激光横模纵模的名词解释

合集下载

3激光工作特性-4

3激光工作特性-4

c 1 L L ν mnq = q + (m + n + 1)arccos (1− )(1− ) 2ηL π R1 R2 对于对称共焦腔 对称共焦腔(R 可求出谐振频率。 对于对称共焦腔 1=R2=L=2f)可求出谐振频率。 可求出谐振频率
2、对称共焦腔的共振频率: 、对称共焦腔的共振频率:
等相位面 孔阑 传输模
输入平面波
腔中多次反射所形成的横向稳态场分布。 腔中多次反射所形成的横向稳态场分布。即在 腔内每次渡越后都能实现再现的模。称为横模或 腔内每次渡越后都能实现再现的模。称为横模或 自在现模。 自在现模。 基模的产生: 基模的产生 是由严格沿平行光轴方向传播的光波, 是由严格沿平行光轴方向传播的光波,所形 成的横模,光强分布如前图的TEM00q型。 成的横模,光强分布如前图的 高次模的产生: 高次模的产生 形路线。 由光线传播方向稍微偏离轴线,走Z形路线。虽 光线传播方向稍微偏离轴线, 形路线 经多次反射仍没有跑出腔外,且产生干涉加强, 经多次反射仍没有跑出腔外,且产生干涉加强, 形成的模, 高次模。 形成的模,为高次模。
横模的谐振频率。 三 、横模的谐振频率。
三 、横模的频率
1、谐振腔的共振条件 、谐振腔的共振条件: 共振条件 横模在谐振腔镜面之间传播一个来回, 横模在谐振腔镜面之间传播一个来回 , 只有 位相改变为2π整数倍的模, 位相改变为 π整数倍的模 , 才能得到稳定的 分布和光强的极大,即产生共振。 分布和光强的极大,即产生共振。 不同的腔, 有着不同阶的横模。 不同的腔 , 有着不同阶的横模 。 通过对波动方程 的求解, 结合谐振条件及有关近似条件, 的求解 , 结合谐振条件及有关近似条件 , 可求出 一般稳定球面镜谐振腔的谐振频率 稳定球面镜谐振腔的谐振频率为 一般稳定球面镜谐振腔的谐振频率为

17 光学谐振腔基本知识

17 光学谐振腔基本知识

(二)横模:指可能存在于腔内的每一种横向场分布,用 模序数m和n描述。 激光横模式的特征与谐振腔的几何结构紧密相连,知 道了腔的几何参数,如腔长、两个反射镜面的孔径尺寸和 曲率半径,就可以确定腔内可能存在的各种激光模式的性 质,例如场的横向分布、谐振频率、单程衍射损耗率、远 场发散角等。 二、无源腔损耗 激光工作物质被泵浦源激发后,对发光的放大作用主 要表现在他们补偿激光模式的能量损耗,使之满足振荡的 阈值条件,从而形成并维持激光模式的振荡。它对光场的 空间分布、谐振频率。损耗、发散角等模式特征的影响是 次要的。
c v q 2 L
同样长度的谐振腔,固体激光器的本征纵模频率间隔 要小于气体激光器,而同种激光工作物质的激光器,谐振 腔越短,本征纵模的频率间隔就越大。
五、菲涅耳数 在描述光学谐振腔的工作特性时,经常用到菲涅尔数这 个概念,它的定义为:
a2 F L
式中:a——反射镜线度
菲涅耳数的物理意义可以有多种不同的解释,下边我 们分别简单说明: 1. 衍射光的腔内的最大往返次数 ; 2. 从一面镜子的中心看另一面镜子的菲涅耳半波带数;
若腔内各种损耗所引起的腔寿命分别为 τci,则腔的总寿 命为: 1 1 (1-7-31) c i ci (三)腔Q值 与LC谐振电路相似,光学谐振腔与可以用品质因数Q来描 述(1-7-32)
式中:E——储存在腔内的总能量 P——单位时间所损耗的能量 ν——腔内电磁场的振荡频率
(1-7-38)
三、无源腔本征纵模线宽 由于无源腔存在损耗模式的腔内本征纵模的光场振幅 随时间按指数规律衰减。又频谱分析理论可知,这种光场 的谱线有一定的线宽。下面我们来简要推导一下: 因为光强与光场振幅的平方成正比,可以写出光场振 幅随时间的变化规律为:

