第五章数控机床的进给伺服系统

合集下载

《数控机床故障诊断与维护》课程标准

《数控机床故障诊断与维护》课程标准

《数控机床故障诊断与维护》课程标准课程代码:学时:64 学分:4一、课程的地位与任务《数控机床故障诊断与维护》是一门专业课程,先修课程有机械制造、气动液压、电控及PLC 技术应用等。

本课程是机电技术的综合应用,对学习机、电技术综合能力的培养有明显的促进作用。

同时也是数控的一门专业主干核心课程,具有实践性强、应用面广的特点。

通过《数控机床故障诊断与维护》的教学,使学生能够获得数控机床的基本理论和基本知识,初步掌握数控机床故障诊断与维护的基本思路、基本方法和基本原则,具有分析并排除数控机床常见故障的能力。

为今后学习后续课程和从事相关工作打下扎实的基础。

二、课程的主要内容和学时分配1.课程的主要内容第一章数控机床维修与维护基础第一节数控机床概述(1)数控机床的产生背景(2)数控机床的基本概念(3)数控机床的组成(4)数控机床的工作过程(5)数控机床的种类(6)数控机床的常用数控系统简介第二节数控机床的故障维修基础(1)数控机床的故障定义(2)数控机床常见故障的特点与规律(3)数控机床常见故障的种类(4)数控机床发生故障时的诊断方法第三节数控机床的日常维修维护与保养(1)数控机床日常维修维护工作的内容(2)数控机床机体的维护与保养(3)数控机床电气控制系统的日常维护(4)数控机床维修人员应具备的基本要求(5)数控机床的维修维护的技术资料(6)数控机床故障诊断与维护常用仪器仪表及工具第四节FANUCOi系统数控机床基本操作(1)数控机床面板介绍(2)数控机床的基本操作(3)手动进给操作第二章数控系统硬件故障诊断与维护第一节数控系统硬件概述第二节数控系统硬件的更换方法第三节数控系统硬件故障的诊断方法第四节数控机床的抗干扰措施第三章数控系统软件故障诊断与维护第一节数控系统软件的组成第二节数控系统的参数设置第三节数控系统的参数备份与恢复第四节数控系统软件故障的诊断与处理方法第四章数控机床PLC故障诊断与维护第一节数控机床PLC基础(1)数控机床中PMC的用途(2)数控机床用PLC种类(3)数控机床PLC梯形图程序(4)数控机床PLC梯形图符号第二节数控机床用PLC的操作(1)FANUCOi数控系统的PMC调试功能(2)PMC的基本操作(3)PMC编程实例第三节数控系统PMC故障诊断(1)数控系统PMC的故障类型及原因(2)通过PMC进行故障诊断的方法(3)数控机床PMC控制功能程序分析(4)典型PLC故障的分析与诊断流程第五章数控机床进给伺服系统故障诊断与维护第一节进给伺服系统的概述(1)进给伺服系统的组成(2)数控机床对进给伺服驱动系统的要求(3)进给伺服驱动系统的分类第二节步进电动机伺服系统及工作原理(1)步进进给伺服驱动系统(2)步进电动机进给伺服驱动系统的工作原理(3)步进电动机驱动系统的常见故障与维修第三节交流伺服进给驱动装置的组成及工作原理(1)交流进给伺服系统的特点(2)模拟式交流伺服控制原理(3)数字交流伺服系统控制原理(4)交流伺服系统的维护与调整第四节位置检测装置的组成及工作原理(1)位置检测装置的要求(2)位置检测方式分类(3)位置检测元件及其维护(4)位置检测故障的诊断第六章主轴驱动系统故障诊断与维护第一节数控机床主轴驱动系统基本知识(1)数控机床对主轴传动的要求(2)主轴系统分类及特点(3)主轴伺服系统故障的形式及诊断第二节交流主轴伺服系统概述(1)交流主轴伺服系统的特点(2)交流主轴调速原理(3)交流数字式主轴伺服系统(4)交流模拟式主轴伺服系统第三节交流主轴驱动系统故障诊断与维修(1)交流数字式主轴伺服系统故障的诊断与排除(2)交流模拟式主轴伺服系统故障的诊断与排除(3)主轴伺服系统故障实例及分析第七章数控机床机械结构故障诊断与维护第一节数控机床精度的检验第二节主传动机械结构的维护与维修第三节进给系统机械传动结构的维修第四节换刀装置的维护与故障诊断第五节其它辅助故障诊断与维护2.学时分配本课程在教学过程中,强调基础理论和基本概念的掌握,同时注重学生的实际动手操作,要求能把基础理论应用于实践中,让学生具备处理和排除数控机床基本故障的能力。

