材料科学基础(东北大学)第六章
(NEW)东北大学材料与冶金学院《829材料科学基础》历年考研真题汇编
![(NEW)东北大学材料与冶金学院《829材料科学基础》历年考研真题汇编](https://img.taocdn.com/s3/m/9d69c69d0912a216147929b5.png)
目 录2015年东北大学829材料科学基础考研真题(回忆版)2014年东北大学829材料科学基础考研真题2013年东北大学材料科学基础考研真题(回忆版)2012年东北大学材料科学基础考研真题(回忆版)2009年东北大学材料科学基础考研真题(回忆版)2008年东北大学材料科学基础考研真题(回忆版)2007年东北大学材料科学基础考研真题(回忆版)2006年东北大学材料科学基础考研真题(回忆版)2005年东北大学材料科学基础考研真题(回忆版)2004年东北大学429材料科学基础(A卷)考研真题2003年东北大学材料科学基础考研真题2002年东北大学427材料科学基础考研真题2001年东北大学424材料科学基础考研真题2015年东北大学829材料科学基础考研真题(回忆版)一、名词解释1.裂纹偏转增韧2.硬取向3.晶带定律4.蠕变5.反应扩散二、简述热力学条件和动力学条件在材料结构转变的作用、影响,举两个实际生活中利用热力学条件和动力学条件进行相关制备材料的例子。
三、金属在冷变形核和退火过程中的缺陷如何变化及相关变化的驱动力。
四、分别写出纯金属、铝铜合金、三氧化二铝金属基复合材料可以采用的强化措施。
五、写出块型转变、马氏体转变、脱溶分解的界面微观特征。
六、(1)K0>1时滑出下面三种凝固后固体棒溶质浓度分布图。
(a)固相不能充分扩散,液相可以充分对流。
(b)固相不能充分扩散,液相仅有对流。
(c)固相不能充分扩散,液相对流不充分。
(2)考察一个成分过冷的计算题。
七、分别告诉了A、B组元的扩散常数和扩散激活能(具体数值不记得),由A、B组成扩散偶,问扩散界面会向哪一方移动以及空位会在哪里聚集。
八、三元共晶液相投影图相图的计算(1)说明一标定成分点的娥组织转变工程。
(2)画液相相图过三角形顶点引的一条直线的垂直截面图。
2014年东北大学829材料科学基础考研真题。
材料科学基础(各章总结)讲诉
![材料科学基础(各章总结)讲诉](https://img.taocdn.com/s3/m/96a66b8c453610661fd9f422.png)
第一章:结晶学基础一、晶体的基本概念晶体:晶体是内部质点在三维空间按周期性重复排列的固体。
晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的平行六面体一致。
晶体的基本性质:晶体均一性、各向异性、自限性、对称性、最想内能性。
等同点:晶体结构中物质环境和几何环境完全相同的点。
空间格子:联结分布在三维空间内的结点就构成了空间格子。
单位平行六面体:在空间格子中,所选取的平行六面体的对称性符合整个空间点阵的对称性;棱与棱之间的直角应力求最多;在遵循上两个条件的前提下,所选取的平行六面体的体积应最小。
考虑到对称性不能为直角时,选结点间距最小的行列做平行六面体的棱,棱间交角接近直角。
按照上述选择原则选取的平行六面体称为单位平行六面体。
点群(对称型):结晶多面体中全部对称要素的组合,称为该结晶多面体的对称型。
由于在结晶多面体中,全部对称要素相交于一点(晶体几何中心),在进行对称操作时该点不移动,所以对称型也称为点群。
平移群:晶体结构中所有平移轴的结合。
空间群:在一个晶体结构中所存在的一切对称要素的集合。
二、晶体的对称要素对称中心(符号C):假想的几何点,相应的对称变换是对于这个点的倒反。
对称面(符号P):假想的平面,相应的对称变换是对此平面的反映。
对称轴(符号L n):假想的直线,相应的对称变换是绕此直线的旋转。
倒转轴(符号L i n):一种复合对称要素,由一根假想的直线和此直线上的一个定点构成。
相应的对称变换是绕此直线旋转一定角度以及对此定点的倒反。
映转轴(符号L s n):一种复合对称要素,由一根假想的直线和垂直此直线的一个平面构成。
相应的对称变换是绕此直线旋转一定角度以及对此平面的反映。
三、晶体的对称分类七个晶系包括:三斜晶系、单斜晶系、正交(斜方)、三方晶系、四方(正方)晶系、六方晶系和等轴(立方)晶系四、各晶系的几何常数五、结晶符号1、晶面符号(米氏符号也称晶面符号):(hkl)表示2、晶棱符号::[uvw]表示六、晶体的微观对称要素(1)平移轴:是一直线方向,相应的对称变换为沿此直线方向平移一定的距离。
材料科学基础第六章1
![材料科学基础第六章1](https://img.taocdn.com/s3/m/404121c10c22590102029d41.png)
• 面心立方金属的的孪晶面为(111),它与 (110)的交割线为[112],此方向即为孪晶方 向。