激光原理_名词解释

激光原理_名词解释

一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数pv p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v ∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

光电子技术作业解答

光电子技术作业解答

赖老师的课到期中考试为止一共有9次作业,依次分别由冯成坤、饶文涛、黄善津、刘明凯、郑致远、黄瑜、陈奕峰、周维鸥和陆锦洪同学整理,谨此致谢!作业一:1、桌上有一本书,书与灯至桌面垂直线的垂足相距半米。

若灯泡可上下移动,灯在桌上面多高时,书上照度最大?(假设 灯的发光强度各向通性,为I0) 解:设书的面积为dA ,则根据照度的定义公式:dAd I dA d E 0Ω==φ (1)其中Ωd 为上图所示的立体角。

因而有:2/32222)h (L hdA h L cos dA d +⋅=+⋅=Ωθ (2) 将(2)式代入(1)式得到:2/3220)h (L hI E += (3) 为求最大照度,对(3)式求导并令其等于零,0dhdE= 计算得:m 221h =因而,当高度为m 221时书上的照度最大。

2、设He-Ne 激光器中放电管直径为1mm ,发出波长为6328埃的激光束,全发散角为θ=10-3rad ,辐射通量为3mW ,视见函数取 V(6328)=0.24,求: (1)光通量,发光强度,沿轴线方向的亮度?(2)离激光器10米远处观察屏上照明区中心的照度?(3)若人眼只宜看一熙提的亮度,保护眼镜的透射系数应为多少? 解:(1)光通量:lm 49.010324.0638V K 3m v =⨯⨯⨯=Φ⋅⋅=Φ-θ 发光强度:cd 1024.64d d I 52vv ⨯≈Φ=ΩΦ=θπ 亮度:211235m /cd 1059.7)10(41024.6dAcos dI L ⨯≈⨯⨯==-πθ轴(2)由题意知,10米远处的照明区域直径为: m 101010L D 23--=⨯=⋅=θ从而照度为:lx 9.6238)10(4149.0D 4E 222v=⨯⨯=Φ=-ππ(3)透射率:81141026.11095.710L 1T -⨯≈⨯==轴(熙提)作业二1、说明蓝色火焰与黄色火焰的色温谁高,为什么? 答:色温是用黑体的温度来标度普通热辐射源的温度。

第10讲 光学谐振腔-纵模、横模(课堂PPT)

第10讲 光学谐振腔-纵模、横模(课堂PPT)
• 假设初始时在镜面1上有分布为u1的电磁场从镜面1向镜面 2传输,经过一次渡越,在镜面2上有分布为u2的场,在经 过反射后再次渡越回到镜面1时场的分布为u3,如此反复。
• 受到各种损耗的影响,不仅每次渡越会造成能量的衰减, 而且振幅横向分布也会由于衍射损耗的存在而发生改变;
• 由于衍射损耗仅发生在镜面的边缘,因此只有中心振幅大, 边缘振幅小的场才会尽可能少的受到衍射损耗的影响。经 过多次渡越后,这样的模式除了振幅整体下降,其横向分 布将不发生变化,即在腔内往返传输一次后可以“再现” 出发时的振幅分布。
激光原理与技术·原理部分
第10讲 光学谐振腔:纵模、横模
1
10.1 光学谐振腔的纵模
• 平平腔的驻波
– 均匀平面波近似 一般的开放式光学谐振腔都满足条件:a , L 在满足该条件时,可以将均匀平面波认为是腔内存在 的稳定电磁场的本征态,为平行平面腔内的电磁场提 供一个粗略但是形象的描述;
严格的理论证明,只要满足条件 a2 / L 1 ,则腔 内损耗最低的模式仍可以近似为平面波,而 a2 / L
• 例:
– 对于L=10cm的气体激光器,η=1,则有 q 1.5109Hz ; – 对于L=100cm的气体激光器, q 150 106Hz ; – 对于L=10cm,η=1.76的固体激光器, q 850106Hz ;
• 当其他参数固定时,光腔的腔长增加,频率间隔减小; • 对于微波腔,其尺寸可以与波长相比拟,则在腔中只会激
10
10.2 开腔模式的物理概念
• 开腔中有多种损耗:
– 由于反射镜尺寸有限,在反射镜边界处引起的 衍射损耗,该损耗会影响开腔中振荡的激光模 式的横向分布;
– 反射镜不完全反射、介质吸收等因素引起的损 耗不影响模式的横向分布;

