智能控制--神经网络控制PPT课件

合集下载

哈工大智能控制神经网络课件第七课Hopfield网络

哈工大智能控制神经网络课件第七课Hopfield网络
定理:对于前述网络,如wij对称,则 证明:
dJ dt
n
dJ dt
0
J vi

d vi dt
i 1
n ui J w ij v j I i j 1 vi Ri ji
Hopfield网络缺陷
未必找到距离最近的模式 解决:反学习 w 2 v 1 2 v 1 i j ij
n u i k 1 S g n w ij u j k i j 1 ji u k i
定理:当网络连接权无自连接,且满足 wij 时,Hopfield学习算法总是收敛的
w ji
Hopfield网络能量函数
(1) 从网络中随机选取某神经元i; (2) 求下一时刻该神经元输出值ui (k+1),其余神 经元输出保持不变; (3) 返回(1),直至网络输出进入稳定状态,即:
联想记忆设计方法——定理证明
证明思路:
证明每一个记忆模式v(r)都是吸引子,即
v
r
k 1 v k
r
连续Hopfield网络——结构
Ii ui Ri
Ci
Ci
dui dt

ui Ri


n
w ij v j I i
j 1 ji
连续Hopfield网络——能量函数
q q q q
1 2 n
Q q q ij q 1
T

i

j

(2) 2 v
j 1
n
p
j
vj
q


n
vj
q
C q pq

人工智能控制技术课件:神经网络控制

人工智能控制技术课件:神经网络控制
进行的,这种排列往往反映所感受的外部刺激的某些物理特征。
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之


,

,

,

)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2


W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统

智能控制ppt课件

智能控制ppt课件
发展历程
从经典控制理论到现代控制理论 ,再到智能控制理论,经历了数 十年的发展。
智能控制与传统控制的区别
01
02
03
控制目标
传统控制追求精确的数学 模型,而智能控制更注重 实际控制效果。
控制方法
传统控制主要采用基于模 型的控制方法,而智能控 制则采用基于知识、学习 和经验的方法。
适应性
传统控制对环境和模型变 化适应性较差,而智能控 制具有较强的自适应能力 。
仿真调试、实验调试
调试方法
优化策略
性能评估
05
CATALOGUE
智能控制在工业领域的应用
工业自动化概述
工业自动化的定义和 发展历程
工业自动化对现代工 业的影响和意义
工业自动化的主要技 术和应用领域
中的应用
02
智能传感器和执行器在工业自动化中的应用
模糊控制器设计
包括模糊化、模糊推理、去模糊化等步骤,实现输入 输出的非线性映射。
神经网络控制技术
神经元模型
模拟生物神经元结构和功 能,构建基本计算单元。
神经网络结构
通过神经元之间的连接和 层次结构,构建复杂的神 经网络系统。
学习算法
基于样本数据训练神经网 络,调整连接权重和阈值 ,实现特定功能的控制。

智能控制在智能家居中的应用
智能照明控制
通过智能控制器和传感器,实 现灯光的自动调节和远程控制 ,提高照明舒适度和节能效果

智能窗帘控制
通过智能控制器和电机,实现 窗帘的自动开关和远程控制, 提高居住便捷性和私密性。
智能空调控制
通过智能控制器和温度传感器 ,实现空调的自动调节和远程 控制,提高居住舒适度和节能 效果。

《智能控制》PPT课件

《智能控制》PPT课件
(3)组织功能:对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有 主动性和灵活性。智能控制器可以在任务要求范围内进行自行决策,主动采取行动,当 出现多目标冲突时,在一定限制下,各控制器可以在一定范围内自行解决。
1.1.4 智能控制的研究对象 (1)不确定性的模型
7
模型的不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可 能在很大范围内变化。
可以概括为:智能控制是“三高三性”的产物。即“控制系统的高度复杂性、高度不 确定性及人们要求越来越高的控制性能”
8
1.1.5 智能控制系统的结构 1.智能控制系统的基本结构
数据库
感知信息 与处理
认知学习 智能控制器
评价机构
传感器
环境 广义对象
还包括外部各种干 扰等不确定制、神经网络控制、专家控制、 学习控制及仿人控制等。
3
第一章
第一节 智能控制的基本概念 1.1.1 智能控制的由来
绪论
传统控制理论(包括经典控制理论和现代控制理论)是建立在被控对象精确数学模
型基础上的控制理论。实际上,许多工业被控对象或过程常常具有非线性、时变性、变 结构、多层次、多因素以及各种不确定性等,难于建立精确的数学模型。即使对一些复 杂对象能够建立起数学模型,模型也往往过于复杂,既不利于设计也难于实现有效控制。 虽然对缺乏数学模型的被控对象可以进行在线辨识,但是由于算法复杂、实时性差,使 得应用范围受到一定限制。
IC:智能控制(intelligent control) AI:人工智能(artificial intelligent) AC:自动控制(automatic control)
9
2. 分层递阶智能控制结构
1977年Saridis以机器人控制为背景提出了三级递阶控制结构。