• 以(110)为纸面作图(b)可以看出:晶体变形 后,变形区域作均匀切变,每层(111)都相 对与其相邻晶面沿[112]方向位移了d112/3。 表明孪生时每层晶面的位错是借一个不全 位错的移动造成的,在本例中,b=a[112]/6。
• 应力达到σb后,材料均匀变形结束, σb叫材料的 抗拉强度(tensile strength ),是材料极限承载能 力的标志。
• 4 应力达到σb时,材料开始发生不均匀变形,形 成颈缩。应力随之迅速下降,达到σk时材料短裂。 σk叫条件断裂强度 (rupture strength ) 。
• 断裂后的试样残余变形量Δl=(lk-l0)与原始长 度l0的百分比称为延伸率δ(percentage of elongtation ) :
• 本章主要讨论金属材料的变形方式和塑性 变形机制,简单介绍陶瓷和高分子材料的 变形特点。
• 6.1 金属的应力-应变曲线 • 6.1.1 工程应力-应变曲线(以低碳钢为例) • 1 当应力低于σe时,应力与应变成正比:
σ=Eε • E称为弹性模量, • 表示材料的刚性。 • 此应力范围内撤 • 去应力则变形完 • 全消失,称为弹 • 性变形。
• τk=σsm 或:σs=τk/m
(6-7)
• m称为取向因子或斯密特(Schmid)因子。
m越大,分切应力越大,越有利于滑移。
• 当滑移面法线、滑移方向和外力轴处于同 一平面且φ=45º时,
• m=cosφcos(90º-φ)=sin2φ/2=0.5。
• 此时m值最大,σs最小,最有利于滑移, 称为软取向;外力与滑移面平行(φ=90º)或 垂直(φ=0)时,σs,晶体不能滑移,此种 取向称为硬取向。
材料科学基础第六章2
![材料科学基础第六章2](https://img.taocdn.com/s3/m/516cf477a417866fb84a8e41.png)
• 卸载后放置较长时间或短时加热,熔质原子又通 过扩散重新在位错处形成柯氏气团,屈服点又重 新出现。
• 屈服点的出现还与位错增殖有关。晶体塑性变形 会引发大量的位错增殖,如F-R源和双交滑移等, 位错大量增殖后,晶体内能增大,在维持一定的
• 加工硬化过程是一个应力和应变均匀分布 的过程,结果使塑性变形能均匀分布于整 个工件。但是,变形抗力也会不断加大, 增加动力及设备消耗。
• 而且,随冷变形量的增加,材料屈服强度 往往比抗拉强度增加更快,导致两者的差 值减小,塑性变形阶段缩短,材料超载容 易断裂。因此深度冷加工必须严格控制载 荷,或者增加中间退火工序。
• 4 熔质原子与基体原子的价电子数相差越大, 强化作用越大。
• 固熔强化的实质是熔质原子与位错的弹性 交互作用、电交互作用和化学交互作用阻 碍了位错的运动,其中弹性交互作用最强。
• 以正刃位错为例:较大的置换型熔质原子 容易积聚在位错下方,较小的容易积聚在 位错上方;而间隙型原子总是积聚在位错 下方。
• 点阵畸变能使金属处于热力学不稳状态, 是金属回复和再结晶的驱动力。
• 6.5.4塑性变形对性能的影响
• 6.5.4.1 应变硬化:也称加工硬化。指塑性 变形时,随内部组织结构变化,金属的强 度、硬度上升,塑性、韧性下降的现象。
• 加工硬化是强化金属的重要方法,固态无 相变材料不能用热处理强化,便可用冷轧 之类的应变强化工艺提高强度。
• 第二相粒子尺寸与基体晶粒相当的称为聚 合型合金;第二相很细且弥散分布于基体 中的称弥散型合金。
• 6.4.2.1 聚合型两相合金的变形:如果两相都具有 较好塑性,则合金变形阻力取决于两相的体积分 数。可按等应变理论或等应力理论计算的平均流 变应力或平均应变。
第5章 凝固-材料科学基础东北大学
![第5章 凝固-材料科学基础东北大学](https://img.taocdn.com/s3/m/4bc62edc5022aaea998f0f73.png)
凝固后
液相浓度随凝固距离的变化规律
x k0 1 C L ( x) C0 (1 ) L
平衡凝固
●
固体中溶质的分布曲线为:
x k0 1 C s ( x) k 0C0 (1 ) L
液相完全混合
(2)夜相不完全混合 液体中在液固接触面有层流边界层, 存在溶质的聚集边界层以外对流混合均匀
●
2 由:dΔG/dr = 0,得晶核的临界半径: Gv 2Tm3 3 16 16 临界形核功: GK 3(Gv ) 2 3( Lm T ) 2 rk
过冷度ΔT越大,临界晶核的尺寸越小, 临界形核功减少, 形核的几率增大。 ● 过冷度ΔT为0时,临界形核功和临界晶核的尺寸为∞, 形核不可能发生。 2 16 2 临界晶核的表面积: AK 4 (rk ) 2 G v 1 所以: G K AK
●
ΔG =ΔGv•4/3•πr3 + σ•4πr2
3
● 临界晶核形成时自由能是升高的,液固两相体积自由能的差只能补偿
形成临界晶核表面所需能量的2/3,另外的1/3需要靠液相中的 能量起伏来补充。
● 形核的条件:结构起伏和能量起伏达到一定临界值
原子扩散几率因子
