材料的力学性能DOC
2024年材料力学性能总结范文(二篇)

2024年材料力学性能总结范文____年材料力学性能总结摘要:本文对____年新材料的力学性能进行了总结。
通过对新材料的力学性能研究,可以更好地应用于工程实践中,提高产品的性能和可靠性。
本文主要对新材料的强度、硬度、韧性、耐热性等性能进行了介绍,并对其应用前景进行了展望。
关键词:新材料;力学性能;强度;硬度;韧性;耐热性一、强度强度是材料抵抗外力的能力,是一个材料最基本的力学性能之一。
____年新材料的强度有了显著的提高,主要得益于新材料结构和组成的优化。
新材料采用了多种复合材料技术,在不同材料的复合过程中,不同材料之间形成了一种互补的关系,使得新材料的强度得到了有效提升。
此外,新材料还采用了新的加工工艺,如纳米技术和超塑性成型技术,通过精确控制材料微观结构和缺陷,使新材料的强度得到了进一步提升。
二、硬度硬度是材料抵抗外界划痕和压痕的能力,表征了材料的抗磨性能。
____年新材料的硬度也得到了大幅提升。
在新材料的研发中,科学家们发现了一些新的硬化机制,如晶体缺陷的控制、固溶体弥散硬化和位错强化等。
通过合理地控制这些硬化机制,新材料的硬度可以得到有效提升。
此外,新材料还采用了一些表面处理技术,如化学镀、电沉积和离子注入等,通过改变材料表面的化学组成和相结构,来提高材料的硬度。
三、韧性韧性是材料抵抗破坏的能力,是反映材料抗拉伸、抗压和抗弯曲能力的重要指标。
____年新材料的韧性也得到了显著改善。
新材料采用了一些新的加工工艺,如冷变形和等离子注入等,通过调整材料的晶界和位错密度,使新材料的韧性得到了提高。
此外,新材料还采用了一些新的复合技术,如纳米复合和纤维复合等,通过增加材料内部的弥散相和增强相,来提高材料的韧性。
四、耐热性耐热性是材料在高温条件下能保持稳定性和性能的能力。
____年新材料的耐热性也得到了显著提升。
新材料采用了一些新的材料组成和结构设计,如金属间化合物、金属陶瓷复合材料和增强材料等,来提高材料的热稳定性。
304及430不锈钢的化学成分及力学性能doc资料

304及430不锈钢的化学成分及力学性能00Cr17Ni14Mo2不锈钢 (316L不锈钢 )SUS316(L)- 00Cr17Ni14Mo2添加了Mo(2~3%)达到优秀的耐孔蚀和耐腐蚀性,高温Creep强度优秀特性及实用用途:化学成分:(单位:wt%)机械性能:SUS304不锈钢-0Cr18Ni9不锈钢材质性能及用途介绍作为AUSTENITE系的基本钢种耐腐蚀性、耐热性、低温强度、机械性能优秀,热处理后不发生硬化,几乎没有磁性特性及实用用途:化学成分:(单位:wt%)机械性能:SUS317L不锈钢-00Cr19Ni13Mo3不锈钢材质性能介绍化学成分:(单位:wt%)机械性能:SUS 430不锈钢钢种介绍1、概要含有17% Cr, 在高温以混合相(α+γ)形式存在,1000OC以下是α单相的BCC结构。
广泛使用的铁素体系不锈钢。
2、特点1)深冲性能优秀,类似于304钢;2)对氧化性酸有很强的耐腐蚀性,对碱液及大部分有机酸和无机酸也有一定的耐腐蚀能力;耐应力腐蚀开裂能力强于304钢种;3)热膨胀系数低于304钢种,耐氧化能力高,适合于耐热设备;4)冷轧产品外观光亮度好,漂亮;5)和304比较,价格便宜,作为304钢种的替代钢种。
2、适用范围主要用作在温和的大气中高抛光装饰用途,如燃气灶表面, 家电部件, 餐具, 建筑内装饰用,洗涤槽, 洗衣机内桶等。
3、化学成分(JIS G 4305-2005) (wt%)4、性能(JIS G 4305-2005)5、物理性能6、热处理熔点:1425~15100C;退火:780~8500C。
7、使用状态1)退火状态:NO.1,2D,2B,N0.4,HL,BA,Mirror,以及各种其他表面处理状态8、使用注意事项- 相对304,拉伸性能、焊接性能较差;- 由于是铁素体不锈钢,强度相对较低,加工硬化能力也低,选择使用时应该注意;- 拉伸加工后表面会出现轧钢方向条状缺陷(ridging),给抛光作业带来很大的困难。
材料力学性能