数控机床直线电机进给伺服系统的动态特性分析与研究

数控机床直线电机进给伺服系统的动态特性分析与研究

数控机床直线电机进给伺服系统的动态特性分析与研究1. 数控机床直线电机进给伺服系统概述随着科技的不断发展,数控机床在工业生产中扮演着越来越重要的角色。

为了提高数控机床的加工精度和效率,近年多的研究者开始关注直线电机进给伺服系统的研究与应用。

直线电机进给伺服系统是一种采用直线电机作为驱动源的高精度、高速度、高可靠性的伺服系统,广泛应用于数控机床、机器人、自动化生产线等领域。

直线电机进给伺服系统具有很多优点,如结构简单、体积小、重量轻、响应速度快、转矩大等。

这些优点使得直线电机进给伺服系统在数控机床中的应用越来越广泛。

由于直线电机本身的特点以及伺服系统的复杂性,对其进行动态特性分析与研究具有很大的挑战性。

本文将对数控机床直线电机进给伺服系统的动态特性进行深入研究,以期为实际应用提供理论依据和技术支撑。

1.1 研究背景随着现代制造业的快速发展,数控机床在各个领域的应用越来越广泛。

数控机床的性能和精度对于提高产品质量、降低生产成本具有重要意义。

直线电机进给伺服系统作为数控机床的关键部件之一,其动态特性直接影响到数控机床的加工精度、速度和稳定性。

研究数控机床直线电机进给伺服系统的动态特性,对于提高数控机床的整体性能具有重要的现实意义。

传统的数控机床进给伺服系统主要采用步进电机驱动,虽然在一定程度上满足了加工需求,但其动态特性较差,如速度响应慢、加速度范围窄、负载能力有限等。

这些问题限制了数控机床在高速、高精度加工方面的应用。

随着直线电机技术的不断发展,直线电机进给伺服系统逐渐成为数控机床领域的研究热点。

直线电机具有功率密度高、加速度响应快、速度快、转矩大等优点,可以有效提高数控机床的性能。

由于直线电机进给伺服系统涉及到多个学科领域,如电机学、控制理论、机械设计等,因此对其动态特性的研究具有较高的难度。

本论文旨在对数控机床直线电机进给伺服系统的动态特性进行分析与研究,以期为提高数控机床的性能和稳定性提供理论依据。

数控机床进给伺服系统类故障诊断与处理范文

数控机床进给伺服系统类故障诊断与处理范文

数控机床进给伺服系统类故障诊断与处理范文数控机床进给伺服系统是数控机床的重要组成部分,负责驱动工件或刀具在加工过程中进行准确的运动。

然而,由于工作环境恶劣以及长时间使用,进给伺服系统可能会出现各种故障。

本文将介绍数控机床进给伺服系统故障的诊断与处理方法。

一、断电故障:当进给伺服系统无法正常工作或反应迟缓时,首先需要检查是否存在断电故障。

可以检查电源和连接器是否正常。

如果确认没有断电故障,可以进一步诊断。

二、电缆故障:电缆故障是数控机床进给伺服系统常见的故障之一。

可以通过检查电缆连接器的接触情况、电缆是否断裂或接触不良来判断是否存在电缆故障。

如果发现电缆故障,应及时更换或修复受损的电缆。

三、伺服驱动器故障:伺服驱动器是控制进给伺服系统的主要部件,当进给伺服系统出现故障时,可以首先检查伺服驱动器是否正常工作。

可以通过检查伺服驱动器的电源供应情况、电流是否稳定以及反馈信号是否正常来判断是否存在伺服驱动器故障。

如果发现伺服驱动器故障,应及时更换或修复故障的部件。

四、编码器故障:编码器是进给伺服系统的重要传感器,用于检测工件或刀具的位置信息。

当进给伺服系统无法准确移动或位置偏差较大时,可以检查编码器是否损坏或接触不良。

如果发现编码器故障,应及时更换或修复故障的部件。

五、电机故障:电机是驱动进给伺服系统运动的关键部件,当进给伺服系统无法正常工作或运动异常时,可以检查电机是否正常工作。

可以通过检查电机的电源供应情况、电流是否稳定以及转动是否平稳来判断是否存在电机故障。

如果发现电机故障,应及时更换或修复故障的部件。

六、控制器故障:控制器是进给伺服系统的核心部件,当进给伺服系统无法正常工作或运动异常时,可以检查控制器是否正常工作。

可以通过检查控制器的电源供应情况、信号是否稳定以及参数设置是否正确来判断是否存在控制器故障。

如果发现控制器故障,应及时更换或修复故障的部件。

以上是数控机床进给伺服系统常见故障的诊断与处理方法。

伺服进给

伺服进给

• 第五章 进给伺服系统
• • • •
• • •
§5-1 概述 §5-2 对进给伺服系统结构的要求 §5-3 传动齿轮副 §5-4 丝杠螺母副
一、滚珠丝杠螺母副 (一) 工作原理和特点 (二) 结构和类型
• §5-5 导轨 • §5-6 回转工作台
• • • • • • • • • •
(二) 结构和类型 1. 滚珠的循环方式 常用的滚珠循环方式可分为两大类: 滚珠在循环过程中,有时与丝杠脱离接触叫 外循环; 始终与丝杠保持接触叫内循环。 滚珠在同一螺母上只有一个回路管道的叫单 列循环。 有两个回路管道的叫双列循环。 多于两个回路管道的叫多列循环。 循环中的滚珠叫工作滚珠。 工作滚珠所走过的滚道圈数叫工作圈数。
• 第五章 进给伺服系统
• §5-1 概述 • §5-2 对进给伺服系统结构的要求 • §5-3 传动齿轮副
• • 一、消除传动齿轮间隙的措施 二、齿轮齿条副
• §5-4 丝杠螺母副 • §5-5 导轨 • §5-6 回转工作台
• 二、齿轮齿条副
• 常用于行程较长的,高速直线传动。 • 当传动负载小时,也可采用双片薄齿轮调整 法,分别与齿条齿槽的左、右两侧贴紧,从 而消除齿侧间隙。
• 第五章 进给伺服系统
• §5-1 概述 • §5-2 对进给伺服系统结构的要求 • §5-3 传动齿轮副
• 一、消除传动齿轮间隙的措施
• §5-4 丝杠螺母副 • §5-5 导轨 • §5-6 回转工作台
• 联轴器传动 • 在进给传动链中,轴与轴的联接必须采用刚 性联轴器,而且大部分采用套筒式结构。
• 1) 单圆弧型面 • 接触角α随轴向载荷的大小而变化。 • 当α角发生变化时,使传动效率、承载能力和 轴向刚度均不稳定。 • 为了消除间隙和施加预紧力,必须采用双螺 母结构。 • 为了保证预紧后的 α 角维 持在45°左右,还必须严 格控制径向间隙。 r0 • 脏物容易沉积于槽底,使 传动效率降低,磨损加快。 α • 便于制造。