2 形核率(nucleation ratio) 控制形核率的主要因素: 1) 形核功因子: exp(―ΔGk/(RT)), 体系中出现高于能量ΔGk所出现的几率 2) 原子扩散几率因子: exp(―ΔGA/(RT)), ΔGA为原子越过液固相的激活能. 形核率
' k
2 L / S Gv
2 3 cos cos 3 G Gk ( ) 4
● 非均匀形核与均匀形核具有相同的临界半径;
随着过冷度增加,临界半径和临界形核功下降, 有利形核;
(NEW)东北大学材料与冶金学院《829材料科学基础》历年考研真题汇编
![(NEW)东北大学材料与冶金学院《829材料科学基础》历年考研真题汇编](https://img.taocdn.com/s3/m/9d69c69d0912a216147929b5.png)
目 录2015年东北大学829材料科学基础考研真题(回忆版)2014年东北大学829材料科学基础考研真题2013年东北大学材料科学基础考研真题(回忆版)2012年东北大学材料科学基础考研真题(回忆版)2009年东北大学材料科学基础考研真题(回忆版)2008年东北大学材料科学基础考研真题(回忆版)2007年东北大学材料科学基础考研真题(回忆版)2006年东北大学材料科学基础考研真题(回忆版)2005年东北大学材料科学基础考研真题(回忆版)2004年东北大学429材料科学基础(A卷)考研真题2003年东北大学材料科学基础考研真题2002年东北大学427材料科学基础考研真题2001年东北大学424材料科学基础考研真题2015年东北大学829材料科学基础考研真题(回忆版)一、名词解释1.裂纹偏转增韧2.硬取向3.晶带定律4.蠕变5.反应扩散二、简述热力学条件和动力学条件在材料结构转变的作用、影响,举两个实际生活中利用热力学条件和动力学条件进行相关制备材料的例子。
三、金属在冷变形核和退火过程中的缺陷如何变化及相关变化的驱动力。
四、分别写出纯金属、铝铜合金、三氧化二铝金属基复合材料可以采用的强化措施。
五、写出块型转变、马氏体转变、脱溶分解的界面微观特征。
六、(1)K0>1时滑出下面三种凝固后固体棒溶质浓度分布图。
(a)固相不能充分扩散,液相可以充分对流。
(b)固相不能充分扩散,液相仅有对流。
(c)固相不能充分扩散,液相对流不充分。
(2)考察一个成分过冷的计算题。
七、分别告诉了A、B组元的扩散常数和扩散激活能(具体数值不记得),由A、B组成扩散偶,问扩散界面会向哪一方移动以及空位会在哪里聚集。
八、三元共晶液相投影图相图的计算(1)说明一标定成分点的娥组织转变工程。
(2)画液相相图过三角形顶点引的一条直线的垂直截面图。
2014年东北大学829材料科学基础考研真题2013年东北大学材料科学基础考研真题(回忆版)2012年东北大学材料科学基础考研真题(回忆版)一、名词解释(25分)1.点群2.二次再结晶3.超塑性4.相5.扩散激活能二、1.写出(111)晶面所有的滑移系,并在晶胞中画出。
材料科学基础第六章
![材料科学基础第六章](https://img.taocdn.com/s3/m/edac58e9b52acfc788ebc950.png)
比较固体与液体的有关数据可知: (1)液体中原子之间的平均距离比固体中略大。 (2)液体中原子的配位数比密排结构晶体的配位数小, 通常在8-11的范围内,故熔化时体积略微膨胀; 但对非密排结构的晶体如:Sb,Bi,Ga,Ge等,则液 态时配位数反而增大,故熔化时体积略为收缩。 (3)液态中原子排列混乱度增加。
二是依靠外来夹杂所提供的异相界面非自发不 均 匀 地 形 核 。 叫 做 非 均 匀 形 核 ( heterogeneous nucleation)。
29
一、均匀形核
均匀形核是液体结构中不稳定的近程排列的原 子集团(晶坯)在一定条件下转变为稳定的固相晶 核的过程。
1、均匀形核的能量条件
均匀形核必须在过冷液态金属中进行,这时在 液相中存在结构起伏使得短程有序的原子集团成为 均匀形核的“胚芽”,即晶胚。过冷液态中出现晶 胚(embryo)后,整个体系△G发生变化:
37
ΔG*与(ΔT)2成反比,因此,过冷度越大,所需的
形核功越小。
临界晶核的表面积为: A * 4(r * 2 )1 L 2 m 6 T 2 T 2 m 2
代入
G*
316G v32 得: G *1 3A*
因此,当r=r*时,临界晶核形成时自由能仍
是增高的,增高值等于其表面能的1/3,L→S体积
33
因此,半径为r*的晶核称为临界晶核,而r*
为临界半径。 r* 2
Gv
只有那些略大于临界半径的晶核,才能 作为稳定晶核而长大,所以金属凝固时,晶
核必须要求等于或大于临界晶核。
34
将 GVLTm m T 代入
r* 2
Gv
得:
r*2Tm
LmT
因此,临界半径由过冷度ΔT决定,过冷
材料科学基础习题参考答案.docx
![材料科学基础习题参考答案.docx](https://img.taocdn.com/s3/m/1370a616050876323012129a.png)