§2 材料力学性能材料的力学性能,又称机械性能,是材料抵抗外力作用引起变形和断裂的能力。
包括强度、韧性、硬度、塑性、耐磨性、高温力学性能等。
材料的力学性能不仅与材料的成分、显微结构有关,还和承受的载荷大小、种类、加载速度、环境温度、介质等有关。
2.1 强度2.1.1 拉伸试验材料的强度可以通过光滑圆柱试样静拉伸试验确定。
按照一定的标准加工的光滑圆柱试样,在拉伸载荷作用下发生变形,记录载荷大小和伸长量之间的关系,将其转变为应力应变曲线,即可获得材料的强度力学行为。
典型的应力应变曲线包括:弹性变形阶段(Oe段),屈服阶段(sd段),变形强化阶段(db段),缩颈阶段(bk段),每个阶段反映了材料在不同载荷水平下不同的力学行为。
图3.7 典型的静拉伸应力应变曲线2.1.2 弹性变形在弹性变形阶段,材料中的原子在平衡位置附近作微量位移,载荷消失后微量位移消失,材料宏观外形完全恢复,此时的应力应变曲线满足胡克定律:σ = Eε式中,σ为应力,ε为应变,E为弹性模量。
弹性极限σe:材料由弹性变形过渡到塑性变形时的应力,一般规定产生0.01%塑性变形时的应力为弹性极限值,记为σ0.01 。
弹性模量主要取决于材料的成分,受组织结构影响不大,是个组织不敏感参量。
另外,弹性模量反映了材料中原子间作用力的大小,而材料的熔点也反映了原子间作用力的大小,应此一般地,材料的熔点越高,弹性模量越大。
表3.3 一些材料的弹性模量E(GPa)2.1.3 塑性变形当材料承受的载荷超过弹性极限时,材料将发生不可逆转的永久性变形,称为塑性变形。
在塑性变形阶段,应力应变曲线变成非线性,材料的变形是通过原子价键的断开、重排来实现的。
在晶体材料中,塑性变形主要是通过位错在密排面上沿密排方向的滑移来实现的,因此,晶体结构中位错越容易滑移,则材料的塑性变形越容易。
屈服强度σs:材料出现一定塑性变形时的应力,S为屈服点,多数材料的S 点不明显。
材料的力学性能

试题内容:直径为d的拉伸比例试样,其标距长度l只能为10d。
( )试题答案:答:非试题内容:直径为d的拉伸比例试样,其标距长度l只能为5d。
()试题答案:答:非试题内容:圆柱形拉伸试样直径为d,常用的比例试样其标距长度l是5d或10d。
()试题答案:答:是试题内容:直径为d的拉伸非比例试样,其标距长度l和d无关。
()试题答案:答:是试题内容:Q235钢进入屈服阶段以后,只发生弹性变形。
()试题答案:答:非试题内容:低碳钢拉伸试验进入屈服阶段以后,只有塑性变形。
()试题答案:答:非试题内容:低碳钢拉伸试验进入屈服阶段以后,只发生线弹性变形。
()试题答案:答:非试题内容:低碳钢拉伸试验进入屈服阶段以后,发生弹塑性变形。
( )试题答案:答:是试题内容:低碳钢拉伸应力-应变曲线的上、下屈服极限分别为1s σ和2s σ,则其屈服极限s σ为1s σ。
( )试题答案:答:非试题内容:低碳钢拉伸应力-应变曲线的上、下屈服极限分别为1s σ和2s σ,则其屈服极限s σ为2s σ。
( )试题答案:答:是试题内容:拉伸试验测得材料的上、下屈服极限分别为1s σ和2s σ,则材料的屈服极限s σ为22s 1s σσ+。
( )试题答案:答:非试题内容:拉伸试验测得材料的上、下屈服极限分别为1s σ和2s σ,则材料的屈服极限S σ为22s 1s σσ-。
( )试题答案:答:非铸铁的强度指标是s σ。
( )试题答案:答:非试题内容:铸铁的强度指标是b σ。
( )试题答案:答:是试题内容:铸铁的极限应力是s σ和b σ。
( )试题答案:答:非试题内容:铸铁的强度指标是δ和s σ。
( )试题答案:答:非试题内容:材料的塑性指标有s σ和b σ。
( )试题答案:答:非试题内容:材料的塑性指标有s σ和ε。
( )试题答案:答:非材料的塑性指标有δ和ψ。
( )试题答案:答:是试题内容:材料的塑性指标有s σ、ε和ψ。
材料力学性能(Mechanical Properties of Materials)

第1章材料在静载下的力学行为1.1 材料在静拉伸时的力学行为概述静拉伸是材料力学性能试验中最基本的试验方法。
用静拉伸试验得到的应力-应变曲线,可以求出许多重要性能指标。
如弹性模量E,主要用于零件的刚度设计中;材料的屈服强度σs和抗拉强度σb则主要用于零件的强度设计中,特别是抗拉强度和弯曲疲劳强度有一定的比例关系,这就进一步为零件在交变载荷下使用提供参考;而材料的塑性,断裂前的应变量,主要是为材料在冷热变形时的工艺性能作参考。
图1-1 几种典型材料在温室下的应力-应变曲线图1-1表示不同类型材料的几种典型的拉伸应力-应变曲线。
可见,它们的差别是很大的。
对退火的低碳钢,在拉伸的应力-应变曲线上,出现平台,即在应力不增加的情况下材料可继续变形,这一平台称为屈服平台,平台的延伸长度随钢的含碳量增加而减少,当含碳量增至0.6%以上,平台消失,这种类型见图1-1a;对多数塑性金属材料,其拉伸应力-应变曲线如图1-1b所示,该图所绘的虽是一铝镁合金,但铜合金,中碳合金结构钢(经淬火及中高温回火处理)也是如此,与图1-1a不同的是,材料由弹性变形连续过渡到塑性变形,塑性变形时没有锯齿形平台,而变形时总伴随着加工硬化;对高分子材料,象聚氯乙烯,在拉伸开始时应力和应变不成直线关系,见图1-1c,即不服从虎克定律,而且变形表现为粘弹性。
图1-1d为苏打石灰玻璃的应力-应变曲线,只显示弹性变形,没有塑性变形立即断裂,这是完全脆断的情形。
工程结构陶瓷材料象Al2O3,SiC等均属这种情况,淬火态的高碳钢、普通灰铸铁也属这种情况。
1.2 金属材料的弹性变形1.2.1 广义虎克定律已知在单向应力状态下应力和应变的关系为:一般应力状态下各向同性材料的广义虎克定律为:其中:如用主应力状态表示广义虎克定律,则有1.2.2 弹性模量的技术意义工程上把弹性模量E、G称做材料的刚度,它表示材料在外载荷下抵抗弹性变形的能力。
在机械设计中,有时刚度是第一位的。
金属材料的力学性能

