第四章课后习题
第四章酸碱滴定法课后习题及答案
第四章酸碱滴定法课后习题及答案第四章酸碱滴定法习题4-14.1 下列各种弱酸的p K a已在括号内注明,求它们的共轭碱的pK b;(1)HCN(9.21);(2)HCOOH(3.74);(3)苯酚(9.95);(4)苯甲酸(4.21)。
4.2 已知H3PO4的p K a=2.12,p K a=7.20,p K a=12.36。
求其共轭碱PO43-的pK b1,HPO42-的pK b2.和H2PO4-的p K b3。
4.3 已知琥珀酸(CH2COOH)2(以H2A表⽰)的p K al=4.19,p K b1=5.57。
试计算在pH4.88和5.0时H2A、HA-和A2-的分布系数δ2、δ1和δ0。
若该酸的总浓度为0.01mol·L-1,求pH=4.88时的三种形式的平衡浓度。
4.4 分别计算H2CO3(p K a1=6.38,pK a2=10.25)在pH=7.10,8.32及9.50时,H2CO3,HCO3-和CO32-的分布系数δ2` δ1和δ0。
4.5 已知HOAc的p Ka = 4.74,NH3·H2O的pKb=4.74。
计算下列各溶液的pH值:(1) 0.10 mol·L-1HOAc ;(2) 0.10 mol·L-1 NH3·H2O;(3) 0.15 mol·L-1 NH4Cl;(4) 0.15 mol·L-1 NaOAc。
4.6计算浓度为0.12 mol·L-1的下列物质⽔溶液的pH(括号内为p Ka)。
(1)苯酚(9.95);(2)丙烯酸(4.25);(3)吡啶的硝酸盐(C5H5NHNO3)(5.23)。
解:(1) 苯酚(9.95)4.7 计算浓度为0.12 mol·L-1的下列物质⽔溶液的pH(p Ka:见上题)。
(1)苯酚钠;(2)丙烯酸钠;(3)吡啶。
4.8 计算下列溶液的pH:(1)0.1mol·L-1NaH2PO4;(2)0.05 mol·L-1K2HPO4。
自动控制原理课后习题第四章答案
G(s)H(s)=
Kr s(s+1)(s+3)
σ根 s=3-K+ω轨r4-3-迹+p4s132ω1-3的+~3ω32分p===s2-离+001K点.p-3r=3:KK~0θrr===012+ωω6021,o=3,=0+±1810.7o
8
jω
1.7
s1
A(s)B'系(s)统=根A'轨(s迹)B(s)
s3 p3
s=sK2±r没=j24有.8.6位×于2K.r根6=×4轨80.迹6=上7,. 舍去。
2
第四章习题课 (4-9)
4-9 已知系统的开环传递函数,(1) 试绘制出
根轨迹图。
G(s)H与(s虚)=轴s交(0点.01s+1K)(系0.统02根s+轨1迹)
jω
70.7
解: GKK(rr=s=)10H5(0s)=ωω2s1,(3=s=0+±17000K.7)r(s+50)
s1
A(s)B'(系s)统=A根'(轨s)迹B(s)
s3 p3
p2
p1
-4
-2
0
((24))ζ阻=尼03.振5s2荡+1响2应s+s的81==K-r0值0.7范+围j1.2
s=s-s10=3=.-80-56.8+50K.7r×=20=s.82-=54×-.631..1155×3.15=3.1
-2.8
450
1080
360
0σ
0σ
第四章习题课 (4-2)
4-2 已知开环传递函数,试用解析法绘制出系
统的根轨迹,并判断点(-2+j0),(0+j1),
统计学第四章课后题及答案解析
第四章一、单项选择题1.由反映总体单位某一数量特征的标志值汇总得到的指标是()A.总体单位总量B.质量指标C.总体标志总量D.相对指标2.各部分所占比重之和等于1或100%的相对数()A.比例相对数 B.比较相对数 C.结构相对数 D.动态相对数3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为()A.104.76%B.95.45%C.200%D.4.76%4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度()A.14.5%B.95%C.5%D.114.5%5.在一个特定总体内,下列说法正确的是( )A.只存在一个单位总量,但可以同时存在多个标志总量B.可以存在多个单位总量,但必须只有一个标志总量C.只能存在一个单位总量和一个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.大量的B.同质的C.有差异的D.不同总体的7.几何平均数的计算适用于求()A.平均速度和平均比率B.平均增长水平C.平均发展水平D.序时平均数8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3B.13C.7.1D.79.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.方差B.极差C.标准差D.变异系数10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是( )A.两个总体的标准差应相等B.两个总体的平均数应相等C.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用()A.简单算术平均数B.加权算术平均数C.加权调和平均数D.几何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。