材料科学基础习题参考答案 第一章材料结构的基本知识8.计算下列晶体的离于键与共价键的相对比例。
(1) NaF (2) CaO (3) ZnS解:(1)查表得:X Na =0.93,X F =3.98--(0.93-3.98)2根据鲍林公式可得NaF 中离子键比例为:[1-e 4 ]x 100% = 90.2%共价键比例为:1-90.2%=9.8%--(1.00-3.44 )2(2) 同理,CaO 中离子键比例为:[1-e 4 ]x 100% = 77.4%共价键比例为:1-77.4%=22.6%(3) ZnS 中离子键比例为:Z“S 中离子键含量=[1 -£-1/4'2-58-165)2]x 100% = 19.44% 共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关 系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件; 动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是 稳态或亚稳态,取决于转变过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得 到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定;亚稳态 结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
1.第二章九材料中的騒須勾)与[2廊1)与[112], (110)与[111], (132)与[123], (322)与[236]指数。
题: 系的 (21 在立方晶系的一个晶胞虫画出(111丄和丄112、日面.才晶系的画出同M1)、■'朋两晶面交钱亠 1]晶向。
112) d2. 有一正交点阵的a=b, c=a/2o 某晶面在三个晶轴上的截距分别为6个、2个和4个原子 间距,求该晶面的密勒指数。
东北大学材料科学基础名词解释
![东北大学材料科学基础名词解释](https://img.taocdn.com/s3/m/95de18bd1a37f111f1855bb3.png)
第一章晶体结构1、晶体:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质。
2、晶体多面体:这种具有规则外形的单晶体称为晶体多面体。
3、对称:就是几何形状中相同部分有规律的重复出现。
4、对称变换(对称操作):对称形体经一定变换后恢复原状,此种变换称为对称变换。
5、对称元素:任一对称变换总是要凭借一几何点(点、直线、平面)进行,这些几何元素称为对称元素。
6、宏观对称:晶体多面体是有限图形,它所具有的对称称为宏观对称。
7、微观对称:原子之间的排列,所具有的对称。
8、非晶体:固体物质的结构基元仅有短程有序的排列,而没有长程有序的排列的固体物质。
9、单晶体:连续的、均匀的、各向异性的晶体。
10、多晶体:单晶体通过晶界和相界聚合而成的晶体。
11、准晶体:具有5次对称及其它有取向序而无平移序的物质。
12、纳米晶:利用极冷技术可以获得的晶粒尺寸达到微米和纳米的超级晶粒。
13、阵点:是把原子或原子集团按某种规律抽象成一个几何点,这些点称为阵点。
14、空间点阵(晶体点阵):为了便于研究晶体中的原子、分子的排列情况,近似将其抽象为规则排列于空间的无数几何点,这些点的周围环境相同,这些点的空间排列称为空间点阵。
15、同素异形(构)(晶)转变:同一种元素,不同的晶体结构在一定条件下将发生相互转变,称为同素异形转变。
16、晶胞:从晶体中选取一个能够完全反应晶格特征的最小几何单元。
17、晶格:是一个空间点阵用不在同一平面上的三个方向的平行直线束串接起来,构成一空间格架。
18、晶体结构:是指组成晶体的结构基元(分子、原子、离子、原子集团)依靠一定的结合键结合后,在三维空间作有规律的周期性重复排列方式。
(晶体结构=空间点阵+结构基元)19、复合点阵:把实际晶体结构也看成一个点阵,但不是单一的布拉维点阵,而是由几个布拉维点阵穿插而成的点阵。
20、晶粒:组成多晶材料的许多外表类似的多面体颗粒。
21、点群:在晶体多面体中,由反演、反映、旋转、象转和镜转这几类宏观对称操作构成的对称群。
东北大学01-07材料科学基础考研真题
![东北大学01-07材料科学基础考研真题](https://img.taocdn.com/s3/m/792314aad1f34693daef3ec8.png)
2001年1.在晶格常数为a的面心立方晶胞中,画出{111}晶面族的全部晶面并标出各自的晶面指数,计算面间距。
(12′)2.晶粒直径为50um,若在晶界萌生位错所需要的应力约为G/30,晶粒中部有位错源,问要多大的外力才能使晶界萌生位错?(13′)3. 含碳量为百分之3.5的铁-碳合金,在室温时由哪两个相组成?各占的重量百分数是多少?并计算室温时珠光体和莱氏体的百分含量。