5数控机床伺服驱动和检测

5数控机床伺服驱动和检测

10
第一节 概述
但直流电机有电刷,限制了转速的提高,而且结构复杂,价格 也高。进入80年代后,由于交流电机调速技术的突破,交流伺服 驱动系统进入电气传动调速控制的各个领域。交流伺服电机,转 子惯量比直流电机小,动态响应好。而且容易维修,制造简单, 适合于在较恶劣环境中使用,易于向大容量、高速度方向发展, 其性能更加优异,已达到或超过直流伺服系统,交流伺服电机已 在数控机床中得到广泛应用。 直线电动机的实质是把旋转电动机沿径向剖开,然后拉直演 变而成,利用电磁作用原理,将电能直接转换成直线运动动能的 一种推力装置,是一种较为理想的驱动装置。在机床进给系统中, 采用直线电动机直接驱动与旋转电动机的最大区别是取消了从电 动机到工作台之间的机械传动环节,把机床进给传动链的长度缩 短为零。正由于这种传动方式,带来了旋转电动机驱动方式无法 达到的性能指标和优点。由于直线电动机在机床中的应用目前还 处于初级阶段,还有待进一步研究和改进。随着各相关配套技术 的发展和直线电动机制造工艺的完善,相信用直线电动机作进给 驱动的机床会得到广泛应用。
选择:①伺服系统要求的分辨率; ②考虑机械传动系统的参数。
分辨率(分辨角)α
设增量式码盘的规格为 n 线/转:
18
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
19
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
20
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
2
第一节 概述
数控机床闭环进给系统的一般结构如图所示,这是一个双闭环系统,内环 为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。速 度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控制系 统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由CNC装置 中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组成。由速度 检测装置提供速度反馈值的速度环控制在进给驱动装置内完成,而装在电动机 轴上或机床工作台上的位置反馈装置提供位置反馈值构成的位置环由数控装置 来完成。伺服系统从外部来看,是一个以位置指令输入和位置控制为输出的位 置闭环控制系统。但从内部的实际工作来看,它是先把位置控制指令转换成相 应的速度信号后,通过调速系统驱动伺服电机,才实现实际位移的。

《数控机床伺服系统》PPT课件

《数控机床伺服系统》PPT课件

动而相对移动。
精选ppt
37
光栅尺是用真空镀膜的方法刻上均匀密集线纹的透 明玻璃片或长条形金属镜面。
对于长光栅,这些线纹相互平行,各线纹之间的距 离相等,称此距离为栅距。
对于圆光栅,这些线纹是等栅距角的向心条纹。栅 距和栅距角是决定光栅光学性质的基本参数。
栅距和栅距角是决定光栅光学性质的基本参数。
2。交流伺服系统
电机转速可采用以下两种方法: (1)改变磁极对数P,这是一种有效的调速方法,它是
通过对定子绕组接线的切换改变磁极对数调速的。 (2)变频调速。变频调速是平滑改变定子供电电压频
率f,而使转速平滑变化的调速方法,多数交流伺 服电动机都采用这种调速方法。
精选ppt
25
4.5 位置检测装置
精选ppt
22
永磁式宽调速直流电动机为永磁式电动机, 其磁场磁通是恒定的,只能通过改变电枢 的电压进行调速。
常用的电压调速有两种方法:晶闸管调速 (SCR)和晶体管脉宽调制调速(PWM)。
精选ppt
23
晶体管脉宽调速(PWM)的主要特点
PWM调速具有如下特点: (1)晶体管的频率远比转子能跟随的频率高得多,避
开了机械共振。
(2)电枢电流的脉动小,电动机在低速时工作也十分 平滑、稳定。
(3)调速比可以很大。 (4)电流波形系数较小,热变形小。 (5>功率损耗小。 (6)频带宽动态硬度好,响应很快。
精选ppt
24
缺点: 如不能承受高的峰值电流。一般都是将峰值 电流限制到二倍有效电流。另外,还有大功率晶体 管性能不够稳定,价格较贵等缺点。
材料有玻璃光栅和金属光栅之分。
光栅主要由光栅尺(包括标尺光栅和指示光栅)和光 栅读数头两部分组成,

数控机床进给伺服系统

数控机床进给伺服系统


5.低速大转矩
机床加工,大多是低速时进行切削,即在 低速时进给驱动要有大的转矩输出。


二、进给伺服系统 的组成


数控机床进给伺服系统的组成框 图:


步进电机开环进给伺服系统原理 图:


1.由步进电机构成的开环控制系 统(2) 基本控制原理 由数控装置送来的—定频
率和数量的指令脉冲,经步进电机环形分 配器分配和功率放大器放大后驱动步进电 机旋转。 步进电机的使用 步进电机的角位移或线 位移与脉冲数成正比,其转速与脉冲频率 成正比,它将指令脉冲变成步进电机输出 轴的旋转运动。