激光原理 名词解释

激光原理 名词解释

一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数pv p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v ∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光原理_名词解释

激光原理_名词解释

名词解释1. 损耗系数及振荡条件:| m = (g° - I S即g° _ :为包括放大器损耗和谐振腔损耗在内的平均损耗1a系数。

2. 线型函数:引入谱线的线型函数g~(v,V o) = 型,线型函数的单位是S,括号中的V o表示线型函数的中心频p-bo率,且有[g~(v,v0) =1,并在v0加减心%时下降至最大值的一半。

按上式定义的也v称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率V。

的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q值:无论是LC振荡回路,还是光频谐振腔,都采用品质因数Q值来标识腔的特性。

定义Q r Wp =2:v p。

■为储存在腔内的总能量,P为单位时间内损耗的总能量。

v为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P与单模频率V q的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K的单色平面波都可以存在,但在一个有边界条件限制的空间V内,只能存在一系列独立的具有特定波矢k的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定) 。

10. 谱线加宽:实际中的谱线加宽由于各种情况的影响,自发辐射并不是单色的,而是分布在中心频率(E2—E i" 一附近一个很小的频率范围内。

激光原理与技术

激光原理与技术

第3章:激光纵模:每一个q值对应有正反两列沿相反方向传播的同频率光波两列光波的结果,将在腔内形成驻波。

谐振腔形成的每一列驻波称为一个纵模。

激光谐振腔的谐振频率主要决定于纵模序数Vmnq=qc/2μL.腔内两个相邻纵模频率之差为纵模的频率间隔:△Vq=Vq+1-Vq=c/2μL.激光纵模:激光的模式也常采用微波中标志模式的符号来标记,极为TEMmnq,其中TEMoo是基横模。

激光横模:在激光谐振腔存在的稳定的横向分布,就是自再现模,通常称为横模。

m、n的值正好分别等于光强在x,y方向上的节线(光强为0的线)数目,而且由Fm (X)和Fn(Y)函数的机制分布看出,m、内的值越大,光场也越向外扩展。

基横模行波输出在与光束前进方向的垂直平面上的强度呈高斯型分布,通常称为高斯光束。

高斯光束与普通光束有很大区别,它的传播方向性好很好,同时也会不断的发散,其发散的规律不同于球面波,在传播过程中她的波面曲率一直在变化,但是永远不会变成0,除光束中心外,高斯光束并不沿直线传播。

高斯光束的强度分布:在z处基膜的有效截面半径w (z)=根号下λL[1+(2z/L) ²]/2π。

在共焦腔中心(z=0)的截面内光斑有极小值束腰半径:Wo=Ws/根号2=根号下λL/π除以根号2;在共焦腔的焦平面上,束腰半径Wo最小。

该处称为高斯光束的“光腰”或“束腰”。

基膜光斑尺寸:Ws=根号下Xs ²+Ys²=根号下λL/π。

高斯光束共焦场的相位分布由相位函数φ(x,y,z)描述,φ(x,y,z)随坐标而变化,与腔的轴线相交于Zo的等相位面的方程为:φ(x,y,z)=φ(0,0,Zo),则偏离实际广州的程度Z-Zo=(根号下Ro²-(x²+y²))-Ro。

当zo>0时,Z-Zo<0;当Zo<0时,Z-Zo>0.这就表示,共焦场的等相位面都是凹面向着腔的中心(z=0)的球面。

模的耦合及横模纵模观测实验

模的耦合及横模纵模观测实验

模的耦合及横模、纵模观测实验人:林晔顺023012037 合作人:林宗祥组号:A8【实验目的】1. 对气体激光器的性质进一步了解。

2. 掌握应用气体激光器的调节方法。

3. 了解共振模的耦合和匹配概念。

4. 仔细调节模耦合装置,观察横模和模的耦合现象。

5. 纵模的观测。

【实验仪器】He-Ne激光管2支、表座2个、WSS夫焦球面扫描干涉仪、激光电源、JPM-1激光光谱扫描分析仪【实验基本原理】1.横模的概念横摸是描述激光光斑上的能量分布情况,是指激光束横截面上的光强分布。