计算机网络课后习题参考答案第四章
第四章网络层1.网络层向上提供的服务有哪两种?是比较其优缺点。
网络层向运输层提供“面向连接”虚电路(Virtual Circuit)服务或“无连接”数据报服务前者预约了双方通信所需的一切网络资源。
优点是能提供服务质量的承诺。
即所传送的分组不出错、丢失、重复和失序(不按序列到达终点),也保证分组传送的时限,缺点是路由器复杂,网络成本高;后者无网络资源障碍,尽力而为,优缺点与前者互易2.网络互连有何实际意义?进行网络互连时,有哪些共同的问题需要解决?网络互联可扩大用户共享资源范围和更大的通信区域进行网络互连时,需要解决共同的问题有:不同的寻址方案不同的最大分组长度不同的网络接入机制不同的超时控制不同的差错恢复方法不同的状态报告方法不同的路由选择技术不同的用户接入控制不同的服务(面向连接服务和无连接服务)不同的管理与控制方式3.作为中间设备,转发器、网桥、路由器和网关有何区别?中间设备又称为中间系统或中继(relay)系统。
物理层中继系统:转发器(repeater)。
数据链路层中继系统:网桥或桥接器(bridge)。
网络层中继系统:路由器(router)。
网桥和路由器的混合物:桥路器(brouter)。
网络层以上的中继系统:网关(gateway)。
4.试简单说明下列协议的作用:IP、ARP、RARP和ICMP。
IP协议:实现网络互连。
使参与互连的性能各异的网络从用户看起来好像是一个统一的网络。
网际协议IP是TCP/IP体系中两个最主要的协议之一,与IP协议配套使用的还有四个协议。
ARP协议:是解决同一个局域网上的主机或路由器的IP地址和硬件地址的映射问题。
RARP:是解决同一个局域网上的主机或路由器的硬件地址和IP地址的映射问题。
ICMP:提供差错报告和询问报文,以提高IP数据交付成功的机会因特网组管理协议IGMP:用于探寻、转发本局域网内的组成员关系。
5.IP地址分为几类?各如何表示?IP地址的主要特点是什么?分为ABCDE 5类;每一类地址都由两个固定长度的字段组成,其中一个字段是网络号net-id,它标志主机(或路由器)所连接到的网络,而另一个字段则是主机号host-id,它标志该主机(或路由器)。
第四章利率期货课后习题及答案
第四章利率期货复习思考题4.1.利率期货的定义是什么,包含哪些品种?4.2.欧洲美元期货是如何报价的?4.3.3,欧洲美元期货的理论价格如何计算?4.4.欧洲美元期货的隐含远期利率与远期利率有什么差异?为什么?4.5.写出我国国债期货转换因子的计算公式,并说明符号的含义。
4.6.写出基于最便宜交割债券价格的国债期货理论报价公式。
4.7.国债期货名义国债设计带来哪些特殊概念。
4.8.最便宜交割债的作用有哪些?4.9.转换因子的特征有哪些?4.10.债券报价为何采取净价报价?4.I1.2007年1月8日,某投资者想锁定在2007年6月20日开始的3个月的利率,投资面值为500万美元。
因此,投资者买入了5个价格为94.79的欧洲美元合约。
问:该投资者锁定的利率水平是多少?4.12.交易者认为美国经济正在走强,同时中期国债收益率将会提高(5年期与10年期)。
该交易者以12025/32的价格卖出10份2014年3月的5年期美国中期国债期货合约。
交易者的观点正确无误。
经济数据继续表明美国经济正在逐步走强。
5年期国债收益率增加,2014年3月的5年期中期国债期货价格下跌。
交易者以12003/32的价格买回10份2014年3月的5年期中期国债期货合约,试计算交易者的损益情况。
4.13.美国当月首个周五公布的每月非农业就业人数大大逊于预期。
这表示经济走弱程度出乎人们意料。
结果使得国债收益率下降,美国国债期货价格上涨。
交易者注意到2014年3月10年期中期国债期货对该报告做出这样的反应:仅出现了从12505/32涨至12515/32的小幅反弹。
他认为数据走弱是一次重大意外,而越来越多的参与者不久将需要买入中期国债。
交易者以12515.5/32的价格买入10份2014年3月10年期中期国债期货合约。
交易者的观点正确无误。
中期国债收益率继续下降,10年期中期国债期货价格进一步上涨。
1小时之后交易者以12523/32的价格重新卖出10份2014年3月10年期中期国债期货合约。
大学化学课后习题答案解析(第四章)
第四章电化学与金属腐蚀1.是非题(对的在括号内填“+”,错的填“-”号)(1)取两根铜棒,将一根插入盛有0.1mol·dm-3CuSO4溶液的烧杯中,另一根插入盛有1mol·dm-3CuSO4溶液的烧杯中,并用盐桥将两只烧杯中的溶液连结起来,可以组成一个浓差原电池。
( )(2)金属铁可以置换Cu2+,因此三氯化铁不能与金属铜反应。
( )(3)电动势E(或电极电势φ)的数值与反应式(或半反应式)的写法无关,而标准平衡常数Kθ的数据,随反应式的写法(即化学计量数不同)而变。
( )(4)钢铁在大气的中性或弱酸性水膜中主要发生吸氧腐蚀,只有在酸性较强的水膜中才主要发生析氢腐蚀。