1.由步进电机构成的开环控制系 统(3)
步进电机开环伺服系统结构简单,安装调 试方便,成本低,但精度有限。 影响精度的因素 精度取决于步进电机和 机械装置的精度。系统中,步进电机的步 距角精度,机械传动部件的精度,丝杠、 支承的传动间隙以及传动和支承件的变形 等,将直接影响进给位移的精度。为了提 高系统的精度,应该适当提高系统组成环 节的精度,此外,还可采取传动间隙补偿 和螺距误差补偿等补偿措施。Leabharlann 1.开环伺服系统(2)
控制指令脉冲的数量、频率以及通电顺 序 ,便可控制执行部件运动的 位移量 、 速 度和运动方向。 系统的 位移精度 主要 取决于 步进电机的 角 位移精度 、齿轮丝杠等传动元件的 节距精 度以及系统的摩擦阻尼特性等。 开环伺服系统的结构简单,调试、维修方 便,成本低廉,但精度差,一般用于经济 型数控机床。

3.速度环
速度环是一个非常重要的环,由 速度调节 器、电流调节器及功率放大器等部分组 成。 它的输入信号有两个:一个是 位置环的输 出 ,作为速度环的指令信号送给速度环; 电动机转速检测装置测得的 速度信号作为 负反馈送给速度环 。速度环中用作速度反 馈检测的装置通常为 测速发电机、脉冲编 码器等。

部分习题解答

部分习题解答

部分习题解答省级精品课程《数控加工技术》习题解答第一章数控加工技术概论1.1 数控加工技术的概念是什么?其主要发展历程经过哪几个阶段?答:1)数控加工技术是集传统的机械制造、计算机、现代控制、传感控制、信息处理、光机电技术于一体,在数控机床上进行工件切削加工的一种工艺方法,是根据工件图样和工艺要求等原始条件编制的工件数控加工程序输入数控系统,控制机床刀具与工件的相对运动,从而实现工件的加工。

2)数控加工技术主要发展历程经过了二个阶段6个时代。

第一阶段:数控(NC)阶段,又称为硬件数控阶段,从1952年~1970年。

第一代数控(1952-1959年):采用电子管构成的硬件数控系统;第二代数控(1959-1965年):采用晶体管电路为主的硬件数控系统;第三代数控(1965年开始):采用小、中规模集成电路的硬件数控系统;第二阶段:计算机数控(CNC)阶段:又称为软件数控阶段,从1970年~现在。

第四代数控(1970年开始):采用大规模集成电路的小型通用电子计算机数控系统;第五代数控(1974年开始):采用微型计算机控制的数控系统;第六代数控(1990年开始):采用工控PC机的通用CNC系统。

1.2 数控机床的工作原理是什么?数控加工的特点有哪能些?答:1)将被加工零件图纸上的几何信息和工艺信息用规定的代码和格式编写成加工程序,并输入数控装置,经过信息处理、分配,控制机床各坐标轴以最小位移量(通常只有0.001mm)为单位进行移动,其合成运动实现了刀具与工件的相对运动,完成零件的加工。

数控机床的加工,实质是应用了“微分”原理。

2)数控加工的特点有:1)自动化程度高,能减轻工人的劳动强度和改善劳动条件;2)零件加工精度高、加工质量稳定;3)加工生产率高;4)良好的经济效益;5)复杂产品加工能力强;6)适应性强,适合加工单件或小批量复杂工件;7)有利于生产管理的现代化。

1.3 数控机床由哪能几个部分组成?各个部分的基本功能是什么?答:1)数控机床由控制介质、数控装置、伺服系统、检测系统和机床本体五部分组成。

进给伺服系统概述

进给伺服系统概述
上面已经把数控机床位置伺服系统简化为典型的二阶系统。 下面 将应用控制系统的分析方法来讨论数控机床位置伺服系统的性能指 标。 (一)动态性能 (1).动态性能分析 动态过程是指控制系统在输入作用下从一个稳态向新的稳态转 变的过渡过程。位置伺服系统在跟踪加工的连续控制过程中,几乎始 终处于动态的过程中。 控制系统都是受到给定与扰动两种输入的作用。 理想的控制系统 应该对给定输入的变化能够准确地跟踪, 同时又完全不受扰动输入的 影响。即系统应该具有很好的跟随性和很强的抗干扰性。 对于位置随动系统,给定值的变化量是主要输入,动态过程将围 绕这个变化了的给定值变化。 阻尼比ζ是描述系统动态性能的重要参 数。 欠阻尼 0<ζ<1 时进给伺服系统的传递函数: 这种情况下系统对于斜坡输入信号的跟随响应是要经历振荡的, 如下 图所示 :
大倍数。 调速单元输出的量是速度量,这一速度量经过积分环节 1/s 后成为角 位移量。
2-1、进给伺服系统的数学模型
对控制系统的数学描述, 实际上就是首先建立系统中各环节的传 递函数,然后求出整个系统的传递函数。有速度内环的闭环系统如 图 8-4 所示:
位置检测环节是指位置传感器(光电编码器,旋转变压器等)和后置 处理电路。作用是把位置信号转换为电信号。这个环节也可以看做是 一个比例环节,比例系数是 K f 。 将各环节的传递函数置换 8-4 的框图, 就得到了动态结构图, 如图 8-5 所示:
1.静态性能分析
控制系统中,最重要的是稳定性问题。如果一台数控机床的伺服 控制系统是不稳加工的。因此,任何控制系统首先必须是稳定的。 2、稳态性能指标 位置伺服系统的稳态性能指标主要是定位精度,指的是系 统过度过程终了时实际状态与期望状态之间的偏差程度。 一般数控机 床的定位精度应不低于 0.01mm,而高性能数控机床定位精度将达到 0.001mm 以上。 影响伺服系统稳态精度的原因主要有两类, 一类是位置测量装置