智能控制-刘金琨编著PPT第6章

智能控制-刘金琨编著PPT第6章

术实现;
(5)能进行学习,以适应环境的变化。
6.6 神经网络控制的研究领域
1 基于神经网络的系统辨识 ① 将神经网络作为被辨识系统的模型,可在已知
常规模型结构的情况下,估计模型的参数。
② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测
模型,实现非线性系统的建模和辨识。
人恼的生理学和心理学着手,通过人工
模拟人脑的工作机理来实现机器的部分
智能行为。
人工神经网络(简称神经网络, Neural Network )是模拟人脑思维方 式的数学模型。 神经网络是在现代生物学研究人脑组 织成果的基础上提出的,用来模拟人类大 脑神经网络的结构和行为。神经网络反映 了人脑功能的基本特征,如并行信息处理 、学习、联想、模式分类、记忆等。
1982 年 , 物 理 学 家 Hoppield 提 出 了 Hoppield 神经网络模型,该模型通过引入 能量函数,实现了问题优化求解, 1984 年 他用此模型成功地解决了旅行商路径优化 问题(TSP)。 在1986年,在Rumelhart和McCelland等出 版《Parallel Distributed Processing》一书 ,提出了一种著名的多层神经网络模型, 即BP网络。该网络是迄今为止应用最普遍 的神经网络。
6.4.2 Delta(δ )学习规则
假设误差准则函数为:
1 E 2

p 1
P
(d p y p ) 2
E
p 1
P
p
其中, d p 代表期望的输出(教师信号);y p 为 网络的实际输出, y p f (W Xp ) ;W 为网络所有权 值组成的向量:
W w0, w1, , wn T

智能控制系统 -神经网络-PPT课件

智能控制系统 -神经网络-PPT课件
1 1T 2 Jn () e ( n ) e( n )( e n ) k 2k 2
1 1T 2 J E e ( n ) E e ( n )( e n ) k 2 2 k
13
误差纠正学习
w J 用梯度下降法求解 k 对于感知器和线性网络:
1
感知器网络
感知器是1957年美国学者Rosenblatt提出的 一种用于模式分类的神经网络模型。 感知器是由阈值元件组成且具有单层计算单元 的神经网络,具有学习功能。 感知器是最简单的前馈网络,它主要用于模式 分类,也可用在基于模式分类的学习控制和多 模态控制中,其基本思想是将一些类似于生物 神经元的处理元件构成一个单层的计算网络
w ( p w ) 若 神 经 元 k 获 胜 k j j k j w 0 若 神 经 元 k 失 败 k j
wkj
pj
k
5.2
前向网络及其算法
前馈神经网络(feed forward NN):各神经元接受 前级输入,并输出到下一级,无反馈,可用一 有向无环图表示。 图中结点为神经元(PE):多输入单输出,输 出馈送多个其他结点。 前馈网络通常分为不同的层(layer),第i层的输入 只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
5.1
神经网络的基本原理和结构
1
神经细胞的结构与功能
神经元是由细胞体、树突和轴突组成
图 生物神经元模型
神经网络的基本模型
2
人工神经元模型
人工神经网络是对生物神经元的一种模拟和简化,是 神经网络的基本处理单元。
神经元输出特性函数常选用的类型有:

智能控制第7章 模糊神经网络控制与自适应神经网络PPT课件

智能控制第7章 模糊神经网络控制与自适应神经网络PPT课件
fj(4)=max(u1(4),u2(4),...,up(4)), aj(4)=fj(4) 且第三、四层节点之间的连接系数wji(4)=1
第五层
❖有两种模式
❖从上到下的信号传输方式 ,同第一层。
❖从下到上是精确化计算,如果采用重心法, 有
fj(5 ) w ( j5 )iu i(5 ) (m ( j5 )i (j5 )i)u i(5 ), i
E fj(4)
E fj(5)
fj(5) fj(4)
E fj(5)
fj(5) u(j5)
u(j5) fj(4)
E fj(5)
m(5) ji
u (5) (5)
ji i
u(j5)
i
u (5) (5) (5) jj jj
(j5i)ui(5))(
m u ) (5) (5) (5) (5)
图7-2 :规则节点合并示例
2. 有导师学习阶段
❖可采用BP学习
E1(y(t)ˆy(t))2min 2
w(t1)w(t)(E w)
E w ( n E )e ( n w t)e tE f w f E f fa w a
第五层
m E (j5)i a E (j5) a fj((j5 5))
wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感34如果被控系统yk1fykyk1uk1gukwwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感351tdltdltdltdl神经网络n神经网络n331基于神经网络的模型参考自适应控制结构图参考模型wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感3671wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感37则控制系统的误差方程为其中wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感383233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感393233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感40对于yk1fykyk1uk1guk可得如果存在可用神经网络逼近之

《智能控制》课件

《智能控制》课件

智能控制的特点
人工智能技术的应用
智能控制利用人工智能技术,将人类的智慧融入到控制系统中。
系统的自我学习和适应能力
智能控制系统能够通过学习和适应不断提升自身性能和响应能力。
高效、精准、快速的控制响应
智能控制系统具备高效率、精确度和快速响应,能够应对复杂的控制任务。
智能控制系统架构
1
智能控制系统的组成
3 智能控制的应用领域
智能控制广泛应用于工技术
神经网络控制
利用神经网络模拟人脑神经元 的工作原理,实现自适应控制 和学习能力。
遗传算法控制
借鉴生物进化原理,通过优胜 劣汰的策略优化控制参数的选 择。
模糊控制
基于模糊逻辑的控制方法,适 用于复杂和不确定的系统。
《智能控制》PPT课件
欢迎来到《智能控制》PPT课件。本课程将深入探讨智能控制的定义、技术、 特点以及应用领域。让我们一起探索智能控制的奥秘和魅力。
概述
1 什么是智能控制?
智能控制是利用先进的人工智能技术,使控制系统具备学习和适应能力的控制方式。
2 智能控制与传统控制的区别
智能控制通过模拟人类智慧实现优化决策,相比传统控制更适应复杂系统需求。
智能控制系统由传感器、执行器、控制器和学习算法四部分组成,实现智能化的控制 功能。
2
智能控制系统的设计流程
智能控制系统设计包括需求分析、模型建立、控制策略选择和参数调优等步骤。
3
智能控制系统实例分析
通过案例分析,了解智能控制在不同领域的真实应用和效果。
智能控制系统应用实践
1 工业控制
2 交通运输
智能控制在工业生产中的应用,提高生产 效率和产品质量。
3 发展智能控制的必

2024版智能控制技术ppt课件

2024版智能控制技术ppt课件

模糊逻辑在智能控制中应用
01
02
03
工业过程控制
应用于化工、冶金、电力 等工业过程控制中,实现 对温度、压力、流量等参 数的智能控制。
智能家居系统
应用于智能家居系统中, 实现对灯光、窗帘、空调 等设备的智能控制,提高 居住舒适度。
自动驾驶技术
应用于自动驾驶技术中, 实现对车辆行驶轨迹、速 度等参数的智能控制,提 高行驶安全性。
神经网络控制
利用神经网络强大的自 学习和自适应能力,实 现对复杂系统的有效控 制。特点:能够处理非 线性、不确定性和时变 系统,具有强大的逼近
能力和容错性。
专家系统控制
基于专家知识和经验, 构建专家系统实现对复 杂系统的有效控制。特 点:能够处理定性和定 量信息,具有较强的推
理和决策能力。
遗传算法控制
现代控制理论的发展背景
01
随着计算机技术的进步和复杂系统的出现,现代控制理论应运
而生。
现代控制理论的核心思想
02
基于状态空间法和最优化原理,实现对复杂系统的有效控制。
现代控制理论的主要方法
03
包括线性系统理论、最优控制、鲁棒控制等。
智能控制方法分类及特点
第一季度
第二季度
第三季度
第四季度
模糊控制
利用模糊数学理论,将 人的控制经验表示为模 糊规则,实现对复杂系 统的有效控制。特点: 不依赖于精确的数学模 型,具有较强的鲁棒性 和适应性。
模拟退火算法实现过程
包括初始化、设置温度参数、生成新解、计算目标函数差、接受准 则判断、降温过程等步骤。
模拟退火算法特点
具有全局搜索能力强、不易陷入局部最优解等特点,但计算时间较 长。
智能优化算法在智能控制中应用案例