( )(5)有下列原电池(-)Cd|CdSO4(1.0mol·dm-3)||CuSO4(1.0mol·dm-3)|Cu(+) 若往CdSO4溶液中加入少量Na2S 溶液,或往CuSO4溶液中加入少量CuSO4·5H2O晶体,都会使原电池的电动势变小。
( )解:(1)+;(2)–;(3)+;(4)+;(5)–。
2.选择题(将所有正确答案的标号填入空格内)(1)在标准条件下,下列反应均向正方向进行:Cr2O72 - +6Fe2++14H+=2Cr3++6Fe3++7H2O2Fe3++Sn2+=2Fe2++Sn4+它们中间最强的氧化剂和最强的还原剂是______。
(a)Sn2+和Fe3+(b)Cr2O72 -和Sn2+(c)Cr3+和Sn4+(d)Cr2O72 -和Fe3+(2)有一个原电池由两个氢电极组成,其中有一个是标准氢电极,为了得到最大的电动势,另一个电极浸入的酸性溶液[设p(H2)=100kPa]应为(a)0.1mol·dm-3HCl (b)0.1mol·dm-3HAc+0.1mol·L-1NaAc(c)0.1mol·dm-3Hac (d)0.1mol·dm-3H3PO4(3)在下列电池反应中Ni(s)+Cu2+(aq)→Ni2+(1.0mol·dm-3)+Cu(s)当该原电池的电动势为零时,Cu2+浓度为(a)5.05×10-27mol·dm-3(b)5.71×10-21mol·dm-3(c)7.10×10-14mol·dm-3(d)7.56×10-11mol·dm-3(4)电镀工艺是将欲镀零件作为电解池的();阳极氧化是将需处理的部件作为电解池的()。
第四章的课后习题答案
第四章各节答案第一节 牛顿第一定律基础训练1.D 2.C 3.CD 4.C 5.C 6.D 7.D8.他忽略了车子还要受到摩擦力,当停止用力时,车由于受到摩擦力就会停下来。
如果没有摩擦力车子就会永远运动下去,力不是维持运动的原因。
能力提高1.CD 2.B 3.ABC 4.AB 5.AD 6.A 7.D8.(1)车做匀速直线运动,(2)向右做匀加速运动或向左做匀减速运动,(3)向左做匀加速运动或向右做匀减速运动9.可靠的实验事实、原来的速度作匀速直线 ②③①④ ② ①③④ 力来维持 伽利略 理想实验法10.小球落下后保持原来的速度,因车做减速运动,所以小球落在O 点的前方。
答案为 g a 2第二节 实验:探究加速度与力、质量的关系基础训练1. 物体的质量。
2.作用力。
3.C. 4.正比。
5、B.6、a 1=mg/2m=g/2,a 2=mg/m=g∴a 2=2 a 1,故C正确。
7、ABD8、解析:本题设计原理是利用滑块在斜面做匀加速运动时,其加速度为a=gsin θ-μgcos θ得出μ=tanθ-a/gcos θ则需要求出L d h t,∴μ=h/d-2l2/gt2d,为减小误差应多测量几次取平均值。
能力提高1. C2.(1)图略 (2)图像可以看出,加速度与力成正比,与质量的倒数成反比。
(3)在图像上取一点求得斜率就得到物体的质量为0.35kg,(4)在图像上取一点求得斜率就得到作用力为4.02N .3.(1)a =4.00m/s 2。
(2)小车质量m ;斜面上沿下滑方向任意两点间的距离l 及这两点的高度差h 。
4.(1)探究加速度与力、质量的关系的原理是利用控制变量法,则有:①当作用力不变时,加速度与质量的倒数成正比;②当物体的质量不变时,加速度与作用力成正比。
(2) 到的仪器还有C D F .5.D 6.11.0==ga μ 7.由图可知,当拉力从0增到F0的过程中,物体的加速度为零,说明小车处于静止状态,因此必然存在一个力与拉力大小相等方向相反,这个里一定是小车受到的摩擦力。
大学物理课后习题答案(第四章) 北京邮电大学出版社
习题四4-1 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题4-1图解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置;第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力.(2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题 中所述,S ∆<<R ,故R S∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg t mR -=22d d令R g=2ω,则有0d d 222=+ωθt4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串(2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21kk k +=并同上理,其振动周期为212k k m T +='π4-3 如题4-3图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R .先把物体托住,使弹簧维持原长,然 后由静止释放,试证明物体作简谐振动,并求振动周期.