(12′)4.再结晶后的晶粒大小如何计算?与哪些因素有关?为何多数金属材料再结晶后晶粒尺寸随预定形变量的关系会在百分之10变形量附近出现一个峰值?(13′)5.材料发生蠕变时通常符合的指数定律,对于同一种材料讨论说明式中的n 会不会随试验温度变化?试验测定n值的目的是什么?在例如800摄氏度的试验温度下,金属材料和陶瓷材料的n值由什么不同?(13′)6.什么是电子的分子轨道?为什么有的同类原子会形成分子?有的同类原子不形成分子?是否原子间核外电子越多,形成的分子就轨道越多?是否形成的分子轨道越多,形成的分子的结合键就越强?回答问题并给予简单讨论。
(12分)7.解释名词(1)复合强化(2)晶界偏析(3)应变疲劳(4)扩散激活能(20′)2002年1.画出面心立方体的(111)和(100)面,计算面间距和面密度。
证实晶面的间距越大,原子面密度越高。
(15′)2.假定一块钢进行热处理时,加热到850摄氏度后,快冷到室温,铁中空位的形成能是104Kj/mol,R=8332J/K mol.。
试计算,从20摄氏度加热到850摄氏度以后,空位的数目应当增加多少倍?扼要解释快速淬冷到室温后,这些“额外”的空位会出现什么情况?如果缓慢冷却呢?(12′)3.三元相图中含有液相的四相区有哪几种形状?请分别画出并标出四个相的位置和进入与离开四相区的液相成分随温度变化的投影线,写出对应的各四相反应的表达式。
讨论四相区零自由度的含意。
(13′)4.课本第153页习题第2题。
东北大学材料科学基础(826)名词解释
![东北大学材料科学基础(826)名词解释](https://img.taocdn.com/s3/m/76c200ced5bbfd0a79567317.png)
东北大学材料科学基础(826)名词解释1、晶体[2008年]原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。
2、中间相两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
3、亚稳相亚稳相指的是热力学上不能稳定存在,但在快速冷却或加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。
4、配位数晶体结构中任一原子周围最近邻且等距离的原子数。
5、再结晶[2002年、2003年、2004年、2006年B]冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。
(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6、伪共晶[2006年A]非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。
7、交滑移当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。
8、过时效铝合金经固溶处理后,在加热保温过程中将先后析出GP区,θ″,θ′,和θ。
在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ′,这时材料的硬度强度将下降,这种现象称为过时效。
9、形变强化金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。
10、固溶强化由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。
11、弥散强化许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。
12、不全位错[2014年]柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
13、扩展位错[2007年]通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。
《材料科学基础》习题及参考答案
![《材料科学基础》习题及参考答案](https://img.taocdn.com/s3/m/46aea76bd0d233d4b04e6918.png)
形核功,还是可以成核的。
答案
(7)测定某纯金属铸件结晶时的最大过冷度,其实测
值与用公式ΔT=0.2Tm计算值基本一致。
答案
(8) 某些铸件结晶时,由于冷却较快,均匀形核率N1
提高,非均匀形核率N2也提高,故总的形核率为N=
N1 +N2。
答案
返回
53
(9) 若在过冷液体中,外加10 000颗形核剂,则结晶
❖ ②比较Cu-10% Sn合金铸件和Cu-30%合金铸件的铸造性能 及铸造组织,说明Cu-10% Sn合金铸件中有许多分散砂眼的 原因。
③ω(Sn}分别为2%,11%和15%的青铜合金,哪一种可进行 压力加工?哪种可利用铸造法来制造机件?