数控机床进给伺服系统的基本结构(共7张PPT)

数控机床进给伺服系统的基本结构(共7张PPT)


速度控制模块
一进给伺服系统的结构
步进伺服系统原理图
伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 数控机床常见故障诊断与排除 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 伺服系统的结构通常由位置控制环和速度控制环组成。 伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 数控机床进给伺服系统的基本结构 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。 伺服系统的结构通常由位置控制环和速度控制环组成。 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。
数控机床常见故障诊断与排除 数控机床进给伺服系统的基本结构
一进给伺服系统的结构
数控机床的伺服系统一般由驱动元件、机械传动部件、执行部件和检测反馈环 节等组成。驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部
件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系
统)。)。
一进给伺服系统的结构
制环 数控机床的伺服系统一般由驱动元件、机械传动部件、执行部件和检测反馈环节等组成。
伺服电机、速度检测装置、速度反馈比较环节、速度控制模块

数控机床进给系统..

数控机床进给系统..

数控机创进给系统数控机床的进给传动系统常用伺服进给系统来工作。

伺服进给系统的作用是根据数控系统传来的指令信息,进行放大以后控制执行部件的运动,不仅控制进给运动的速度,同时还要精确控制刀具相对于工件的移动位置和轨迹。

因此,数控机床进给系统,尤其是轮廓控制系统,必须对进给运动的位置和运动的速度两方面同时实现自动控制。

数控机床进给系统的设计要求除了具有较高的定位精度之外,还应具有良好的动态响应特性,系统跟踪指令信号的响应要快,稳定性要好。

一个典型的数控机床闭环控制的进给系统组成:位置比较、放大元件、驱动单元、机械传动装置和检测反馈元件等几部分。

机械传动装置:是指将驱动源旋运动变为工作台直线运动的整个机械传动链,包括减速装置、丝杠螺母副等中间传动机构。

第一节概述一、数控机床对进给传动系统的要求1.减少摩擦阻力:在数控机床进给系统中,普遍采用滚珠丝杠螺母副、静压丝杠螺母副,滚动导轨、静压导轨和塑料导轨。

2.减少运动惯量3.高的传动精度与定位精度设计中,通过在进给传动链中加入减速齿轮,以减小脉冲当量(即伺服系统接收一个指令脉冲驱动工作台移动的距离),预紧传动滚珠丝杠,消除齿轮、蜗轮等传动件的间隙等办法,可达到提高传动精度和定位精度的目的。

4.宽的进给调速范围:伺服进给系统在承担全部工作负载的条件下,应具有很宽的调速范围,以适应各工件材料、尺寸和刀具等变化的需要,工作进给速度范围可达3~6000mm/min(调速范围1:2000)。

5.响应速度要快:所谓快响应特性是指进给系统对指令输入信号的响应速度及瞬态过程结束的迅速程度,即跟踪指令信号的响应要快;定位速度和轮廓切削进给速度要满足要求;工作台应能在规定的速度范围内灵敏而精确地跟踪指令,进行单步或连续移动,在运行时不出现丢步或多步现象6.无间隙传动:进给系统的传动间隙一般指反向间隙,即反向死区误差,它存在于整个传动链的各传动副中,直接影响数控机床的加工精度。

因此,应尽量消除传动间隙,减小反向死区误差。

数控机床对进给伺服系统的要求

数控机床对进给伺服系统的要求

数控机床对进给伺服系统的要求摘要: 数控机床伺服系统是以机床移动部件的位置和速度为控制量的自动控制系统,又称随动系统、拖动系统或伺服机构。

在数控机床上,伺服驱动系统接收来自CNC 装置(插补装置或插补软件)的进给指令脉冲,经过一定的信号变换及电压、功率放大...数控机床伺服系统是以机床移动部件的位置和速度为控制量的自动控制系统,又称随动系统、拖动系统或伺服机构。

在数控机床上,伺服驱动系统接收来自CNC 装置(插补装置或插补软件)的进给指令脉冲,经过一定的信号变换及电压、功率放大,再驱动各加工坐标轴按指令脉冲运动,这些轴有的带动工作台,有的带动刀架,通过几个坐标轴的综合联动,使刀具相对于工件产生各种复杂的机械运动,加工出所要求的复杂形状工件。

进给伺服系统是数控装置和机床机械传动部件间的联系环节,是数控机床的重要组成部分。

它包含机械、电子、电机(早期产品还包含液压)等各种部件,并涉及到强电与弱电控制,是一个比较复杂的控制系统,要使它成为一个既能使各部件互相配合协调工作、又能满足相当高的技术性能指标的控制系统是一个相当复杂的任务。

在现有技术条件下,CNC 装置的性能已相当优异,并正在迅速向更高水平发展,而数控机床的最高运动速度、跟踪及定位精度、加工表面质量、生产率及工作可靠性等技术指标,往往又主要决定于伺服系统的动态和静态性能,数控机床的故障也主要出现在伺服系统上,可见,提高伺服系统的技术性能和可靠性,对于数控机床具有重大意义,研究与开发高性能的伺服系统—直是现代数控机床的关键技术之一。