光场在横向不同的稳定分布,通常称为不同的横模:基模和高阶模。

基模和高阶模的区别在于光斑形状,光斑没有出现分瓣的,分布均匀的,就是基模。

反之出现了分瓣现象的就是高阶模。

基模用表示,它具有最小的衍射损失,其辐射照度分布在垂直于光轴的任何截面都具有高斯形状。

高阶模用表示,表示横模序数,即在光轴垂直的任一平面内,光强分布在x, y方向的极小值数目。

轴对称 旋转对称 图1 激光的各种横模图形2.共振模的耦合和匹配的理论概述激光器谐振腔产生的基模注入到另一个谐振腔或光学传输线中去,它会产生基模以处的其他模式。

若能选择适当的匹配参数,可以使基模得到很大的耦合系数。

如图2所示,当激光从左方射向右方时,到达参考平面A上的横模光斑半径分别为,等相位面曲率半径分别为。

当,或者说参考平面两边基模参数完全相同时,基模间达到完全匹配。

左方入射基模的能量完全转换为右边基模的能量。

在其它非完全匹配的情况下,左方基模的能量将转换为右面方多种不同模场的能量,而其中转换为右方基模的能量比率由小于1的匹配因子K来表征。

图23.激光的纵模概念及纵模间隔激光器谐振腔内获得振荡的不同波长成分具有不同的波形,沿腔的轴线方向(纵向)形成驻波,驻波的波节数由q决定。

通常将由整数q所表征的腔内纵向场分布称为腔的纵模。

不同的q值相应于不同的纵模。

纵模是与激光腔长度相关的,是描述激光频率的。

激光原理-名词解释

激光原理-名词解释

一 名词解释1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数p v p v v )(),(g0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g0~v v ,并在0v 加减2v∆时下降至最大值的一半。

按上式定义的v ∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4.纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率qv 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光的纵模和横模

激光的纵模和横模

vc
N 个纵模
二、横模 (光束横截面上的光强的稳定分布)
激光束横截面上几种光斑图形
N 个纵模
讨论
(1) 使激光按单模输出,则其单色性由单模线宽决定。

条件
频率(MHz)

T=300 K
辐射线宽
激 P=1~2 mmHg
1300

腔长
纵模间隔
器 L=100 cm
参 数
L=1射线宽
(2) 若输出光是多模的,其单色性 和普通光源一样由辐射线宽决 定。
17.7 激光的纵模和横模
一、纵模(振荡频率)
全反 射镜
部分 反射镜
光在谐振腔内来回反射,相干叠加,只有形成驻波的光
才能振荡
L k k k = 1, 2, 3, …
2
波长为
k
2L k
振荡纵模
k
c
k
k c 2nL
纵模间隔
k
k1k
c 2nL
辐射线宽内的纵模个数为
N k
vk 单模线宽vc
vk vk+1 辐射线宽

半导体激光器的模式

半导体激光器的模式
LD通常和G.652或G.653规范的单模光纤耦合,用于1.3 μm或
1.55 μm大容量长距离系统。
分布反馈激光器(DFB - LD)主要和G.653或G.654规范的单模光
纤或特殊设计的单模光纤耦合,用于超大容量的新型光纤系统。
4.2.6 半导体激光器的基本特性
4.2.6 半导体激光器的基本特性
半导体激光器的模式
1.激光器的模式分析
纵模决定频谱特性 横模特性决定光场的空间特性,即横模决定近场特性 (在激光器表面)和远场特性(近场的傅里叶变换)
S W 近场 图案 远 场 光 o 斑 30 S ~ m W ~m TEM 01 TEM 02 I =80mA 72 64 56 56 80
(2~5)nm
1/2
GaAlAs: (30~50)nm InGaAsP: (60~120)nm
0.8 相 对 0. 光 6 强 0.4 0.2 0 -0.4 -0.2
0.02nm
-20
0
20
波长 /nm
波长 /nm
0.2 0.4 波长 /nm 0
(a) LED 的 光谱特性
(b) 多模 LD 的 光谱特性
4.2.6 半导体激光器的基本特性
5.光谱特性 (1) 峰值波长 在规定输出光功率时,激光光谱内强度最大的光谱波长被定 义为峰值波长。 (2)中心波长 在光源的发射光谱中,连接50%最大幅度值线段的中点所对 应的波长称为中心波长 (3)谱宽与线宽 包含所有振荡模式在内的发射谱总的宽度称为激光器的谱宽; 某一单独模式的宽度称为线宽。
伏安特性描述的是半导体激光器的纯电学性质,通常用V-I曲线表示。
4.2.6 半导体激光器的基本特性
2. P-I 特性