第1章工程材料1.1 金属材料的力学性能金属材料的性能包括使用性能和工艺性能。
使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。
工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。
金属材料的力学性能是指金属材料在载荷作用时所表现的性能。
1.1.1 强度金属材料的强度、塑性一般可以通过金属拉伸试验来测定。
1.拉伸试样图1.1.1拉伸试样与拉伸曲线2.拉伸曲线拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。
当载荷不超过p成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。
载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。
当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。
当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。
由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。
3.强度强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。
(1) 弹性极限金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示:(2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。
所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料承受的应力称为“条件屈服强度”,并以符号σ0.2 表示。
1.1.2 塑性金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。
材料力学性能

填空1-1、金属弹性变形是一种“可逆性变形”,它是金属晶格中原子自平衡位置产生“可逆位移”的反映。
1-2、弹性模量即等于弹性应力,即弹性模量是产生“100%”弹性变形所需的应力。
1-3、弹性比功表示金属材料吸收“弹性变形功”的能力。
1-4、金属材料常见的塑性变形方式主要为“滑移”和“孪生”。
1-5、滑移面和滑移方向的组合称为“滑移系”。
1-6、影响屈服强度的外在因素有“温度”、“应变速率”和“应力状态”。
1-7、应变硬化是“位错增殖”、“运动受阻”所致。
1-8、缩颈是“应变硬化”与“截面减小”共同作用的结果。
1-9、金属材料断裂前所产生的塑性变形由“均匀塑性变形”和“集中塑性变形”两部分构成。
1-10、金属材料常用的塑性指标为“断后伸长率”和“断面收缩率”。
1-11、韧度是度量材料韧性的力学指标,又分为“静力韧度”、“冲击韧度”、“断裂韧度”。
1-12、机件的三种主要失效形式分别为“磨损”、“腐蚀”和“断裂”。
1-13、断口特征三要素为“纤维区”、“放射区”、“剪切唇”。
1-14、微孔聚集断裂过程包括“微孔成核”、“长大”、“聚合”,直至断裂。
1-15、决定材料强度的最基本因素是“原子间结合力”2-1、金属材料在静载荷下失效的主要形式为“塑性变形”和“断裂”。
2-2、扭转试验测定的主要性能指标有“切变模量”、“扭转屈服点τs”、“抗扭强度τb”。
2-3、缺口试样拉伸试验分为“轴向拉伸”、“偏斜拉伸”。
2-5、压入法硬度试验分为“布氏硬度”、“洛氏硬度”和“维氏硬度”。
2-7、洛氏硬度的表示方法为“硬度值”、符号“HR”、和“标尺字母”。
3-1、冲击载荷与静载荷的主要区别是“加载速率不同”。
3-2、金属材料的韧性指标是“韧脆转变温度tk4-1、裂纹扩展的基本形式为“张开型”、“滑开型”和“撕开型”。
4-2、机件最危险的一种失效形式为“断裂”,尤其是“脆性断裂”极易造成安全事故和经济损失。
4-3、裂纹失稳扩展脆断的断裂K判据:KI≥KIC 4-4、断裂G判据:GI≥GIC 。
材料的力学性能

第三章 材料的力学性能第一节拉伸或压缩时材料的力学性能一、 概述分析构件的强度时,除计算应力外,还应了解材料的力学性质(Mecha nicaiproperty ),材料的力学性质也称为机械性质,是指材料在外力作用下表现出的变形、破坏等 方面的特性。
它要由实验来测定。
在室温下,以缓慢平稳的方式进行试验,称为常温静载试 验,是测定材料力学性质的基本试验。
为了便于比较不同材料的试验结果,对试件的形状、 加工精度、加载速度、试验环境等,国家标准规定了相应变形形式下的试验规范。
本章只研 究材料的宏观力学性质, 不涉及材料成分及组织结构对材料力学性质的影响, 并且由于工程中常用的材料品种很多, 主要以低碳钢和铸铁为代表,介绍材料拉伸、压缩以及纯剪切时的力学性质。
二、 低碳钢拉伸时的力学性质低碳钢是工程中使用最广泛的金属材料,同时它在常温静载条件下表现出来的力学性质也最具代表性。
低碳钢的拉伸试验按《金属拉伸试验方法》 (GB/T228 — 2002)国家标准在万能材料试验机上进行。
标准试件(Sta ndard specimen )有圆形和矩形两种类型,如图3-1所示。
试件上标记 A 、B 两点之间的距离称为标距,记作 1°。
圆形试件标距|0与直径d 0有两种比例,即l °=10d °和l 0=5d 。
矩形试件也有两种标准,即 l 0 11.3 A0和l 0 5.65 A0。
其中A 0为矩形试件的截面面积。
图3-1拉伸试件试件装在试验机上,对试件缓慢加拉力 F P ,对应着每一个拉力 F P ,试件标距l 0有一个 伸长量 A |O 表示F P和A l 的关系曲线,称为拉伸图或 F P —A l 曲线。
如图3-2a ,由于F —A l 曲线与试件的尺寸有关,为了消除试件尺寸的影响,把拉力F p 除以试件横截面的原始面积F P一 一 l-为纵坐标;把伸长量A 除以标距的原始长度10,得出应变 为A )l 。
材料的力学性能