答案
返7回8
❖ 9.如下图所示,已知A,B,C三组元固态完全不互溶,质量 分数分别84%A,,10%B,10%C的O合金在冷却过程中将进 行二元共晶反应和三元共晶反应,在二元共晶反应开始时, 该合金液相成分(a点)为60%A,20%B,20%C,而三元共 晶反应开始时的液相成分(E点)为50%A,10%B,40%C。
答案
返回
6
❖ 6.位错受力后运动方向处处垂直于位错线,在运动
过程中是可变的,晶体作相对滑动的方向应是什么
方向?
答案
❖ 7.位错线上的割阶一般如何形成?
答案
❖ 8.界面能最低的界面是什么界面?
答案
❖ 9. “小角度晶界都是由刃型位错排成墙而构成的”这
种说法对吗?
答案
返回
7
三、综合题
❖ 1. 作图表示立方晶体的(123)(0 -1 -2) (421)晶面及[-102][-211][346]晶向。 答案
❖ 9. 在Fe中形成1mol 空位的能量为104. 67kJ,
材料科学基础(东北大学)第六章
![材料科学基础(东北大学)第六章](https://img.taocdn.com/s3/m/d9a61e37b4daa58da0114a98.png)
Al2O3 A
LiTaO3
0.2m
LiTaO3颗粒内裂纹发生大角度偏转的TEM照片
Domain Crack
LiTaO3 Particle
如:铁电/压电性畴转变增韧机制,在压电陶瓷材料中,利用使产生裂纹
的外应力转变为电能,从而达到增韧的目的。
ZrO2 颗粒弥散在其他陶瓷 ( 包括 ZrO2 本身 ) 基体中,由于两者具有不同
的热膨胀系数,烧结完成后,在冷却过程中,ZrO2颗粒周围则有不同的
受力情况,当它受到压抑,四方相ZrO2(t-ZrO2)的相变也将受到压抑。 使得瓷体中部分t- ZrO2 在烧成冷却过程中以亚稳态保存下来。 在室温时, ZrO2 颗粒仍以四方相存在, 它有一种力图膨胀而变成单斜相 的自发倾向; 当外力作用时, 陶瓷的内应力可使四方相的ZrO2粒子解除约束,发生四方 相ZrO2( t- ZrO2) 转变成单斜相( m- ZrO2) 的马氏体相变, 引起体积膨胀。
1/ 2
式中E1为主裂纹尖端含有微裂纹材料的弹性模量,fs为显微裂纹密 度,W为过程区宽度的一半,为显微裂纹引起的膨胀应变。
微裂纹增韧同样对温度和粒子尺寸很敏感,合适的颗粒尺寸是大于应力诱 发相变的临界尺寸而小于自发产生危险裂纹的临界尺寸,并且应减小 基质与粒子间的热失配,使其产生最大的相变张应力。 微裂纹的密度大到一定程度后,就会使裂纹相互连接,形成大裂纹,反而 使韧性下降。
替代式溶质原子在基体晶格中造成的畸变大都是球 面对称的,因而强化效果要比填隙式原子小
6.1.2 形变强化(加工硬化)
定义 强化机理
金属在塑性变形过程中位错密度不断增加,使弹性应 力场不断增大,位错间的交互作用不断增强,因而位
错的运动越来越困难—位错强化
东北大学材料科学基础
![东北大学材料科学基础](https://img.taocdn.com/s3/m/02cef5f2bceb19e8b8f6ba88.png)
C C1 C2 C1 C2 erf ( )
2
2
C1 C2 C1 C2 erf x
2
2
2 Dt
(10-16)
C C1 C2 C1 C2 erf ( )
2
2
C1 C2 C1 C2 erf x
2
2
2 Dt
对于焊接面,x=0, β=0, erf(β)=0, C=(C1+C2)/2。
v总= vm +vD
(10-20)
若扩散组元的体积浓度为Ci,原子的扩散速度为
vi,则扩散通量Ji可写成
Ji = Ci vi
(10-21)