题4-3图解:分别以物体m 和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x 轴正向,则当重物偏离原点的坐标为x 时,有221d d sin t xm T m g =-θ①βI R T R T =-21②βR t x=22d d )(02x x k T +=③ 式中k mg x /sin 0θ=,为静平衡时弹簧之伸长量,联立以上三式,有kxRt xR I mR -=+22d d )(令I mR kR +=222ω 则有0d d 222=+x t x ω故知该系统是作简谐振动,其振动周期为)/2(22222K R I m kR I mR T +=+==ππωπ4-4 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又πω8.0==A v m 1s m -⋅51.2=1s m -⋅2.632==A a m ω2s m -⋅(2)N63.0==m m a FJ 1016.32122-⨯==m mv EJ1058.1212-⨯===E E E k p 当pk E E =时,有pE E 2=,即 )21(212122kA kx ⋅=∴ m 20222±=±=A x(3) ππωφ32)15(8)(12=-=-=∆t t4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)Ax -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动. 试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==0000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x )232cos(232πππφ+==t T A x )32cos(33πππφ+==t T A x )452cos(454πππφ+==t T A x 4-6 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量. 解:由题已知s 0.4,m 10242=⨯=-T A ∴1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯= (1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向.(2)由题知,0=t 时,00=φ,t t =时3,0,20πφ=<+=t v A x 故且 ∴s322/3==∆=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10s cm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知 12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又s 26.12,51082.03===⨯==-ωπωT m k 即m 102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v∴ m)455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m)23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴πω65=故 mt x b )3565cos(1.0ππ+=4-9 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为k mM +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则k mg x -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有M m ghm v +=20 于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)g m M kh x v )(2tan 000+=-=ωφ(第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k g M m kh k m g x )(2arctan cos )(214-10 有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量14s m kg 100.1--⋅⋅⨯=∆t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程.解:由动量定理,有0-=∆⋅mv t F∴1-34s m 01.0100.1100.1⋅=⨯⨯=∆⋅=--m t F v按题设计时起点,并设向右为x 轴正向,则知0=t 时,100s m 01.0,0-⋅==v x >0∴ 2/30πφ= 又1s rad 13.30.18.9-⋅===l g ω∴m 102.313.301.0)(302020-⨯===+=ωωv v x A故其角振幅rad 102.33-⨯==Θl A小球的振动方程为rad)2313.3cos(102.33πθ+⨯=-t4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.题4-11图解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A∴ m 1.02=A设角θ为O AA1,则 θcos 22122212A A A A A -+=即1.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