第十三章神经网络建模与控制ppt课件

第十三章神经网络建模与控制ppt课件

辨识器取串-并联结构,其中的NN取二维高斯RBF网络。 其中散布系数SC=1,中心参数是程序内部自设的。
13.3 基于神经网络的系统辨识示例
例4 基于CMAC的非线性动态系统辨识 仿真系统模型为: y(k) 5y(k -1) u3(k -1) 2.5 y2 (k -1)
系统输入信号为:
u(k) 0.6cos(2k / 60) 0.4cos(2k / 40)
例1 线性离散系统辨识示例
其中function.prbs(n1,n,k1,k2,k3,k4)是产生M序列的函数 n1 –--n1阶M序列→Np=(2p-1) n----M序列的总长度 Ki (i=1,…4)----M序列参数 K3一般取0,K4一般取0, K1 K2选择使Np达到最大值 程序 Bianshi_ADLINE_L.M 采用的是离线辨识方法 Bianshi_ADLINE_Z.M 采用的是在线辨识方法 函数prbs.M是产生M序列的函数
5y(k -1) 2.5 y2 (k -1)
u 3 (k
-1)
系统输入信号为:
u(k) 0.6cos(2k / 60) 0.4cos(2k / 40)
辨识器的输入/输出为:[u(k), y(k)]/ yˆ(k)
PID神经网络的输入/输出为:[u(k 1), y(k 1)]/ yˆ(k)
PID神经网络输出层用线性节点,准则函数取
n1
① y(k 1) ai y(k i) g(u(k)u(k 1) i0
n=2,m=0时的并联结构如图3所示。
u(k m))
g +∑ +
u(k)
N +× +
y(k+1)
Z-1
∑+ a0 + a1 Z-1

智能控制基础-神经网络

智能控制基础-神经网络

第6章 神经网络控制
7
智能控制 基是神经系统结构和功能基本单位,典型的神经 元结构图4-1所示。
第6章 神经网络控制
图4-1 神经元结构 8
智能控制 基础
4.1.1
神经网络原理
视网膜的信息处理机制
光感受器细胞将光波所携带的自 然图像信息转变成神经元电信息
囊泡
受体
K+ Na+ K+
4 神经网络具有自组织、自学习功能,是自适应组 织系统。
第6章 神经网络控制
26
智能控制 基础
4.1.2
神经网络的结构和特点
神经网络的研究主要包括: 神经网络基本理论研究 神经网络模型的研究 神经网络应用研究 神经网络及其融合应用技术
第6章 神经网络控制
27
智能控制 基础
4.1.3
神经网络学习
神经元之间高度互连实现并行处理而表现出的群体特性是非常 复杂,甚至是混沌的; 3利用神经网络通过学习过程可以从周围环境获取知识,中 间 神经元的连接强度(权值)用来表示存贮的知识。
第6章 神经网络控制
20
智能控制 基础
4.1.2
神经网络的结构和特点
神经网络的结构按照神经元连接方式可分成前馈网络 和反馈网络。
(2)Sigmoid函数
(2)
1
f ( X ) 1 eaX
a 0
图4-3 常用的几种激励函数
第6章 神经网络控制
16
智能控制 基础
4.1.1
神经网络原理
常用的激励函数如图4-3所示:
(3)双曲正切函数
(3)
f ( X ) 1 eaX 1 eaX
a 0
(4)高斯函数 X2