数控机床运动中,主轴运动和伺服进给运动是机床的基本成形运动。

主轴驱动控制一般只要满足主轴调速及正、反转即可,但当要求机床有螺纹加工、准停和恒线加工等功能时,就对主轴提出了相应的位置控制要求。

此时,主轴驱动控制系统可称为主轴伺服系统,只不过控制较为简单。

本章主要讨论进给伺服系统。

数控机床对进给伺服系统的要求有:1.高精度数控机床伺服系统的精度是指机床工作的实际位置复现插补器指令信号的精确程度。

数控机床的伺服系统教学课件PPT

数控机床的伺服系统教学课件PPT

脉冲 环形分配
环节
功能型 功率放大
电路
步进电动机 激磁绕组
驱动电路 供电电源
1.光电耦合隔离接口
数控装置输出的脉 冲控制信号在和步 进电动机的驱动电 路相联接时,都必 须设置一个光电耦 合隔离接口,以防 止外部驱动电路对 计算机内部极敏感 集成电路的干扰和 损坏。
来自数控装置 的控制脉冲
R2
Vcc
Eb —电枢线圈所产生的反电势 Kb —与结构及磁场性质相关的电磁常数
n —直流电动机的工作转速
施加在电枢线圈上的电压主要用以克服 反电势。但由于电枢线圈本身必然有电 阻,也要耗散一部分能量,故外加的电 压为:
R
C
V
V
( a)
( b)
( c) ( d)
(3)并联增流电容电路
为使激磁绕组在通
电瞬间L的工作电流L Rc
L
建立得更加迅速,
可端在 再限 并R流 联电 上D阻 一的个两大R D
R
电容来减小回路的
来 器
自 的
环 指
形 令
分脉动配冲 态阻抗,而稳态
工作时V的阻抗仍V然
V
仅为限流电阻本身。
( a)
( b)
B相
C相
各相定子
各相转子



转子顺时针方向
可以得到如下结论: (1)步进电机的步距角α与定子绕组的相数 m、转子的齿数z、通电方式k有关,可用 下式表示:
360 mzk
式中,m相m拍时,k=1; m相2m拍时,k=2;
α一般为0.75°~3°。 (2)改变步进电机定子绕组的通电顺序,转 子的旋转方向也随之改变。 (3)通电状态的变化频率越高,转子的转速 越高。

数控机床进给伺服系统的工作原理(与“位置”有关文档共5张)