根据(10-20)和(10-21),二元系A,B两组元各自 相对于观察者的扩散通量分别为
J
A
总
CA
vm
vD
A
CAvm
J
A
JB 总 CB vm vD B CBvm JB (10-22)
C
C2 2
1 erf
2
x Dt
(10-17)
10.1.2.2 半无限长物体中的扩散
低碳钢工件渗碳处理是扩散原理在工业生产中 应用的实例。
设低碳钢工件原始含碳量为C1,在渗碳气氛中 将其加热至奥氏体相区某一温度(如930℃)进行 渗碳处理。
渗碳开始后工件表面碳浓度很快达到一恒定值。
=J1A 单位时间内扩散物质流出体积元的质量(或原子数)
=J2A 单位时间内扩散物质在体积元内积存的质量(或原
子数)=J1A-J2A 由于体积元很小,所以
J2A
J1A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖强化机理
➢不易形变的粒子
包括弥散强化的粒子以及沉淀强化的大尺寸粒子
位错绕过机制(Orowan,奥罗万机制)
运动位错线在 不易形变粒子 前受阻、弯曲
外加切应力的 增加使位错弯 曲,直到在A、 B处相遇
位错线方向相反 位错线绕过的A、BFra bibliotek遇抵 粒子,恢复
消,留下位错环, 原态,继续
位错增殖
向前滑移
❖强化机理
第六章 材料的强化与增韧
金属材料
• 结构材料 陶瓷材料
高分子材料
最重要的性能指标:强度
材料强度按失效的形式可分为屈服强度、 断裂强度、抗拉强度和疲劳强度等。
从性能特点来说,材料总可以分为塑性材 料和脆性材料两大类。
对结构材料,最重要的性能指标是强度和韧性。 * 强 度:材料抵抗变形和断裂的能力; * 韧 性:材料变形和断裂过程中吸收能量的能力。
• 增强体的高强,高摸提高了复合材料的强度和
模量,是增强的主要原因。
• 另外复合效应,即受力时纤维和基体的变形互
相牵制,使纤维和基体都得到强化也是强化原 理。
• 2、短纤维和晶须增强复合材料
• 增强效果不如连续纤维增强复合材料,但成本
低,各向异性程度小。
• 增强原理:受力时,基体和纤维由于紧密结合,
-纳力τP-N高于基体等,都会引起临界切应力增加
➢长程交互作用(作用距离大于10b)
✓ 由于粒子与基体的点阵不同(至少是点阵常数不同), 导致共格界面失配,从而造成应力场
第二相粒子强化的最佳粒子半径
• 综合考虑切过、绕过两种机制,估算出第二相粒子强化的
最佳粒子半径rc=(G·b2)/(2·σs)
6.1.6 复合强化
临界尺寸dc,十几到二十纳米之间 反Hall-Petch效应
6.1.4-6.1.5 第二相粒子强化
❖分类
➢通过相变(热处理)获得 析出硬化、沉淀强化或时效强化
➢通过粉末烧结或内氧化获得 弥散强化
❖强化效果
➢相粒子的强度、体积分数、间距、粒子的形状 和分布等都对强化效果有影响
➢第二相粒子强化比固溶强化的效果更为显著
➢易形变的粒子
包括弥散强化的粒子以及沉淀强化的大尺寸粒子
位错切割机制
位错切过粒子的示意图
Ni-19% Cr-6% Al合金中位错切过 Ni3Al粒子的透射电子显微像
切过粒子引起强化的机制
➢短程交互作用
✓ 位错切过粒子形成新的表面积,增加了界面能 ✓ 位错扫过有序结构时会形成错排面或叫做反相畴,产
生反相畴界能 ✓ 粒子与基体的滑移面不重合时,会产生割阶; 粒子的派
即在裂纹尖端应力场的作用下, ZrO2 粒子发生四方相单斜相的相变而 吸收了能量, 外力做了功, 从而提高了断裂韧性。
另外,相转变增韧也是可以应用于功能陶瓷的。 如:铁电/压电性畴转变增韧机制,在压电陶瓷材料中,利用使产生裂纹 的外应力转变为电能,从而达到增韧的目的。