智能控制理论及应用PPT课件

智能控制理论及应用PPT课件
智能控制理论及应用PPT课件
目 录
• 智能控制理论概述 • 智能控制基础理论 • 智能控制技术与方法 • 智能控制系统设计与实现 • 智能控制在工业领域应用案例 • 智能控制在非工业领域应用案例 • 智能控制发展趋势与挑战
01
智能控制理论概述
智能控制定义与发展
定义
智能控制是模拟人类智能,具有自 学习、自适应、自组织等能力,能 够处理复杂、不确定和非线性系统 的控制方法。
模糊控制器设计 介绍模糊控制器的结构、设计步骤及优化方法, 包括输入输出变量的选择、模糊化方法、模糊规 则制定等。
神经网络基础
01
神经元模型与神经网络结构
阐述神经元模型的基本原理,介绍常见的神经网络结构,如前馈神经网
络、循环神经网络等。
02
神经网络学习算法
介绍神经网络的学习算法,包括监督学习、无监督学习和强化学习等,
发展历程
从经典控制理论到现代控制理论, 再到智能控制理论,经历了数十年 的发展,目前已成为控制领域的研 究热点。
智能控制与传统控制比较
控制对象
控制性能
传统控制主要针对线性、时不变系统, 而智能控制则面向复杂、非线性、时 变系统。
传统控制在稳定性和精确性方面表现 较好,而智能控制则在适应性和鲁棒 性方面更具优势。
智能家居系统架构
包括传感器、控制器、执行器等 组成部分,实现家庭环境的智能 感知与控制。
智能家居应用场景
如智能照明、智能安防、智能家 电等,提高家居生活的便捷性和 舒适性。
智能家居系统实现
技术
包括物联网技术、云计算技术、 人工智能技术等,实现家居设备 的互联互通和智能化控制。
智能交通信号控制策略优化
模糊控制在生产调度中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络的硬件实现愈趋方便。
.
2
神经网络控制的研究领域
基于神经网络的系统辨识
① 将神经网络作为被辨识系统的模型,可在已知常规模型 结构的情况下,估计模型的参数。
② 利用神经网络的线性、非线性特性,可建立线性、非线 性系统的静态、动态、逆动态及预测模型,实现非线性 系统的建模和辨识。
神经网络控制器
.
17
建模的两种基本情况
前向建模:建立系统本身的模型,也称正向建模; 逆向建模:建立系统的逆模型。
正向建模
指利用神经网络逼近对象本身的动力学特性。
简化结构图:
网络与系统并联;
对象
输出之差用作训练信号;
对网络而言,系统的实 际输出构成了期望的导 师信号,故为有导师学
神经网络 辨识模型
习;可用多层前馈神经
对象
缺点:无反馈,用作控制器的神经网络逆模型不准确 时,抗干扰能力差,缺乏鲁棒性。
两种改进结构方案:
.
8
神经网络 控制器1
+
-
对象
神经网络 辨识器2
.
9
神经网络 控制器
对象
评价函数
.
10
.
11
期望输出
+
-
神经网络 估计器
常规控制 器
对象
.
12
参考模 型输入
+
-
稳定的参 考模型
神经网络 控制器
神经网络作为实时控制系统的控制器,对不确定、不确知系 统及扰动进行有效的控制,使控制系统达到所要求的动 态、静态特性。
神经网络与其他算法相结合
将神经网络与专家系统、模糊逻辑、遗传算法等相结合,可 设计新型智能控制系统。
.
3
3.5.3 神经网络控制的研究重点
神经网络的稳定性与收敛性问题; 神经网络控制系统的稳定性与收敛性问题; 神经网络学习算法的实时性; 神经网络控制器和辨识器的模型和结构。
期望输出
-
+
对象
.
13
神经网络间接模型参考自适应控制
ቤተ መጻሕፍቲ ባይዱ期望输出
参考模型
-
神经网络
+
控制器
-
+
对象
-
+
神经网络 辨识器
神经网络辨识器向神经网络控制器提供对象的Jacobian信息。
.
14
(4) 神经网络内模控制
+-
+-
滤波器
神经网络 控制器
对象
神经网络 -
+
内模(辨识)
正向模型作为被控对象的近似模型,与实际对象并联; 控制器与对象的逆有关,可以是对象的逆; 滤波器通常为线性的,可提高系统的鲁棒性。 蓝色实线为基本原理图,加上绿色虚线后可构成内模控制的一种 具体实现。