化工计算第四章物料衡算及课后习题及答案
第一节 物料衡算式 4—1 化工过程得类型
间歇操作 操作方式 半连续操作
连续操作
间歇操作: 原料一次加入,然后操作,最后一次出 料。
半连续操作: 进料分批,出料连续;或进料连 续,出料分批或一次。
特点: 间歇操作中,无物料进出设备,且设备内各 部分得组成和条件随时间而变。 半连续操作中,设备内各点得参 数(组成、条 件)随时间而变。
N元素平衡
2×0、79A=2N
烟道气总量
M+N+P+Q=100
过剩氧量
0、21A×0、25/1、25
=M 解上述6个方程得要求得结果。(过程略)
由上例可知计算基准选取恰当与否,对计算难 易影响。所以要重视计算基准选取。
基准选取中几点说明:
(1)上面几种基准具体选哪种(有时几种共 用)视具体条件而定,难以硬性规定。
4、 写出化学反应方程式
包括所有主副反应,且为配平后得,将各反应 得选择性、收率注明。
5、选择合适得计算基准,并在流程图上注明基准值 计算中要将基准交代清楚,过程中基准变换时,
要加以说明。 6、列出物料衡算式,然后求解
1)列物料衡算式
无化学反应体系,按:(4—1)、(4—3)(连续稳定过程) 式。
(二)取1mol 空气为计算基准 1mol 空气为计算基准中氧量为0、21mol
燃烧丙烷耗氧量 0、21/1、25=0、168 mol 燃烧丙烷得量 0、168/5=0、 0336mol
衡算结果列于下表:
输
入
输
出
组分 摩尔 克 组分 摩尔 克
C3H8 0、
44 CO2 0、101 132
0336
O2 0、21 200 H2O 0、135 72
第四章 课后习题及答案
第四章中学生学习心理课后习题及答案一、理论测试题(一)单项选择题1.当人从黑暗走入亮处后,视网膜的光感受阈限会迅速提高,这个过程是()。
A.适应B.对比C. 明适应D.暗适应2.人的视觉、听觉、味觉等都属于( )。
A.外部感觉B.内部感觉C.本体感觉D.机体感觉3.在热闹的聚会上或逛自由市场时,如果你与朋友聊天,朋友说话时的某个字可能被周围的噪音覆盖,但你还是知道你的朋友在说什么,这是知觉的()在起作用。
A、选择性B、整体性C、恒常性D、理解性4. 知觉的条件在一定范围改变时,知觉映像却保持相对稳定,这是知觉的()。
A.选择性B.整体性C.恒常性D.理解性5.大教室上课,教师借用扩音设备让全体学生清晰感知,这依据感知规律的()。
A.差异率B.强度率C.活动率D.组合率6.“万绿丛中一点红”容易引起人们的无意注意,这主要是由于刺激物具有()。
A.强度的特点B.新异性的特点C.变化的特点D.对比的特点7.小学低年级学生注意了写字的间架结构,就忽略了字的笔画,注意了写字而忘了正确的坐姿,原因是这个年龄阶段的学生()发展水平较低。
A.注意的广度B.注意的稳定性C.注意的分配D.注意的转移8.“视而不见,听而不闻”的现象,典型地表现了()。
A.注意的指向性B.注意的集中性C.注意的稳定性D.注意的分配性9.一种记忆特点是信息的保存是形象的,保存的时间短、保存量大,编码是以事物的物理特性直接编码,这种记忆是()。
A.短时记忆B.感觉记忆C.长时记忆D.动作记忆10.我们常常有这样的经验,明明知道对方的名字,但想不起来,这印证了遗忘的()。
A.干扰说B.消退说C.提取失败说D.压抑说11.学习后立即睡觉,保持的效果往往比学习后继续活动保持的效果要好,这是由于()。
A.过度学习B.记忆的恢复现象C.无倒摄抑制的影响D.无前摄抑制的影响12.遇见小时候的同伴,虽然叫不出他(她)的姓名,但确定是认识的,此时的心理活动是()。
大学物理课后习题答案第四章
第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
第四章 物质结构 元素周期律 课后习题
复习与提高1.下表列出了A~R,9种元素在周期表中的位置:周期族IA IIA ⅢA ⅣA VA VIA ⅦA 02 E F3 A C D G R4 B H请回答下列问题。
(1)这9种元素分别为:A ,B ,C ,D ,E ,F ,H ,R 。
其中化学性质最不活泼的是。
(2)D元素的最高价氧化物对应的水化物与氢氧化钠反应的离子方程式是。
(3)A、B、C三种元素按原子半径由大到小的顺序排列为。
(4)F元素氢化物的化学式是,该氢化物在常温下与B发生反应的化学方程式是,所得溶液的pH 7。
(5)H元素与A元素形成化合物的化学式是,高温灼烧该化合物时,火焰呈色。
2.雷雨天闪电时空气中有O,生成。
下列说法中,正确的是()。
A.O2和O3互为同位素B.O2和O3的相互转化是物理变化C.在相同的温度和压强下,等体积的O2和O3含有相同的分子数D.等物质的量的O2和O3含有相同的质子数3.Se是人体必需的微量元素。
下列关于和的说法中,正确的是()。