材料的力学性能mechanical properties of materials主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。
它们是设计各种工程结构时选用材料的主要依据。
各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。
表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。
材料的各种力学性能分述如下:弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。
材料的这种性能称为弹性。
外力卸除后即可消失的变形,称为弹性变形。
表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。
拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。
长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截面试样,按照面积换算规定或者。
试样两端的粗大部分用以和材料试验机的夹头相连接。
试验结果通常绘制成拉伸图或应力-应变图。
图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力ζ=P/A)。
图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。
反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。
比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以ζp表示。
在应力低于ζp的情况下,应力和应变保持正比例关系的规律叫胡克定律。
载荷超过点p对应的值后,拉伸曲线开始偏离直线。
弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以ζe表示。
若在应力超出ζe后卸载,试样中将出现残余变形。
材料的力学性能

材料的力学性能在一定的温度条件和外力作用下,材料的抗变形和抗断裂能力称为材料的力学性能。
锅炉和压力容器材料的常规力学性能主要包括强度、硬度、塑性和韧性。
(1)强度强度是指金属材料在外力作用下抵抗变形或断裂的能力。
强度指标是设计中确定许用应力的重要依据。
常用的强度指标为:屈服强度为s,或强度为0.2,抗拉强度为b。
高温工作时,应考虑蠕变极限为N,断裂强度为D。
(2)塑性是指金属材料在断裂前产生塑性变形的能力。
塑性指标包括:断裂伸长率,断裂后试样的相对伸长率;面积圆的减少,断裂点上横截面积的相对减少;和冷弯(角)α,即角测量标本时第一个裂纹在拉伸弯曲表面。
(3)韧性是指金属材料抵抗冲击载荷的能力。
韧性通常表达的冲击能量AK和冲击韧性值αk . k值或αk值不仅反映了材料的耐冲击,但也有些敏感材料的缺陷,可以敏感地反映材质的细微变化,宏观缺陷和微观结构。
而且AK对材料的脆性转变非常敏感,可以通过低温冲击试验来测试钢的冷脆性。
断裂韧度是衡量材料韧性的一个新的指标,它反映了材料的抗裂纹扩展能力。
(4)硬度,硬度是衡量材料硬度和柔软度的性能指标。
硬度测试的方法很多,原理不一样,硬度值和意义也不完全相同。
最常用的是静载荷压痕硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值代表材料表面抵抗坚硬物体冲击的能力。
肖氏硬度(HS)属于回弹硬度试验,其值代表金属的弹性变形功。
因此,硬度不是一个简单的物理量,而是反映材料的弹性、塑性、强度和韧性的综合性能指标。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
材料的力学性能试验.

第一章 材料的力学性能试验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
第一节 拉伸试验一、实验目的1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。
2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。
3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。
4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。
5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。
二、实验设备和仪器1.万能试验机。
2.引伸仪。
3.游标卡尺。
三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
定标距试样的l 与A 之间无上述比例关系。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )(b ) 图1-1 拉伸试样(a )圆形截面试样;(b )矩形截面试样四、实验原理与方法 1.测定低碳钢的弹性常数实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。
常见材料的力学性能

附录常用材料的力学及其它物理性能一、玻璃的强度设计值 fg(MPa)JGJ102-2003表5.2.1二、铝合金型材的强度设计值 (MPa )GB50429-2007表4.3.4三、钢材的强度设计值(1-热轧钢材) fs(MPa) JGJ102-2003表5.2.3四、钢材的强度设计值(2-冷弯薄壁型钢) fs(MPa) GB50018-2002表4.2.1五、材料的弹性模量E(MPa)JGJ102-2003表5.2.8、JGJ133-2001表5.3.9六、材料的泊松比υJGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7七、材料的膨胀系数α(1/℃)JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7八、材料的重力密度γg (KN/m3)JGJ102-2003表5.3.1、GB50429-2007表4.3.7九、板材单位面积重力标准值(MPa)JGJ133-2001表5.2.2一十、螺栓连接的强度设计值一(MPa) JGJ102-2003表B.0.1-1一十一、螺栓连接的强度设计值二(MPa) GB50429-2007表4.3.5-1一十二、焊缝的强度设计值(MPa) JGJ102-2003表B.0.1-3一十三、不锈钢螺栓连接的强度设计值(MPa) JGJ102-2003表B.0.3一十四、楼层弹性层间位移角限值GB/T21086-2007表20一十五、部分单层铝合板强度设计值(MPa)JGJ133-2001表5.3.2一十六、铝塑复合板强度设计值(MPa)JGJ133-2001表5.3.3一十七、蜂窝铝板强度设计值(MPa)JGJ133-2001表5.3.4一十八、不锈钢板强度设计值(MPa)JGJ133-2001表5.3.5附录常用材料的力学及其它物理性能一十九、玻璃的强度设计值 fg(N/mm2)JGJ102-2003表5.2.1二十、铝合金型材的强度设计值 fa(N/mm2)JGJ102-2003表5.2.2二十一、钢材的强度设计值(1-热轧钢材)fs(N/mm2)JGJ102-2003表5.2.3二十二、钢材的强度设计值(2-冷弯薄壁型钢) fs(N/mm2) GB50018-2002表4.2.1二十三、材料的弹性模量E(N/mm2)JGJ102-2003表5.2.8、JGJ133-2001表5.3.9二十四、材料的泊松比υ。
重常见材料的力学性能

