推荐-常用纺织纤维的结构与性能 精品
纺织纤维的结构和主要化学性能
棉纤维的主要化学性能
酸对纤维素的作用 染整加工中,漂白酸洗、酸退浆——稀 硫酸使浆料水解,转化为水溶性较大的 产物,(H+起催化作用。1,4甙键断裂, 与水分子形成两个羟基,一个是自由羟 基,无还原性;另一个是半缩醛羟基, 具有还原性。 )从而从织物上脱落下 来。1,4甙键对酸特别敏感,所以酸处 理时必须严格控制工艺。
棉纤维的其他化学性能
氧化剂对纤维素的作用 纤维素对氧化剂不稳定,一些氧化剂使 。 纤维素发生严重降解。在漂白过程中, 要选择适当的氧化剂,并严格控制工艺, 将损伤降到最低。 热对纤维素的作用 温度过高时,空气中的氧也能使纤维 氧化生成氧化纤维素,从而损伤纤维
粘胶纤维的形态结构
形态结构Hale Waihona Puke 截面:不规则锯齿状,多有皮芯结构。
铜氨氢氧化物对纤维素的作用
氢氧化铜与氨或胺的配位化合物如铜氨溶液 或铜乙二胺溶液,能使纤维素直接溶解。纤 维素在铜氨溶液和铜乙二胺溶液中,分别形 成纤维素的铜氨配位离子和铜乙二胺配位离 子。纤维素铜氨化合物受到稀无机酸作用时, 可迅速而完全地分解,并析出纤维素。在化 学纤维工业中,利用这一原理制造的再生纤 维素纤维称为铜氨人造纤维 。
8238寝室
棉纤维的结构和主要化学性能
棉纤维是最常见的,棉纤维是地 球上最丰富的和最纯净的纤维素纤维。 是迄今为止最重要和使用最广泛的单 一细胞的种子纤维。是从棉籽表皮上 细胞突起生长而成的。
棉纤维的形态结构
形态结构: 棉纤维是一个上端封闭、下端敞开的 干瘪的管状细胞,在显微镜的观察下, 成熟的棉纤维纵向呈扁平带状,并具 有天然扭曲:横截面呈腰形或耳形, 是由较薄的管状的初生胞壁、较厚的 螺旋状的次生胞壁较小的瘪缩的中空 胞壁缩构成的。
第一二章纤维的结构及主要化学性质纺织
气候性、耐化学稳定性
纤维品质与产品性能的关系
纺织纤维与纺织品的使用性能、审美特性和经济性密切相关。
细度
厚度、刚柔性、弹性、抗皱性、透气性、
• LOI值
<21%,易燃纤维 21%~26%,难燃纤维 >21%,阻燃纤维
常见纤维的极限氧指数(%)
• 棉:20.1 羊毛:25.5 • 粘胶:19.7 锦纶:20.1 • 涤纶:20.6 腈纶:18.2 • 丙纶:18.6 维纶:19.7 • 聚四氟乙烯 95
纤维的热学性质(耐热性和保暖性)
染整概论
学分:1.5 教材:染整概论 东华大学出版社 主要内容: • 内容一 纺织纤维的结构和主要化学性能 • 内容二 纱线与织物的基本知识 • 内容三 前处理 • 内容四 染色 • 内容五 印花 • 内容六 整理
内容一 纺织纤维的结构和主要化学性能
一、概述
纺织品是人类一生都离不开的物品。 ◆纤维的定义:一般认为具有足够的细度(直径 <100μm)和足够的长径比(长度/直径>500),并 具有一定柔韧性的物质均可称为纤维。 ◆纺织纤维:一般长度在10mm以上,长度/直径 >1000。 ◆纺织纤维必须具备两个条件:可纺性和使用性。 ◆ 所有的纺织纤维都属于高分子化合物 (分子量、结构)
A. 特数:特克斯(tex)在公定回潮率下,1000m长 的纤维的重量(克数)。法定单位。
B. 旦数:在公定回潮率下,9000m长的纤维或纱线 具有的重量(g)。
C. 公制支数:在公定回潮率下,单位重量(g)的 纤维或纱线具有的长度称公支。同一 种纤维支数 越高表示纤维越细,可纺性也越好。
纺织材料与检测课件——纺织纤维的内部结构
●定义
高聚物分子链开始运动或冻结的温度。
●玻璃化温度的使用价值
玻璃温度是非晶态高聚物作为塑料使用的最高温度;是作为橡胶使用的最低温度。
●影响玻璃化温度的因素