数控机床进给伺服系统的工作原理(与“位置”有关文档共5张)
进给指令 数 检 动 成控 测 信进装 反 号给比置 馈 ,运较插 电 经动控补 路 位。信 来 置制。号 的 控环输 反 制节送馈和到信速位号度驱置相控动控比制控制较单模后元制块,输单的位出元位置到置比速比较度执较 电 环电路,行路输直元,出到件与位机位置床置移完 机 床 进进带进它数,数,进进带数 进或数进带数,数进带进进 进带进带它它它进或进进进进带给给动给接控经控经给给动控给伺控给动控经控给动给给给动给动接接接给伺给给给给动伺 伺 传 伺 受 装 位 装 位 伺 伺 传 机伺 服 机 伺 传 机 位 机 伺 传 伺 伺伺 传 伺 传 受 受 受 伺 服 伺 伺 伺 伺 传服服动服来置置置置服服动床 服单床服动床置床服动服服 服动服动来来来服单服服服服动系系机系自插控插控系系机常 系元常系机常控常系机系系 系机系机自自自系元系系系系机统统构统数补制补制统统构见 统。见统构见制见统构统统 统构统构数数数统。统统统统构的是,的控信和信和的是,故 故是,故和故是,的的 是,是,控控控的的的是,((FFee工数最工装号速号速工数最障 障数最障速障数最工工 数最数最装装装工工工数最ee作控后作置输度输度作控后诊 诊控后诊度诊控后作作 控后控后置置置作作作控后dd SS原装转原的送控送控原装转断 断装转断控断装转原原 装转装转的的的原原原装转ee理置化理进到制到制理置化与与置化与制与置化理理置化置化进进进理理理置化rrvvoo和为给位单位单和为排 排和为排单排和为和为和为给给给和为SS机机指置元置元机机除 除机机除元除机机机机机机指指指机机yyss床床令控输控输床床床床输床床床床床床令令令床床ttee主的信制出制出主的主的出主的主的主的信信信主的mm机直号模到模到机直机直到机直机直机直号号号机直))——的线,块速块速的线的线速的线的线的线,,,的线——联或经的度的度联或联或度联或联或联或经经经联或以以系转变位环位环系转系转环系转系转系转变变变系转移移环动换置,置,环动环动,环动环动环动换换换环动动动节位、比直比直节位节位直节位节位节位、、、节位部部,移调较到较到,移,移到,移,移,移调调调,移件件接。节电机电机接。接。机接。接。接。节节节接。的的收和路床路床收收床收收收和和和收位位放,完,完完放放放CCCCCCC置置NNNNNNN大与成与成成大大大CC和CCCC和C后位进位进进后后后装装装装装装装速速驱置给置给给驱驱驱置置置置置置置度度动检运检运运动动动插插插插插插插作作执测动测动动执执执补补补补补补补为为行反。反。。行行行器器器器器器器控控件馈馈件件件发发发发发发发制制,电电,,,出出出出出出出量量转路路转转转的的的的的的的的的化来来化化化进进进进进进进自自为的的为为为给给给给给给给动动直反反直直直脉脉脉脉脉脉脉控控线馈馈线线线冲冲冲冲冲冲冲制制或信信或或或或或或或或或或系系旋号号旋旋旋进进进进进进进统统转相相转转转给给给给给给给,,运比比运运运位 位 位 位 位 位 位又又动 较 较 动 动 动移移移移移移移称称。后后。。。量量量量量量量位位,,信信信信信信信置置位位息息息息息息息随随置置,,,,,,,动动比比经经经经经经经系系较较过过过过过过过统统电电变变变变变变变、、路路换换换换换换换驱驱输输和和和和和和和动动出出放放放放放放放系系位位大大大大大大大统统置置由由由由由由由、、移移伺伺伺伺伺伺伺伺伺动动服服服服服服服服服信信电电电电电电电机机号号机机机机机机机构构 反馈检测单元 进给伺服系统的工作原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 速度单元是上述驱动电机及其控制和驱动装置,通 常驱动电机与速度控制单元是相互配套供应的, 其性能参数都是进行了相互匹配,这样才能获得 高性能的系统指标。
4. 速度控制单元主要作用:接受来自位置控制单元的 速度指令信号,对其进行适当的调节运算(目的是 稳速),将其变换成电机转速的控制量(频率,电压 等),再经功率放大部件将其变换成电机的驱动电 量,使驱动电机按要求运行。
第五章数控机床的进给伺服系统
▢步进电机
步进电机的角位移量和输入的脉冲数成正比。在 时间上与输入的脉冲同步。
因此,只需要控制输入脉冲的数量、频率及电机 绕组通电相序,便可以获得所需要的转角、转速及转 动方向。
在无脉冲输入时,步进电机在绕组电源激励下, 气隙磁场能使转子保持原有的位置而处于定位状态。
第五章数控机床的进给伺服系统
即,调节、变换、功放。
第五章数控机床的进给伺服系统
5. 进给驱动系统的特点(与主运动(主 轴)系统比较):
功率相对较小; 控制精度要求高; 控制性能要求高,尤其是动态性能。
第五章数控机床的进给伺服系统
二、步进电机及其驱动装置
步进电机流行于70年代,该系统结构简 单、控制容易、维修方面,且控制为全数字 化。随着计算机技术的发展,除功率驱动电 路之外,其它部分均可由软件实现,从而进 一步简化结构。因此,这类系统目前仍有相 当的市场。目前步进电机仅用于小容量、低 速、精度要不高的场合,如经济型数控、打 印机、绘图机等计算机的外部设备。
▢ 步进电机的分类
➢按运动方式分: 旋转运动、直线运动式步进电机
➢按工作原理分:
反应式(磁阻式)、电磁式、永磁式;
➢按结构分:
单段式(径向式)、多段式(轴向式)
➢按使用场合分: 功率步进电机和控制步进电机;
➢按相数分: 三相、四相、五相、六相、八相等
➢按使用频率分: 高频率和低频步进电机
不同的步进电机,其工作原理、驱动装置也不完
第五章数控机床的进给伺服系统
第一节 概述
一、进给伺服系统的定义及组成 1. 定义
进给伺服系统(Feed Servo System)— —以移动部件的位置和速度作为控制量的 自动控制系统。
第五章数控机床的进给伺服系统
⒉ 组成: 位置控制单元;速度控制单元;驱动
元件(电机);检测与反馈单元;机械执行部件。
全一样。
第五章数控机床的进给伺服系统
▢ 步进电机的工作原理
如图所示,三相反应式步进电机工作原理图。 由转子和定子组成。定子上有A、B、C三对磁极绕组 ,分别为A相、B相、C相。 转子是硅钢片软磁材料迭
合成的带齿廓形状的铁心。
如果在定子上的 三对绕组中通直流电 流,就会产生磁场。
B相通电
A相通电
C相通电
第五章数控机床的进给伺服系统
2. 输出位置精度要高 ▢ 静态:定位精度和重复定位精度要高,即定
位误差和重复定位误差要小。(尺寸精度) ▢ 动态:跟随精度,这是动态性能指标,用跟
随误差表示。 (轮廓精度) ▢ 灵敏度要高,有足够高的分辩率。
第五章数控机床的进给伺服系统
⒊ 负载特性要硬
▢ 当负载变化时,输出速
方法:首先测量出进给丝杠螺距误差曲线(规律),
然后可采用下列两种方法实现误差补偿:硬件补偿、
软件补偿。
第五章数控机床的进给伺服系统
例2 设X-Y 工作台由步进电机直接经丝杆螺母副驱 动,丝杆螺距为5mm,步进电机步距角为150,工作 方式三相六拍,工作台最大行程为400mm,求:
(1)脉冲当量;
(2)微机发出的脉冲总数是多少?
第五章数控机床的进给 伺服系统
2020/12/11
第五章数控机床的进给伺服系统
进给伺服系统是数控系统主要的子系统。如 果说CNC装置是数控系统的“大脑”,是发布 “命令”的“指挥所”,那么进给伺服系统则 是数控系统的“四肢”,是一种“执行机构”。 它忠实地执行由CNC装置发来的运动命令,精 确控制执行部件的运动方向,进给速度与位移 量。
CNC 插补 指令
位置控制单元
+
位置控
制调节
-

