一元、二元或多元醛、酮 ♪脂环酮:脂环的一个或多个CH2被C=O所置换,如环己酮
命名
1、习惯命名法:醛类按分子中碳原子数称某醛(与 醇相似)。包含支链的醛,支链的位次用希腊字母α,
β,γ……表明。紧接着醛基的碳原子为α 碳原子,
sp 2 杂化轨道间的夹角为 120 ° , 但杂化轨道与其他
原子成键后,如果成键原子不同,就可能导致夹角
偏离120°。 丙酮的CC-O 键角为 121.5 °
由于氧原子的电负性大于碳,因此羰基的π键一旦形
成,即是极性的,电子云偏向氧。丙酮的偶极矩(μ) 为2.85 D。
分类
♪根据与羰基相连的烃基不同:分为脂肪醛、酮和芳香醛、酮