高聚物的各种特征温度
升温速度
主链柔性
分子间 作用力
外力大小 作用时间
影响玻璃化 温度的因素
相对分 子质量
增塑剂
交联
共聚
END
范围:0.8×103~8.4×103J/mol
静电引力
高聚物的物理状态
●线型非晶态高聚物的物理状态与平均相对分子质量M、温度T的关系
Tf 过渡区 黏流态
T 高弹态
Tg
二、结晶态高聚物的物理状态 ●结晶态高聚物的形变-温度曲M线
玻璃态
高弹态、黏 流态及两者 之间的过渡 区均随相对 分子质量和 温度的增加 而变宽。
分子链近链端部 分链段内旋转
分子链侧链部 分链段内旋转
☆整个分子链的运动(重心发生位移) 条件:存在分子间或内的干扰和纠缠时,不能实现整个分子链的运动;
在溶液和熔融状态下,通过链段一方向的运动可以实现整个分子链的运动。
干扰点 纠缠点 存在干扰、纠缠时的整个分子链运动
溶液及熔融状态下的整个分子链运动
高低,位能越低越容易旋转。分子结构不同,位能不同,一般电负性大、取代基多或大, 位能越大。 0o 60o 120o 180o 240o 300o 360o θ
高分子链的内旋旋转本转质过与程小中分的子位一能般,变只化是σ键多,内旋转复杂高,分构子象多链。的内旋转
共轭双键 由于分子链整个形成共轭体系,造成旋转困难,故只有刚性而无柔性。如 聚乙炔 ~CH=CH-CH=CH-CH=CH-CH=CH~
推荐-常用纺织纤维的结构与性能 精品
常用纺织纤维的结构与性能纺织纤维属于高分子化合物(高聚物)由分子量很大的大分子组成由比较简单的原子团(基本链节或单基),以主价键的形式相互重复联结而成。
有一定的结晶度和取向度所谓纺织纤维,指的是长度远大于直径(一般长度与直径之比大于1000),并且具有一定柔韧性的物质。
纺织纤维都是高分子化合物。
分子量在1000以上。
平均分子量一般在104~107之间。
一、纺织纤维分类:天然纤维和化学纤维。
①天然纤维包括植物纤维、动物纤维和矿物纤维。
A 植物纤维如:棉、麻。
B 动物纤维如:羊毛、免毛、蚕丝。
C 矿物纤维如:石棉。
②化学纤维包括再生纤维、合成纤维和无机纤维。
A 再生纤维(利用天然原料经过一定的加工如溶解或熔融而纺制成的纤维)如:粘胶纤维、醋酯纤维。
B 合成纤维(是一类以水、空气、石油或煤为原料,通过化学合成的方法制得的高分子化合物,再经纺丝制得的纤维)如:锦纶、涤纶、腈纶、氨纶、维纶、丙纶等。
C 无机纤维如:玻璃纤维、金属纤维等。
第一节纤维素纤维的结构和主要化学性质纤维素纤维天然纤维素纤维(棉、麻)再生纤维素纤维(粘胶纤维、醋酯纤维等)一、天然纤维素纤维1. 棉纤维外形:纵向呈扁平带状,并有天然扭曲,横截面呈腰子形或耳形,中间干瘪空腔。
棉纤维从外到内分成三层:初生胞壁:纤维素含量低,纤维素共生物特别是果胶物质、蜡状物质的含量较高。
初生胞壁决定棉纤维的表面性质,具有拒水性阻碍化学品向纤维内部扩散,织物渗透性差。
可分为三层:外层是由果胶物质和蜡状物质组成的皮层,二、三层纤维素成网状结构,对纤维溶胀起束缚作用。
次生胞壁:由纤维素组成,为棉纤维的主体,质量约占整个纤维的90%以上。
胞腔:含有蛋白质及色素,决定棉纤维颜色。
为纤维内最大的空隙,是化学品的主要通道。
纤维素结构特点中间葡萄糖剩基三个自由羟基两个仲羟基、一个伯羟基醇羟基:酯化、醚化分子间和分子内氢键:刚性、强度高棉纤维聚集态结构结晶度棉70%,麻90%,丝光棉50%,黏胶40%取向度(取向因子)陆地棉0.62,苎麻0.97,普通黏胶0.542. 麻纤维主要化学组成和棉纤维一样是纤维素,但含量低。
纺织纤维的形态及基本性质
LC
中段切断称重法示意图
• 一般棉LC=10或20m细度
2. 长纤维测试方法