神经网络自适应控制;
神经网络内模控制;
神经网络预测控制;
神经网络自适应评判控制;
神经网络混合控制。
.
5
(1) 神经网络监督控制
✓神经网络控制器是前馈控制器,建立被控对象的逆模 型;
✓神经网络控制器基于传统控制器的输出,在线学习调 整网络的权值,使反馈控制输入趋近于零,从而使神 经网络控制器逐渐在控制作用中占据主导地位,最终 取消反馈控制器的作用;
.
16
神经网络辨识
用神经网络作为被辨识对象的正模型、逆模型、预 测模型等,也称为神经网络建模。
说明:
①本质上,神经网络辨识的目的是建立所考查对象的 模型,因此最简单的情况下,辨识只需利用对象本 身的输入输出数据即可。
②神经网络建模本身不涉及诸如某一具体控制任务之 类的其它目的,因此与作为神经网络控制系统的结 构框图相比,辨识的原理结构图要简单得多,只要 能完成建模的任务即可;一般地,辨识结构图只涉 及对象系统本身和所用的神经网络两大主体。
网络实现;可进行离线辨识,也可进行在线辨识。
.
+ -
18
逆向建模
一般而言,建立逆模型对神经网络控制意义重大。
直接逆建模简化结构图:
可用于离线辨识,也可
对象 +
用于在线辨识。
-
神经网络 逆模型
缺点:不是目标导向的,系统输入也不可能预先定义。
实际常采用正-逆建模结构。
.
19
神经网络 逆模型 +
-
对象 +
神经网络控制
.
1
神经网络控制的优越性
神经网络可以处理那些难以用模型或规则描述的过程 或系统。
神经网络采用并行分布式信息处理,具有很强的容错 性。
神经网络是本质非线性系统,可实现任意非线性映射。
神经网络具有很强的信息综合能力,能同时处理大量 不同类型的输入,并能很好解决输入信息之间的互补 性和冗余性问题。
.
4
神经网络控制系统的结构类型
神经网络在控制系统中的作用:充当对象的模型、控制器、优化 计算环节等。
神经网络的结构形式较多,分类标准不统一;对于不同结构的神 经网络控制系统,神经网络本身在系统中的位置和功能各不相同, 学习方法也不尽相同。
几种实际的神经网络控制系统:
神经网络监督控制;
神经网络直接逆控制;
.
15
非线性系统的神经网络辨识
神经网络辨识基础
概念
辨识:是在输入和输出数据的基础上,从一组给定的
模型中,确定一个与所测系统等价的模型。
辨识的三要素:
✓数据:能量测到的被辨识系统的输入/输出数据,是 辨识的基础。 ✓模型类:要寻找的模型的范围,即所考虑系统的结构。 ✓等价准则:辨识的优化目标,用来衡量模型接近实际 系统的标准,也称误差准则或损失函数。
✓一旦系统出现干扰,反馈控制器重新起作用。
✓可确保控制系统的稳定性和鲁棒性,有效提高系统的 精度和自适应能力。
.
6
期望输出
+ -
神经网络 控制器
传统控 制器
++
对象
.
7
(2) 神经网络直接逆控制
将对象的神经网络逆模型直接与被控对象串联起来, 使期望输出与对象实际输出之间的传递函数为1。
神经网络 控制器
神经网络 正向模型
.
20
离线辨识与在线辨识
① 在线辨识是在对象系统实际运行的过程中进行的,辨识 过程要求实时性,即必须在一个采样周期的时间间隔内 至少进行一次网络权值的调整;离线辨识则是在取得对 象系统的一批输入输出数据后再进行辨识,故辨识过程 与实际系统是分离的,无实时性要求。
② 离线辨识在系统工作前预先完成网络的学习或训练,但 输入输出训练集很难覆盖对象所有可能的工作范围、且 难以适应系统在工作过程中的参数变化,故最好的辨识 方式是:先进行离线训练、再进行在线学习,将离线训 练得到的权值作为在线学习的初始权,以加快在线学习 的速度。(由于网络具有学习能力,故当被辨识对象的特性变化时,神经
网络也能通过不断地调整权值和阈值自适应地跟踪对象系统的变化。)
③ 对于神经网络控制系统,其中的辨识是以系统在闭环控 制下所得到的观测数据进行的,因此一般属在线辨识。 对于时变系统,则只能使用在线辨识。
.
21
神经网络建模的考虑因素
✓ 模型的选择
相关文档
最新文档