A. 和互为同位素B. 和都含有34个中子C. 和分别含有44个和46个质子D. 和含有不同的电子数4.下列关于物质性质的比较,不正确的是(A.酸性强弱:HIO4>HBrO4>HClO4B.原子半径大小:Na>S>OC.碱性强弱:KOH>NaOH>LiOHD.金属性强弱:Na>Mg>Al5.右图是部分短周期元素的单质及其化合物(或其溶液)的转化关系。
已知B、C、D是非金属单质,且在常温常压下都是气体,D常用于自来水的杀菌、消毒;化合物G的焰色试验呈黄色,化合物F通常状况下量气态。
请回答下列问题。
(1)A、B、C、D、E、F、G各为什么物质?(2)写出下列物质间反应的化学方程式:A和B;E和CO2。
(3)写出化合物G与F反应的离子方程式。
6.请查阅铯在周期表中的位置,预测铯的性质,并回答下列问题。
(1)铯原子的最外层电子数是多少?(2)铯和钾比较,谁的熔点高?(3)铯与水反应时,可能观察到什么现象?(4)铯和钾比较,谁的金属性强?试解释你的答案。
大学物理(第二版)上册课后习题详解第四章-静电场
11
C m-2。求此系统的电场分
布。 解 如题 4.10 图所示, 三个区域的场强由两平行无限大均匀带 电面产生的场强的叠加,其电场强度分别为
E2
E2
4.10 解图
E2
E1
1 , E2 2 2 0 2 0
设水平向右的方向为场强的正方向,则 左边区域:
EⅠ E1 E2
题 4.8 图
29
电荷为 Q2。求电场分布规律。 解 因电荷呈球对称分布,电场强度也为球对称分布,取半径为 r 的同心球面为高斯面, 由高斯定理得
2 E dS 4r E
q
0
当 r R1 时,该高斯面内无电荷,
q 0 ,故
Q1 (r 3 R13 ) ,故 3 R2 R13
4.2 一根不导电的细塑料杆,被弯成近乎完整的圆,圆的半径为 0.5m,杆的两端有 2cm 的缝隙, 3.12 10 C 的正电荷均匀地分布在杆上,求圆心处电场的大小和方向。 解 运用叠加原理,可以把带电体看成是一个带正电的整圆环和一段长为 2cm 带负电的 圆弧产生的电场的叠加,而圆环在中心产生的电场为零。所以电场就等于长为 2cm 的带负电 的圆弧产生的电场。由于圆弧长度远小于半径,故可看成是一点电荷,所以
q0 必须在两电荷之间才能平衡,设与 2q 之间的距离为 x ,若合力为零,则有
2qq0 qq0 1 2 4 0 x 4 0 (l x) 2 1
由此可得 x 2 4lx 2l 2 0 ,解此方程可得
x (2 2)l 。只能取负号,所以
x (2 2)l ,为稳定平衡状态。
q , 2l
x
dx
2l
4.11 解图
大学物理学课后习题4第四章答案
x 轴正方向运动,代表此简谐振动的旋转矢量图为
()
[答案:B]
(2)两个同周期简谐振动曲线如图所示,振动曲线 1 的相位比振动曲线 2
的相位 (
)
(A)落后
2
(B)超前
2
(C)落后
(D)超前
[答案: B]
习题 4.1(2)图
(3)一质点作简谐振动的周期是 T,当由平衡位置向 x 轴正方向运动时,从
E
1 2
mvm2
3.16 102 J
E p E k 1 E 1.58102 J 2
当 Ek E p 时,有 E 2E p ,
即
1 kx 2 1 ( 1 kA2 )
2
22
∴
x 2 A 2m
2
20
(3)
(t2 t1 ) 8 (5 1) 32
4.4 一个沿 x 轴作简谐振动的弹簧振子,振幅为 A ,周期为T ,其振动 方程用余弦函数表示.如果 t 0 时质点的状态分别是:
的单位是 s,则 (A)波长为 5m
向传播 [答案:C]
(B)波速为 10ms-1
(C)周期为 1 s 3
(D)波沿 x 正方
(8)如图所示,两列波长为 的相干波在 p 点相遇。波在 S1 点的振动初相是 1 ,点 S1 到点 p 的距离是 r1。波在 S2 点的振动初相是2 ,点 S2 到点 p 的距离是
(A)它的动能转化为势能. (B)它的势能转化为动能. (C)它从相邻的一段质元获得能量其能量逐渐增大. (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置
最新第四章 酸碱滴定法课后习题及答案资料
第四章酸碱滴定法习题4-14.1 下列各种弱酸的p K a已在括号内注明,求它们的共轭碱的pK b;(1)HCN(9.21);(2)HCOOH(3.74);(3)苯酚(9.95);(4)苯甲酸(4.21)。
4.2 已知H3PO4的p K a=2.12,p K a=7.20,p K a=12.36。
求其共轭碱PO43-的pK b1,HPO42-的pK b2.和H2PO4-的p K b3。
4.3 已知琥珀酸(CH2COOH)2(以H2A表示)的p K al=4.19,p K b1=5.57。
试计算在pH4.88和5.0时H2A、HA-和A2-的分布系数δ2、δ1和δ0。
若该酸的总浓度为0.01mol·L-1,求pH=4.88时的三种形式的平衡浓度。
4.4 分别计算H2CO3(p K a1=6.38,pK a2=10.25)在pH=7.10,8.32及9.50时,H2CO3,HCO3-和CO32-的分布系数δ2` δ1和δ0。
4.5 已知HOAc的p Ka = 4.74,NH3·H2O的pKb=4.74。