激光原理名词解释[整理]

激光原理名词解释[整理]

一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数pv p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v ∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光的纵模和横模ppt课件

激光的纵模和横模ppt课件
17.7 激光的纵模和横模
一、纵模(振荡频率)
全反 射镜
部分 反射镜
光在谐振腔内来回反射,相干叠加,只有形成驻波的光
才能振荡
L k k k = 1, 2, 3, …
2
波长为
k
2L k
振荡纵模
k
c
k
k c 2nL
纵模间隔
k
k1k
c 2nL
辐射线宽内的纵模个数为
N k
vk 单模线宽vc
vk vk+1 辐射线宽
N 个纵模
讨论
(1) 使激光按单模输出,则其单色性由单模线宽决定。

条件
频率(MHz)

T=300 K
辐射线宽
激 P=1~2 mmHg100光腔长器
L=100 cm


L=100 cm 反射率 98%
纵模间隔 150
单模线宽 <1
辐射线宽
(2) 若输出光是多模的,其单色性 和普通光源一样由辐射线宽决 定。
vc
N 个纵模
二、横模 (光束横截面上的光强的稳定分布)
激光束横截面上几种光斑图形

激光技术之模式选择讲解

激光技术之模式选择讲解
这种方法虽然扩大了基模模体积,但附加了两个透镜而增加 了腔的插入损耗,并给调整带来困难。
图5.2-10 聚焦光阑法选模
为了简化系统并减小损耗,可用一个凹面反射镜取代右边的 透镜和平面反射镜,如图5.2-11所示。但要求凹面反射镜的曲率 中心与透镜的焦点重合。
在腔内插入透镜和光阑选模的基础上又发展了一种腔内加望 远镜的方法,和“猫眼谐振腔”的选模方法
阈值条件为 I≥I0 即 I / I0 ≥ 1
由此得出 r1r2(1- )2 exp(2GL)≥1
(5.2-2)
下面考察两个最低阶次的横模TEM00和TEM10模的情况, 认为激活介质对各横模的增益系数相同,当同时满足下
列两个不等式:
r1r2 (100) exp(GL)> 1
(5.2-3)
r1r2 (110) exp(GL)<1 激光器即可实现单横模(TEM00)运转。
数N在0.5到2.0之间比较合适。
适当地选择谐振腔参数R1,R2,L, 使它们运转于稳定区边
缘, 即运转于临界工作状态,则有利于选模,因为各阶横模中 最低阶模(TEM00模)的衍射损耗最小。
∣g∣ =∣1-L/R∣
图5.2-4 在不同N值时,模衍射损耗|g|的关系
以TEM00模和TEM01模为例,图5.2-4示出了在不同的菲涅耳数N
发而起振。设谐振腔两端反射镜的反射率分别为r1、r2,
单程损耗为δ,单程增益系数为G,激光工作物质长度
为L,则初始光强为 I0的某个横模(TEMmn)的光在谐振
腔内经过一次往返后,由于增益和损耗两种因素的影
响,其光强变为:
##
I I 0r1r2 (1 )2 exp( 2GL )
(5.2-1)
N=2.5 ~ 20的共心腔, 为0.28raL~0.36更合适。

横模和纵模的物理意义

横模和纵模的物理意义

横模和纵模的物理意义1. 嘿,你知道吗,横模就像是一群小伙伴排排站,整齐有序!比如说激光束里的横模,就像士兵们站成特定的队列一样。

而纵模呢,就如同音乐中的不同音符,有着各自独特的频率。

想想看,这不就像乐队里各种不同音高的乐器一起演奏嘛!2. 哎呀呀,横模不就是在一个平面上呈现出的特定模式嘛,就好比是在纸上画的不同图案呀!比如光在某个截面的分布。