附录常用材料的力学及其它物理性能
表 5.2.1 '
ΠP
十六、铝塑复合板强度设计值(MPa)
十七、蜂窝铝板强度设计值(MPa)
十八、不锈钢板强度设计值(MPa)
附录常用材料的力学及其它物理性能
十九、玻璃的强度设计值f (N∕≡2)
g
二十、铝合金型材的强度设计值f (N∕≡2)a
二十一、钢材的强度设计值(1-热轧钢(N/nw)
Wf 8
二十二、钢材的强度设计值(2-冷弯薄壁型钢)f (N∕mm
)
2
S
二十三、材料的弹性模量E(N∕mm
)
2
二十四、材料的泊松比U
二十五、材料的膨胀系数α (1/℃)
二十六、材料的重力密度Y (KN/m3)
) 二十七、板材单位面积重力标准值(N∕m
2
)
二十八、螺栓连接的强度设计值(NZmm
2
二十九、焊缝的强度设计值(N/nw)
三十、不锈钢螺栓连接的强度设计值(N∕π≡)
三十一、楼层弹性层间位移角限值
三十二、局部单层铝合板强度设计值(MPa)
三十三、铝塑复合板强度设计值(MPa)
三十四、蜂窝铝板强度设计值(MPa)
三十五、不锈钢板强度设计值(MPa)。
材料力学性能

材料力学性能-CAL-FENGHAI.-(YICAI)-Company One1第一章一.静载拉伸实验拉伸试样一般为光滑圆柱试样或板状试样。
若采用光滑圆柱试样,试样工作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。
二.工程应力:载荷除以试件的原始截面积。
σ=F/A0工程应变:伸长量除以原始标距长度。
ε=ΔL/L0低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。
三.低碳钢拉伸力学性能1.弹性阶段(Ob)(1)直线段(Oa):线弹性阶段,E=σ/ε(弹性模量,比例常数)σp—比例极限(2)非直线段(ab):非线弹性阶段σe—弹性极限2. 屈服阶段(bc)屈服现象:当应力超过b点后,应力不再增加,但应变继续增加,此现象称为屈服。
σs—屈服强度(下屈服点),屈服强度为重要的强度指标。
3.强化阶段(ce)材料抵抗变形的能力又继续增加,即随试件继续变形,外力也必须增大,此现象称为材料强化。
σb—抗拉强度,材料断裂前能承受的最大应力4.局部变形阶段(颈缩)(ef)试件局部范围横向尺寸急剧缩小,称为颈缩。
四.主要力学性能指标弹性极限(σe):弹性极限即指金属材料抵抗这一限度的外力的能力2E 21a 2e e e e σεσ==屈服强度(σs ):抵抗微量塑性变形的应力五.铸铁拉伸力学性能特点:(1)较低应力下被拉断(2)无屈服,无颈缩(3)延伸率低(4)σb —强度极限(5)抗压不抗拉讨论1:σs 、σr0.2、σb 都是机械设计和选材的重要论据。
实际使用时怎么办?塑性材料:σs 、σr0.2脆性材料:σb屈强比:σs /σb 讨论2:屈强比σs /σb 有何意义?屈强比 s / b 值越大,材料强度的有效利用率越高,但零件的安全可靠性降低。
六.弹性变形及其实质定义:当外力去除后,能恢复到原来形状和尺寸的变形。
特点:单调、可逆、变形量很小 (<0.5~1.0%)七.弹性模量1、物理意义:材料对弹性变形的抗力。
材料的力学性能

材料的力学性能材料是机械产品制造所必须的物质基础,材料的力学性能包括使用性能和工艺性能。
使用性能:是指材料在使用过程中表现出来的性能,它包括力学性能和物理、化学性能等。
工艺性能:是指材料对各种加工工艺适应的能力,它包括铸造性能、锻造性能、焊接性能、切削加工性能和热处理工艺性能等。
切削加工的过程一般在常温下,在不改变材料物理、化学性能的前提下,去除材料上多余金属,使之成为成品的过程。
材料的力学性能是指材料在外力作用下所表现的抵抗能力。
材料的力学性能是确定材料切削加工方案的主要依据。
1.1材料的强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。
强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs 表示。
抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。
对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。
低碳钢拉伸试验铸铁拉伸试验结论一:在切削加工中,假定其他条件不变,则随着被加工材料强度极限(或弹性模量)的增大,切削力也随之增大,机床负荷增加。
而且在工件安装方面,注意要有足够的夹紧力。
2材料的塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。
工程中常用的塑性指标有伸长率和断面收缩率。
(1)伸长率AA= (L1-L0)/L0 ×100%式中: L0—试样原标距的长度(mm)L1—试样拉断后的标距长度(mm)(2) 断面收缩率φ断面收缩率是指试样拉断后断面处横截面积的相对收缩值。
φ= (A0-A1)/A0 ×100%式中:A0—试样的原始截面积(mm2)A1—试样断面处的最小截面积(mm2)伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。
第一章 材料的力学性能