• 采用周长1m在一定张力下绕取一定圈数(50圈或 100圈),达到吸湿平衡后称重计算。
3. 直径测量法
OFDA100测量仪
激光扫描纤维直径测量原理图
纤维的截面形状
一、异形化的方法
• 截面形状的非圆形化,包括轮廓波动的异形化和直径不对
称的异形化;
• 截面的中空和复合化;
中空 复 合 轮廓波动异形 粗 糙 粗 糙 多 角
d
2
复合 复 合 直径变异异形
异 形
复合 多 叶 跑 道 双 凹 单 凹
纤维截面变化的过程、类型及相互关系
纤维的截面形状
中空截面也是一种异形截面,即纤维内部空缺异 形,与前面轮廓空缺是对应的。
纤维的细度
2. 对纱线质量及纺纱工艺的影响
- 与成纱强度的关系
在其它条件相同的条件下,纤维越细,成纱强度越高; - 与成纱条干的关系 在其它条件相同的条件下,纤维越细,成纱条干越均匀; - 在保证一定成纱质量的前提下,细而均匀的纤维可纺较
细的纱;
- 与纺纱工艺的关系 纤维越细,加工过程中容易扭结、折断而产生棉结、短 纤维。
纤维的截面形状
三、异形纤维的指标
径向异形度是异形纤维截面外接圆半径R与内切圆差 值对某一指定径向参数的百分数。
1. 相对径向异形度DR
DR R r 100 R
R r 100 R r
2
2. 平均径向异形度DM
DM
3. 理论径向异形度Dr
Dr
R r 100 r0
纤维的截面形状
常用纤维结构和主要性能
常用纤维结构和主要性能一、天然纤维1.棉纤维:棉纤维是植物的种子毛,主要以纯状存在。
具有良好的吸湿性,能迅速吸收人体的汗水,保持干燥舒适;透气性好,具有良好的透气性,使皮肤可以自由呼吸;柔软度高,纤维柔软,适合制作内衣等贴身衣物。
2.麻纤维:麻纤维是麻科植物的茎皮和木质部分离子化的细胞。
具有较高的强度和耐磨性,是一种具有良好耐磨性的纤维;透气性好,纤维间有许多气孔,透气性良好,不易产生异味;吸湿性强,纤维具有很强的吸湿性,可吸湿约20%的湿度。
3.羊毛纤维:羊毛纤维是由绵羊的外部绒毛的剪切获得的。
具有良好的弹性和弯曲性,纤维可以弯曲并恢复其原始形状;保暖性能好,具有很好的保温性能,适合制作冬季衣物;吸水性能好,可以吸收湿气并迅速释放。
二、合成纤维1.聚酯纤维:聚酯纤维是将聚合物化合物熔融并拉丝制得的纤维。
具有较高的强度和耐磨性,是一种具有良好耐磨性的纤维;抗皱性能好,不易起皱,易于熨烫;耐温性能好,可耐受较高的温度。
2.聚酰胺纤维:聚酰胺纤维是通过聚合酰胺单体制备的高分子化合物。
具有良好的强度和耐磨性,并且具有良好的弹性;优异的抗老化性能,不易受潮和腐蚀;抗紫外线性能好,能有效防护对人体有害的紫外线。
3.聚丙烯纤维:聚丙烯纤维是从丙烯基合成物中制备的纺织品。
具有较高的耐化学腐蚀性,纤维不容易受到化学物质的腐蚀;保温性能好,在低温下也具有很好的保温性能;具有良好的弹性和弯曲性。
总结起来,常用的纤维结构包括棉纤维、麻纤维、羊毛纤维、聚酯纤维、聚酰胺纤维、聚丙烯纤维等。
其主要性能包括强度高、耐磨性强、吸湿性好、透气性良好、保暖性能好、耐温性好、抗紫外线性能好、抗皱性好等。
这些性能使得不同的纤维适用于不同的纺织品领域,满足了人们对不同用途纺织品的需求。
纺织材料7常用纤维的结构与性能要点
1)鳞片层: 作用如下: ①保护纤维,使羊毛内层组织不受外界 的生物、 化学、机械等作用; ②由于鳞片具有方向性,形成差微摩擦效 应。 鳞片形状: 环状、瓦状、龟裂状
2)皮质层:羊毛纤维的主体,占90%左右。 皮质细胞:正皮质——结构疏松; 偏皮质(副皮质)——结构紧密; 双边结构:细羊毛的正副皮质细胞(结构 与性能不同)分布于纤维的两侧,并在长 度方向上不断转换位置,正皮质一般在纤 维卷曲处的外侧,而副皮质处于卷曲的内 侧,使羊毛具有天然卷曲。这种结构成之。