ZrO2颗粒弥散在其他陶瓷(包括ZrO2本身)基体中,由于两者具有不同 的热膨胀系数,烧结完成后,在冷却过程中,ZrO2颗粒周围则有不同的 受力情况,当它受到压抑,四方相ZrO2(t-ZrO2)的相变也将受到压抑。 使得瓷体中部分t- ZrO2 在烧成冷却过程中以亚稳态保存下来。 在室温时, ZrO2 颗粒仍以四方相存在, 它有一种力图膨胀而变成单斜相 的自发倾向;
间隙式原子在基体中与刃位错和螺位错产生弹性交 互作用,使金属获得强化。
➢ 替代式溶质原子在基体晶格中造成的畸变大都是球 面对称的,因而强化效果要比填隙式原子小
6.1.2 形变强化(加工硬化)
❖定义 ❖强化机理
金属在塑性变形过程中位错密度不断增加,使弹性应 力场不断增大,位错间的交互作用不断增强,因而位
霍耳-配奇(Hall-Petch)关系式
❖σy = σi+ky·d-1/2
σi和ky是两个和材料有关的常数,d为晶粒直径
➢ 常规的多晶体(晶粒尺寸大于100nm) ➢ 纳米微晶体材料(晶粒尺度在1-100nm间) 中,
✓在纳米晶粒,晶界核心
区原子所占的比例可高 达50%
✓理论模拟的结果显示存
在一个临界尺寸dc
6.1 塑性材料的强化机制
增加材料内部的缺陷,提高强度
即在金属中引入大量的缺陷,以阻碍位错的运动
❖固溶强化 ❖形变强化 ❖细晶强化 ❖第二相变强化 ❖复合强化
6.1.1 固溶强化
❖ 定义 ❖ 本质
利用点缺陷对位错运动的阻力使金属基体获得强化
❖ 强化机理
➢ 间隙固溶体
碳、氮等间隙式溶质原子嵌入金属基体的晶格间隙 中,使晶格产生不对称畸变造成的强化效应
能
6.1.3 细晶强化
❖定义 ❖强化机理
➢晶界对位错滑移的阻滞效应
当位错运动时,由于晶界两侧晶粒的取向不同,加 之这里杂质原子较多,增大了晶界附近的滑移阻力, 因而的滑移带不能直接进入一侧晶粒中
➢晶界上形变要满足协调性
需要多个滑移系统同时动作,这同样导致位错不易 穿过晶界,而是塞积在晶界处
—晶粒越细,晶界越多,位错阻滞效应越显著, 多晶体的强度就越高
• 1、长纤维增强原理
可以用混合定则很好地描述和预测复合材料的性能。
Pc=f1p1n+f2p2n+f3p3n+f4p4n+…… Pc :复合材料的某一性质,如强度,模量,热导率等。 pi :组成复合材料的基体或增强体的某性质 Fi:体积分数, f1+f2+f3+f4+…=100% n:常数,由实验确定,范围为-1≤n≤1。
纤维限制基体的变形,在界面产生剪应力,通 过剪应力将复合材料承受的载荷分配在纤维和 基体上,纤维受到比基体更大的拉应力。
6.2 脆性材料的增韧机制
❖相变增韧 ❖微裂偏转增韧 ❖复合增韧 ❖钝化裂纹
6.2.1 相变增韧
而相变颗粒的剪切应力和体积膨胀对基体产生压应变, 使裂纹停止延伸, 以致需要更大的能量才使主裂纹扩展。
错的运动越来越困难—位错强化
❖作用
➢提高材料的强度 ➢使变形更均匀 ➢防止材料偶然过载引起破坏
❖不利方面
➢ 金属在加工过程中塑性变形抗力不断增加,使金属的 冷加工需要消耗更多的功率
➢ 形变强化使金属变脆,因而在冷加工过程中需要进行 多次中间退火,使金属软化,才能够继续加工
❖限制
➢ 使用温度不能太高,否则由于退火效应,金属会软化 ➢ 对于脆性材料,一般不宜利用应变硬化来提高强度性
提高材料的强度和韧性,可以节约材料、降低 成本、增加材料在使用过程中的可靠性和延长服役寿 命,对国民经济和人类社会可持续发展具有重要意义。
所以人们在利用材料的力学性能时,总希望材 料既具有足够的强度,又有较好的韧性。但通常的材 料往往二者不可兼得。
理解材料的强化和韧化机理,以提高材料的强度 和韧性。