第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。
2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。
3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。
4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。
5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。
6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。
7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。
8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。
9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。
10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。
11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。
用于测定没有明显屈服现象的材料的屈服强度。
12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。
13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。
14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。
15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。
16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。
17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。
金属材料的力学性能

金属材料的力学性能(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除复习旧课1、材料的发展历史2、工程材料的分类讲授新课第一章金属材料的力学性能材料的性能有使用性能和工艺性能两类使用性能是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、化学性能等。
工艺性能是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻压性能、焊接性能、热处理性能、切削加工性能等。
力学性能是指金属在外力作用下所显示的性能能。
金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。
第一节刚度、强度与塑性一、拉伸试验及力—伸长曲线L 0——原始标距长度;L1——拉断后试样标距长度d 0——原始直径。
d1——拉断后试样断口直径国际上常用的是L0=5 d0(短试样),L0=10 d0(长试样)[拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为拉伸曲线图。
Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状Es段:屈服阶段Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化Bk段:局部塑性变形阶段二、刚度刚度:金属材料抵抗弹变的能力指标:弹性模量 E E= σ / ε (Gpa )弹性范围内. 应力与应变的比值(或线形关系,正比)E↑刚度↑一定应力作用下弹性变形↓三、强度指标σ= F/S o强度:强度是指材料抵抗塑性变形和断裂的能力。
强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。
单位采用N/mm2(或MPa 兆帕)σ= F/Aoσ——应力(MPa);F——拉力(N);S o——截面积(mm2)。
常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。
1、屈服点与条件屈服强度[屈服强度]σs 产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。
工程材料力学性能考试题.doc

解释下列名词。
弹性比功:1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始型性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,滞弹性:也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
循环韧性:4.包申格效应:金属材料经过预先加载产生少量型性变形,卸载后再同1侃加载,规定残余伸长应力增加;包申格效应:反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.型性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
塑性:韧性:韧性:指金属材料断裂前吸收索性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
解理台阶8. 河流花样:8.河流花样:河流花样解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一-定品体学平面产生解理面的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
穿晶断裂沿晶断裂:沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.切脆转变:11 .韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧韧脆转变性断裂变为脆性断裂,这种现象称为韧脆转变1何谓拉伸断曰三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断曰特征三要素。
上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
常见材料的杨氏模量及力学性能