计算下列各溶液的pH值:(1) 0.10 mol·L-1HOAc ;(2) 0.10 mol·L-1 NH3·H2O;(3) 0.15 mol·L-1 NH4Cl;(4) 0.15 mol·L-1 NaOAc。
4.6计算浓度为0.12 mol·L-1的下列物质水溶液的pH(括号内为p Ka)。
(1)苯酚(9.95);(2)丙烯酸(4.25);(3)吡啶的硝酸盐(C5H5NHNO3)(5.23)。
解:(1) 苯酚(9.95)4.7 计算浓度为0.12 mol·L-1的下列物质水溶液的pH(p Ka:见上题)。
(1)苯酚钠;(2)丙烯酸钠;(3)吡啶。
4.8 计算下列溶液的pH:(1)0.1mol·L-1NaH2PO4;(2)0.05 mol·L-1K2HPO4。
第四章 高分子分子量及分布课后习题
第4章分子量及分子量分布一、思考题1.写出四种平均分子量的定义式,它们有什么样的大小顺序?2.利用稀溶液的依数性可测定高聚物的哪种平均分子量?简述测定数均相对分子质量的几种方法的测试原理。
3.用光散射法测定高聚物的质均相对分子质量时,为何对不同尺寸高分子的试样要采用不同的公式?4.黏度法中涉及哪几种黏度概念?它们之中何者与溶液的浓度无关?写出黏度法测黏均相对分子质量的过程及公式。
5.描述高聚物分子量分布有哪些方式?如何作出高聚物的积分质量分布曲线和微分质量分布曲线?6.体积排除理论是如何解释GPC 法的分级原理的?二、选择题1.已知[]1-=KM η,判断以下哪一条正确? ( ) ①n M M =η ②W M M =η ③ηM M M M Z W n ===2.下列哪个溶剂是线型柔性高分子的良溶剂? ( ) ①1χ=1.5 ② 1χ=0.5 ③ 1χ=0.23.已知[]KM =η,判断以下哪一条正确? ( ) ①n M M =η ②W M M =η ③ηM M M M Z W n === ( )4.下列哪种方法可以测定聚合物的绝对相对分子质量? ( ) ①凝胶渗透色谱法 ②光散射法 ③黏度法5.用GPC 测定聚合物试样的相对分子质量分布时,从色谱柱最先分离出来的是 ( ) ①相对分子质量最小的②相对分子质量最大的③依据所用的溶剂不同,其相对分子质量大小的先后次序不同6.高聚物样品的黏均相对分子质量不是唯一确定值的原因是 ( ) ①黏均相对分子质量与Mark-Houwink 方程中的系数K 有关②黏均相对分子质量与Mark-Houwink 方程中的系数α和K 有关 ③样品相对分子质量具有多分散性7.高聚物多分散性越大,其多分散性系数d 值 ( ) ①越大于1 ② 越小于1 ③越接近18.测定同一高聚物样品的相对分子质量,以下哪个结果正确? ( ) ①黏度法的结果大于光散射法的②VPO 法的结果大于黏度法的③黏度法的结果大于端基分析法的三、计算题1. 分别计算出下列两种情况下的M n和M w,并对计算结果进行解释。
统计学课后第四章习题答案
第4章练习题1、一组数据中出现频数最多的变量值称为()A。
众数 B.中位数 C。
四分位数 D.平均数2、下列关于众数的叙述,不正确的是()A。
一组数据可能存在多个众数 B.众数主要适用于分类数据C。
一组数据的众数是唯一的 D。
众数不受极端值的影响3、一组数据排序后处于中间位置上的变量值称为()A。
众数 B.中位数 C。
四分位数 D.平均数4、一组数据排序后处于25%和75%位置上的值称为()A.众数 B。
中位数 C。
四分位数 D。
平均数5、非众数组的频数占总频数的比例称为()A.异众比率 B。
离散系数 C.平均差 D.标准差6、四分位差是()A.上四分位数减下四分位数的结果 B。
下四分位数减上四分位数的结果C。
下四分位数加上四分位数 D.下四分位数与上四分位数的中间值7、一组数据的最大值与最小值之差称为()A.平均差 B。
标准差 C.极差 D.四分位差8、各变量值与其平均数离差平方的平均数称为()A.极差B.平均差C.方差 D。
标准差9、变量值与其平均数的离差除以标准差后的值称为()A.标准分数B.离散系数 C。
方差 D.标准差10、如果一个数据的标准分数—2,表明该数据()A。
比平均数高出2个标准差 B.比平均数低2个标准差C。
等于2倍的平均数 D。
等于2倍的标准差11、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围之内大约有()A.68%的数据B.95%的数据C.99%的数据D。
100%的数据12、如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=4,其意义是()A。
至少有75%的数据落在平均数加减4个标准差的范围之内B。
至少有89%的数据落在平均数加减4个标准差的范围之内C. 至少有94%的数据落在平均数加减4个标准差的范围之内D。
至少有99%的数据落在平均数加减4个标准差的范围之内13、离散系数的主要用途是()A。
反映一组数据的离散程度 B。
反映一组数据的平均水平C.比较多组数据的离散程度D.比较多组数据的平均水平14、比较两组数据离散程度最适合的统计量是()A.极差B.平均差C.标准差 D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章问答题目
4.1有哪些因素影响轴心受压杆件的稳定系数?