那纵模呢,就好像是楼梯的台阶,一级一级的,代表着不同的能量层次呢!3. 喂喂喂,横模可以理解为是一种横向的排列方式呀,就像一群人在操场上横着站成一排一排的。

好比说水波的横模,那就是水面上横着的波动样子。

而纵模呢,不就是竖着的区别嘛,像音阶一样,有高有低的!4. 嘿哟,横模不就是一种横的状态嘛,好比是书架上横着摆放的一排书。

比如说电磁波的横模,就是在那个方向上的特定样子。

那纵模呢,就如同是不同高度的架子,代表着不同的状态呀!5. 哇塞,横模就像是在一个平面上展开的独特样子,就跟花园里的花排列成不同形状一样。

像光纤中的横模,就是光在里面的特定分布呀。

纵模呢,就好像是不同楼层,有着不一样的感觉呢!6. 呀,横模不就是横向的特征嘛,就像马路上的车道一样整齐排列。

比如说声波的横模,就是声波在横向上的表现。

那纵模呢,就如同是不同的频道,各有各的特点呀!7. 嘿嘿,横模就是一种横向的呈现呀,就像棋盘上横向的格子。

例如电子在某个方向上的分布模式。

纵模呢,就好像是时间的流逝,有着先后顺序呢!8. 哇哦,横模不就是横在那里的一种模式嘛,像墙上挂着的一排画。

比如说原子的能级分布中的横模。

纵模呢,就如同是人生的不同阶段,都不一样呀!9. 哟呵,横模可以看成是横向的一种规律呀,就像舞蹈演员在舞台上横向的排列。

例如无线电波的横模。

纵模呢,就好像是不同的心情,起伏变化呢!10. 哈哈,横模就是横向的特别之处呀,就像天上的星星排列成特定形状。

比如说晶体中的横模。

纵模呢,就如同是音乐的旋律,高低起伏,多有意思呀!我的观点结论就是:横模和纵模是物理中非常有趣且重要的概念,它们帮助我们更好地理解各种物理现象和过程,真的很神奇呀!。

激光原理 名词解释

激光原理 名词解释

一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数pv p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v ∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光横模纵模的名词解释
激光技术是一种重要的现代科学技术,广泛应用于医学、通信、材料加工等领域。

在激光技术中,横模和纵模是两个关键的概念。

本文将对这两个概念进行解释,并探讨它们在激光技术中的重要性。

横模是指激光在横截面上的电磁场分布模式。

一般来说,激光器内的激光振荡
器是一个光学腔,它由两个镜子构成。

其中一个镜子是部分透射和部分反射的,起到输出激光的作用,称为输出镜。

另一个镜子是全反射的,起到反射光的作用,称为反射镜。

横模可以分为基础模式和高阶模式。

基础模式即为横模振荡的基本形式,通常为高斯光束。

高阶模式指的是相对于基础模式而言,横截面电场分布更为复杂的模式。

横模的振荡会受到光腔几何形状、激光材料属性、光腔边界条件等因素的影响。

纵模是指激光在光腔内沿光轴方向的电磁场分布模式。

光腔的长度决定了纵模
谐振腔频率。

当光腔长度为整数倍的半波长时,系统会形成纵向谐振条件,使得特定频率的激光在光腔内得到放大。

光腔长度的变化会导致纵模频率的变化。

纵模的产生需要满足以下三个条件:纵向谐振条件、横向谐振条件以及增益谐振条件。

其中,纵向谐振条件是最主要的条件。

纵模的谐振模式有有限的选择,根据频率分布可以分为单纵模和多纵模。

单纵模激光器根据谐振模式的数目可以分为单纵模和多纵模激光器。

横模和纵模在激光技术中具有重要的意义。

首先,横模和纵模决定了激光的输
出特性和品质。

基础模式的高斯光束具有良好的光束质量和光强分布,使得激光能够集中能量并进行精确加工。

其次,横模和纵模的稳定性对于激光器的长时间工作至关重要。

横模和纵模的不稳定性会导致激光器频率或功率的波动,降低激光器的性能甚至带来损坏风险。

此外,横模和纵模的特性也决定了激光器的工作模式和应用场景。

例如,基于单横模、单纵模的激光器适用于高精度成像、光盘读写以及光
通信等领域,而基于多横模、多纵模的激光器适用于荧光光谱分析、遥感测量以及激光雷达等领域。

总之,横模和纵模作为激光技术中的两个重要概念,影响着激光器的输出特性、稳定性以及应用场景。

对激光技术的研发和应用来说,深入理解横模和纵模的特点和机制,对于优化激光器设计、提高工作效率以及推动相关领域的创新具有重要意义。

随着激光技术的不断发展和进步,相信横模和纵模的研究将不断深化,为激光技术的应用拓展和创新提供更多可能。

相关文档
最新文档