常见材料的杨氏模量及力学性能
常常常常常常常常常常常常常常.txt
低低低: 1.9~2.1*105MPa
黄黄常常常常常常常的0.96*105-1.1*105MPa之之
LY12铝铝铝常铝常常常铝铝70GPa
由由由由铝铝铝,如6061、6063、LY12(相相由相相2024、2124)、LY16(2219)、LC4(7075)常抗抗抗抗的310-570Mpa之之黄常铜铜铜铜386J/KG*K
铁常铜铜铜铜460J/KG*K
铝常铜铜铜铜900J/KG*K
鋁常鋁鋁鋁鋁鋁: (SI unit)
Density = 2.7020E+03
Thermal Conductivity = 2.3700E+02
Specific Heat Capacity at Constant Pressure = 9.0300E+02
Thermal Diffusivity = 9.7135E-05
为为为为为低为常为为低为为为低常为为为为?
低低常为为为为为常为由为为低铜碳为低低碳为为低之之铝碳碳碳常碳碳:
1.为为低不铝不不不,通常通ó0.2来来来来不不来常来来为铜相常鋁。
2.来常/来由应应由应为应,为为低常铝常不不不不铜不不来常常50%,就就就就就为就常最最鋁最最,来不不来常鋁低由就低低常不不来常鋁。
常常就就为就材ó0.2常最最鋁,对由对对对就为常对常对为为低,来鋁不不铜240N/mm2,但铜,常常常材材抗抗材材材铜来鋁材材15%,为为设设来设设材抗抗鋁设设设的设。
Page 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试题内容:直径为d的拉伸比例试样,其标距长度l只能为10d。
( )试题答案:答:非试题内容:直径为d的拉伸比例试样,其标距长度l只能为5d。
()试题答案:答:非试题内容:圆柱形拉伸试样直径为d,常用的比例试样其标距长度l是5d或10d。
()试题答案:答:是试题内容:直径为d的拉伸非比例试样,其标距长度l和d无关。
()试题答案:答:是试题内容:Q235钢进入屈服阶段以后,只发生弹性变形。
()试题答案:答:非试题内容:低碳钢拉伸试验进入屈服阶段以后,只有塑性变形。
()试题答案:答:非试题内容:低碳钢拉伸试验进入屈服阶段以后,只发生线弹性变形。
()试题答案:答:非试题内容:低碳钢拉伸试验进入屈服阶段以后,发生弹塑性变形。
( )试题答案:答:是试题内容:低碳钢拉伸应力-应变曲线的上、下屈服极限分别为1s σ和2s σ,则其屈服极限s σ为1s σ。
( )试题答案:答:非试题内容:低碳钢拉伸应力-应变曲线的上、下屈服极限分别为1s σ和2s σ,则其屈服极限s σ为2s σ。
( )试题答案:答:是试题内容:拉伸试验测得材料的上、下屈服极限分别为1s σ和2s σ,则材料的屈服极限s σ为22s 1s σσ+。
( )试题答案:答:非试题内容:拉伸试验测得材料的上、下屈服极限分别为1s σ和2s σ,则材料的屈服极限S σ为22s 1s σσ-。
( )试题答案:答:非铸铁的强度指标是s σ。
( )试题答案:答:非试题内容:铸铁的强度指标是b σ。
( )试题答案:答:是试题内容:铸铁的极限应力是s σ和b σ。
( )试题答案:答:非试题内容:铸铁的强度指标是δ和s σ。
( )试题答案:答:非试题内容:材料的塑性指标有s σ和b σ。
( )试题答案:答:非试题内容:材料的塑性指标有s σ和ε。
( )试题答案:答:非材料的塑性指标有δ和ψ。
( )试题答案:答:是试题内容:材料的塑性指标有s σ、ε和ψ。
( )试题答案:答:是试题内容:工程上通常把伸长率%5≥δ材料称为塑性材料。
( )试题答案:答:是试题内容:工程上通常把伸长率%5.0>δ材料称为塑性材料。
( )试题答案:答:非试题内容:工程上通常把伸长率%5.0<δ材料称为塑性材料。
( )试题答案:答:非试题内容:工程上通常把伸长率%2.0<δ材料称为塑性材料。
( )试题答案:答:非冷作硬化是指由于材料温度降低,其弹性极限提高,塑性降低的现象。
()试题答案:答:非试题内容:冷作硬化是指由于材料温度降低,其弹性极限提高,泊松比降低的现象。
()试题答案:答:非试题内容:冷作硬化是指材料经过塑性变形,其比例极限提高,塑性降低的现象。
()试题答案:答:是试题内容:冷作硬化现象是指经过塑性变形,其弹性模量提高,塑性降低。
()试题答案:答:非试题内容:钢材经过冷作硬化处理后,其弹性模量基本不变。
()试题答案:答:是试题内容:钢材经过冷作硬化处理后,其比例极限基本不变。
()试题答案:答:非经过冷作硬化处理后的钢材,其伸长率基本不变。
()试题答案:答:非试题内容:复合材料的力学性能随加力方向变化,即为各向异性。
()试题答案:答:是试题内容:比较铸铁的力学性能是抗剪能力比抗拉能力差。
()试题答案:答:非试题内容:比较铸铁的力学性能是抗剪能力比抗拉能力强。
()试题答案:答:是试题内容:比较铸铁的力学性能是抗剪能力比抗压能力强。
()试题答案:答:非试题内容:比较铸铁的力学性能是抗拉能力最差、抗剪能力居中、抗压能力最强。
()试题答案:答:是复合材料的力学性能变化与加力方向无关。
()试题答案:答:非试题内容:与常温相比,在低温环境下,碳钢的强度降低,塑性提高。
()试题答案:答:非试题内容:与常温相比,在低温环境下,碳钢的强度、塑性提高。
()试题答案:答:非试题内容:铸铁的压缩强度比拉伸强度高。
()试题答案:答:是试题内容:拉伸试样标距原长l,拉断后标距长度l1内既包括了整个工作段的均匀伸长,也包括“颈缩”部分的局部伸长。
()试题答案:答:是试题内容:拉伸试样拉断后的标距长度l1是断裂时试样的长度。
()试题答案:答:非拉伸试样拉断后的标距长度l1是断裂后试样的长度。
()试题答案:答:非试题内容:拉伸试样拉断后的标距长度l1是断裂时试验段(标距)的长度。
()试题答案:答:非试题内容:拉伸试样拉断后的长度l1是断裂后试验段(标距)的长度。
()试题答案:答:是试题内容:低碳钢试样拉伸时,除了弹性阶段变形时均匀外,其他阶段变形都是不均匀的。