速度控制单元
+
-
速度控制 调节与驱

机械执行部件
实际 速度 反馈
检测与反 馈单元
电机
第五章数控机床的进给伺服系统
二、NC机床对数控进给伺服系统的要求
1. 调速范围要宽且要有良好的稳定性 调速范围: 一般要求:
稳定性:指输出速度的波动要少,尤其是在低 速时的平稳性显得特别重要。
第五章数控机床的进给伺服系统
当A、B、C三对磁极的绕组依次轮流通电,则A、B 、C三对磁极依次产生磁场吸引转子转动。
A
C1 B
4
2
B 3C
A
A
C1
B 2
4 B
3C
A
A
C
B
B
C
A
逆时针回转300
逆时针回转300
√当A相通电时,B相和C相不通电,电机铁心的AA轴 方向产生磁通,在磁拉力的作用下,转子1、3齿与A 相磁极对齐,2、4两齿与B、C两磁第极五章相数控机对床的错进给开伺服系3统00
通常要求从 0→F max (F max→0),其时间应小 于200ms,且不能有超调, 否则对机械部件不利,有
害于加工质量。
tp
t
第五章数控机床的进给伺服系统
5. 能可逆运行和频繁灵活启停。 6. 系统的可靠性高,维护使用方便,成本 低。
综上所述:
▢ 对伺服系统的要求包括静态和动态特性两方面; ▢ 对高精度的数控机床,对其动态性能的要求更严。
第五章数控机床的进给伺服系统
第五章数控机床的进给伺服系统
第五章数控机床的进给伺服系统
▢步进电机
步进电机是一种将电脉冲信号转化为机械角位移的电 磁机械装置。由于所用电源是脉冲电源,所以也称为 脉冲马达。
步进电机和一般电机不同,一般电机通电后连续 转动,而步进电机则随输入的脉冲按节拍一步一步地 转动。对步进电机施加一个电脉冲信号时,步进电机 就旋转一个固定的角度,称为一步。每一步所转过的 角度叫做步距角。
√“一拍”——从一相通电换接到另一相通电称为一拍

√“三拍”——每一拍转子转过一个步距角,这样“三
拍”是指通电换接三次后完成一个通电周期。 ➢三相六拍通电方式 ——即按A AB B BC C CA
相序通电。(见下图)
第五章数控机床的进给伺服系统
B相通电 B吸2、4两齿
B吸2、4两齿
BC相通电C吸1、3
第五章数控机床的进给伺服系统
n ▢ 传动间隙补偿
在整个行程范围内测量传动机构传动间隙,取其 平均值存放在数控系统中的间隙补偿单元,当进给系 统反向运动时,数控系统自动将补偿值加到进给指令 中,从而达到补偿目的。
n ▢ 螺距误差补偿
利用计算机的运算处理能力,可以补偿滚珠丝杠的 螺距累积误差,以提高进给位移精度。
(4)改变通电相序即可改变电机转向。
(5)步进电机存在齿间相邻误差,但不存在累积误差
第五章数控机床的进给伺服系统
第三节 典型进给伺服系统(位置控制)
一、开环进给伺服系统(Open-Loop System) 不带位置测量反馈装置的系统; 驱动电机只能用步进电机; 主要用于经济型数控或普通机床的数控化改造
C相通电
C吸1、3
1 42
3
AB相通电 A吸1、3两齿 B吸2、4两齿
A相通电 A吸1、3两齿
CA相通电
C吸1、3 A吸2、4
工作原理: 当A相通电,1、3齿与A相磁极对齐。当A 、B两相同时通电,因A极吸引1、3齿,B极吸引2、4 齿,转子逆时针旋转150。随着A相断电,只有B相通电
第五章数控机床的进给伺服系统
第五章数控机床的进给伺服系统
√当B相通电时,C相和A相断电,电机铁心的BB轴方 向产生磁通,在磁拉力的作用下,转子沿逆时针方向 旋转300,2、4齿与B相磁极对齐。1、3两齿与C、A两 磁极相对错开300
√当C相通电时,A相和B相断电,电机铁心的CC轴方 向产生磁通,在磁拉力的作用下,转子沿逆时针方向 旋转300,1、3齿与C相磁极对齐。2、4两齿与A、B两 磁极相对错开300
图中:f —脉冲频率(HZ ) α— 步距角 (度)
Z2
Z1、Z2 — 传动齿轮齿数
t — 螺距(mm)
f,
t
— 脉冲当量(mm) 步进电机
Z 第五章数控机床的1进给伺服系统
n 传动比选择:
为了凑脉冲当量mm,也为了增大传 递的扭矩,在步进电机与丝杆之间,要增 加一对齿轮传动副,那么,传动比 i=Z1/Z2与α、 、t之间有如下关系:
。 以上所述,步进电机的步距角大小不仅与通电方式
有关,还与转子的齿数有关。 m——定子励磁绕组相数
Z——转子齿数
计算公式为: = 360 K——通电方式,单为1
mzk
,双为2 第五章数控机床的进给伺服系统
步进电机转速计算:
n
=
o
360
60f
=
o
f
6
式中:n——转速(r/min); f——脉冲频率,即每秒输入 步进电机的脉冲数; ——用度数表示的步距角。
式中,当转子的步距角一定时,步进电机的转速与输 入的脉冲频率成正比。
第五章数控机床的进给伺服系统
步进电机的特点:
(1)步进电机的输出转角与脉冲频率严格成正比,所 以控制输入步进电机的脉冲个数就能控制位移量。
(2)步进电机的转速与输入的脉冲频率成正比,只要 控制脉冲频率就能调节步进电机的转速。
(3)当停止送入脉冲时,只要维持绕组内电流不变, 电机轴可以保持在某固定位置上,不需要机械装制装 置。
相关文档
最新文档