答:有杆件的长度和端部约束、截面形状和尺寸、初弯曲、残余应力的分布。
4.2轴心受压杆件与压弯杆件的腹板局部稳定设计原则是什么? 答:(1)轴心受压杆件腹板局部稳定设计原则是在弹塑性阶段确定腹板的高厚比,即下式:
式中λ 取构件两个方向长细比的较大者,而当λ<30时,取λ=30,当λ≥100时,取λ=100。
(2)压弯杆件的腹板局部稳定设计原则亦考虑了腹部塑性发展,其塑性深度假定为其高度的四分之一,为了计算的方便可按下式计算,并和受弯构件一样随长细比适当放大。
当0≤α0 ≤1.6时,
当1.6<α0≤2.0时, 式中λ 取构件两个方向长细比的较大者,而当λ<30时,取λ=30,当λ≥100时,取λ=100。
4.3影响梁整体稳定的因素有哪些?提高梁稳定性的措施有哪些? 答:梁的整体稳定与梁的侧向弯曲刚度、扭转刚度、以及翘曲刚度都有关系,也和梁的跨长、截面形式以及横向荷载的形式有关。
措施:1.放宽梁的受压上翼缘 2.加强梁的受压翼缘 3.增加侧向支撑()y
w f t h 2355.0250λ+≤() 235255.01600y
w f t h ++≤λα()y w f t h 2352.265.04800-+≤λα
点(最为经济),从而减小梁的计算长度L 。
4、增大梁的侧向抗弯刚度、抗扭刚度和翘曲刚度。
4.4试分析表4-7给出的最大l1/b1值是如何得出的。
答:是根据梁上荷载作用在下翼缘分时,将产生反向的附加扭矩,有利于阻止梁的侧向弯曲扭转,延缓梁丧失整体稳定,使得临界荷载较作用在上翼缘时有所提高而得出的最大值。
4.5简述压弯构件失稳的形式及其计算方法。
答:两种失稳形式,一是在弯矩作用平面内的失稳;二是在弯矩作用平面外的失稳。
1、(1)实腹式压弯构件在弯矩作用平面内稳定计算的实用计算公式
对于单轴对称截面的压弯构件,除进行平面内稳定验算外,还应按下式补充验算
(2)实腹式压弯构件在弯矩作用平面外的实用计算公式 2、在弯矩作用平面内格构式压弯构件的受力性能和计算
当弯矩作用在和构件的缀材面相垂直的主平面时,绕实轴产生弯曲; 当弯矩作用在和构件的缀材面相平行的主平面时,绕虚轴产生弯曲。
(1)格构式压弯构件对虚轴的弯曲失稳采用以截面边缘纤维开始屈服作为设计准则的计算公式。
()f N N W M A N Ex
x x mx x ≤'-+8.011γβϕ()
f N N W M A N E x x x mx ≤'--25.112γβf W M A N x
b x tx y ≤+1ϕβϕ()f N N W M A N Ex
x x x mx x ≤'-+ϕβϕ11
(2)单肢进行稳定性验算。
单肢1 N1 =Mx /a+N z2 /a
单肢2 N2 =N- N1
3. 格构式构件在弯矩作用平面外的稳定性
对于弯矩绕虚轴作用的压弯构件,不必再计算整个构件在平面外的稳定性。
如果弯矩绕实轴作用,其弯矩作用平面外的稳定性和实腹式闭合箱形截面压弯构件一样验算,但系数ϕy应按换算长细比λ0x确定,而系数ϕb应取1.0,且对弯矩项乘以系数=η0.7。
4.6简述压弯构件中等效弯矩系数的意义。
答:利用这一系数就可以在面内稳定的计算中把各种荷载作用的弯矩分布形式转化为均匀受弯来看待。