()试题答案:答:非试题内容:低碳钢试样在整个拉伸过程中,变形都是均匀的。
()试题答案:答:非试题内容:低碳钢试样在整个拉伸过程中,变形都是不均匀的。
()试题答案:答:非试样拉断后的长度与拉断时(拉断前瞬时)的长度一样。
()试题答案:答:非试题内容:试样拉断后的长度与拉断时(拉断前瞬时)的长度不一样。
()试题答案:答:是试题内容:伸长率δ的大小是和试样工作段的长度与横截面尺寸的比值有关。
()试题答案:答:是试题内容:伸长率δ的大小是和试样工作段的长度与横截面尺寸的比值无关。
()试题答案:答:非试题内容:伸长率δ的大小是和试样工作段的长度有关与横截面尺寸无关。
()试题答案:答:非试题内容:伸长率δ的大小是和试样工作段的长度无关与横截面尺寸有关。
()试题答案:答:非以下关于材料力学一般性能的结论中哪一个是正确的? (A )脆性材料的抗拉能力低于其抗压能力; (B )脆性材料的抗拉能力高于其抗压能力; (C )塑性材料的抗拉能力高于其抗压能力; (D )塑性材料的抗拉能力高于其抗剪能力。
正确答案是 。
试题答案:答:A试题内容:关于低碳钢材料在拉伸试验过程中,所能承受的最大应力,在以下结论中哪一个是正确的?(A )比例极限; p σ (B )屈服极限; s σ (C )强度极限; b σ (D )许用应力 ][σ。
正确答案是 。
试题答案:答:C试题内容:材料的主要强度指标是哪几个以下结论哪一个是正确的? (A ); s p σσ和 (B ) s σ和ψ; (C ); b δσ和 (D )b s σσ和。
正确答案是 。
试题答案:答:D脆性材料的强度指标是什么?以下结论哪一个是正确的?(A ); s p σσ和(B )s σ和ψ;(C ); b σ(D ); b s σσ和 。
正确答案是 。
试题答案:答:C试题内容:铸铁拉伸试验破坏由什么应力造成?破坏断面在什么方向?以下结论哪一个是正确的?(A )切应力造成,破坏断面在与轴线夹角45º方向;(B )切应力造成,破坏断面在横截面;(C )正应力造成,破坏断面在横截面;(D )正应力造成,破坏断面在与轴线夹角45º方向。
正确答案是 。
试题答案:答:C试题内容:铸铁压缩试验破坏由什么应力造成?破坏断面在什么方向?以下结论哪一个是正确的?(A )切应力造成,破坏断面与轴线大致成45º方向;(B )切应力造成,破坏断面在横截面;(C )正应力造成,破坏断面在横截面;(D )正应力造成,破坏断面与轴线大致夹角成45º方向。
正确答案是 。
试题答案:答:A对于没有明显屈服阶段的塑性材料,通常以 2.0σ表示屈服极限。
其定义有以下四个结论,正确的是哪一个?(A )产生2%的塑性应变所对应的应力值作为屈服极限;(B )产生0.02%的塑性应变所对应的应力值作为屈服极限;(C )产生0.2%的塑性应变所对应的应力值作为屈服极限;(D )产生0.2%的应变所对应的应力值作为屈服极限。
正确答案是 。
试题答案:答:C试题内容:工程上通常以伸长率区分材料,对于脆性材料有四种结论,哪一个是正确?(A ); 5% <δ(B ); 0.5% <δ(C ); 2% <δ(D )。
% 0.2 <δ正确答案是 。
试题答案:答:A试题内容:关于材料的冷作硬化现象有以下四种结论,正确的是哪一个?(A )由于温度降低,其比例极限提高,塑性降低;(B )由于温度降低,其弹性模量提高,泊松比减小;(C )经过塑性变形,其比例极限提高,塑性降低;(D )经过塑性变形,其弹性模量提高,泊松比减小。
正确答案是 。
试题答案:C钢材经过冷作硬化处理后,基本不变的量有以下四种结论,正确的是哪一个?(A)弹性模量;(B)比例极限;(C)伸长率;(D)断面收缩率。
正确答案是。
试题答案:答:A试题内容:关于铸铁力学性能有以下四个结论,正确的是哪一个?(A)抗剪能力比抗拉能力差;(B)抗剪能力比抗拉能力强;(C)抗剪能力比抗压能力强;(D)抗剪能力等于抗拉能力。
正确答案是。
试题答案:答:B试题内容:关于直径为d的拉伸比例试样,其标距长度l有以下结论,正确的是哪一个?(A)只能为10d;(B)只能为5d;(C)为10d或5d;(D)大于等于10d。
正确答案是。
试题答案:答:C关于测定材料性能指标时,应采用标距范围内的最小横截面尺寸。
以下结论中,正确的是哪一个?(A )E 和ν;(B )s σ和b σ;(C )E 和s σ;(D )E 、ν和s σ。
正确答案是 。
试题答案:答:B试题内容: 关于应力—应变曲线的纵、横坐标分为A F=σ,ε=ll ∆,其中以下结论中,正确的是哪一个?(A )A 和l 均为初始值;(B )A 和l 均为瞬时值;(C )A 为初始值,l 为瞬时值;(D )A 为瞬时值,l 为初始值。
正确答案是 。
试题答案:答:A试题内容:现有两种说法:○1弹性变形中的σ-ε关系一定是线性的;○2弹塑性变形中的 σ-ε关系一定是非线性的。
若不考虑卸载情况,则以下说法哪一个是正确的?(A )○1正确, ○2错误; (B )○1和○2都正确; (C )○2正确, ○1错误; (D )○1和○2都错误。
正确答案是 。
试题答案:答:C进入屈服阶段以后,材料发生一定变形。
则以下结论哪个是正确的?(A ) 弹性;(B ) 线弹性;(C ) 塑性;(D )弹塑性。
正确答案是 。
试题答案:答:D试题内容:关于解除外力后,消失的变形和残余的变形的定义,以下结论哪个是正确的?(A )分别称为弹性变形、塑性变形;(B )通称为塑性变形;(C )分别称为塑性变形、弹性变形;(D )通称为弹性变形。
正确答案是 。
试题答案:答:A试题内容:关于铸铁的极限应力有以下结论,哪个是正确的?(A )s σ;(B )b σ;(C )s σ和b σ;(D )p σ、s σ和b σ。
正确答案是 。
试题答案:答:B关于材料的塑性指标有以下结论,哪个是正确的?(A )s σ和δ;(B )s σ和ψ;(C )δ和ψ;(D )s σ、δ和ψ。
正确答案是 。
试题答案:答:C试题内容:工程上通常用伸长率区分材料,以下关于脆性材料的划分,哪个是正确的?(A )δ<5%;(B )δ<0.5%;(C )δ<5;(D )δ<0.5。