(3)热学性质 耐热性差; 安全使用温度:低于 93°C (锦纶 6 ),低于 130°C(锦纶66); 熔点:215°C(锦纶6),250°C(锦纶66) (4)耐光性差 (5)耐碱不耐酸 (6)密度较小:1.14 g/cm3Fra bibliotek三、腈纶
第一单体:丙烯腈(超过85%) 第二单体:丙烯酸甲酯、甲醛丙烯酸甲酯、 醋酸乙烯酯等改善纤维的脆性,增加弹 性、柔软性,同时还有利于染料分子进 入。 第三单体:引入一定量带有酸性或碱性亲 染料的基团改善纤维的染色性 。
第二节 天然蛋白质纤维
一. 结构 1. 大分子结构 (1)化学组成 羊毛:蛋白质角朊;C、H、O、N、S元素组 成。 丝 :蛋白质丝素( 70-80% ),少量丝胶 (20-30%); C、H、O、N元素组成。 柞蚕丝:丝素85%
(2)单基
R侧基—羊毛:多、复杂,约25种氨基酸; 蚕丝:少、简单,约18种氨基酸。
好
好(15%) 较差 耐霉不耐蛀
较差
较好(11%)
耐酸不耐碱(蚕丝比羊毛稍差) 1.32 1.33~1.45
特性
缩绒性
光泽、悬垂性、丝鸣
缩绒性—— 羊毛在湿热及化学试剂作用下,经机械 外力反复挤压,纤维集合体逐渐收缩紧 密,并相互穿插,纠缠,交编毡化。这 一性能称之。 利:缩绒使毛织物有独特的风格; 弊:缩绒使毛织物的尺寸稳定性变差(洗 涤后易收缩,变形)影响穿着的舒适性 与美观(起毛起球)
常用纺织纤维的结构和性能课件
酸性愈强,水解愈快 浓度愈大,水解愈快 温度愈高,水解愈快 时间愈长,水解愈严重 结构愈疏松,水解愈快
中和:过剩的碱 加强漂白:含氯氧化剂 蝉翼纱、烂花织物
(3)氧化剂的作用
一般不受还原剂的影响 氧化纤维素
伯羟基 → 醛基 → 羧基 仲羟基 → 酮基 → 开环的醛基和羧基 半缩醛基 → 羧基
O
Serine (16%)
C H2 C H2 C H2 N H C H C H2 C n
O
Tyrosine (11%)
丝素分子链的构象
丝素的性质
耐热性
好,100℃,强力无影响
溶胀和溶解性
水中,直径增加16%~18%,长度1.2% 不能溶解,水只能进入无定形区 钠、锌、镁、钾强酸盐类,溶解 铁、铝、钙、铬盐类,增重
结晶度
棉70%,麻90%,丝光 棉50%,黏胶40%
取向度(取向因子)
陆地棉0.62,苎麻0.97, 普通黏胶0.54
缨状原纤结构模型
分子结构对力学性能的影响
聚合度高,强力高 结晶度,强力高
麻>棉>黏胶
取向度高,强力高
顺应排列,次价键力增高 改善受力情况
棉和丝光棉 化学纤维纺丝过程中的拉伸
具有良好的化学惰性,保护羊毛内层组织, 具有耐碱、氧化剂、还原剂和蛋白酶的功 能
羊毛缩绒性
皮质层
决定羊毛的主要物理、机械和化学性能 皮质层由角朊蛋白组成,由近20种氨基酸
组成,其中最为特殊的是含量高达14%以 上的胱氨酸(二硫键) 存在两种皮质细胞:正皮质和副皮质细胞 部分皮质层可能存在天然色素
结晶度对染色性能的影响
染液只能进入无定形区和晶区的边缘 高:染料平衡吸附量少,得色浅淡 低:染料平衡吸附量多,得色深浓 棉和丝光棉
完整版常用纺织纤维的结构和主要性能
1
2 3
第一章 常用纺织纤维的结构和主要性能
第一节 纤维素纤维的结构和主要性能 一、天然纤维素纤维 (一)棉纤维 1、形态结构 横向:腰圆形,有中腔 纵向:天然转曲的扁平带状
2、棉纤维主要成分
初生胞壁
是棉纤维的外层,是在细胞延长阶段形成的,它又分为两层.
1、角皮层(外层):是棉纤维极薄的最外层 作用:保护棉纤维 组成:蜡状物质和果胶物质 形态:极薄的薄膜
取向因子 0.54 0.88 0.74 0.97 0.72 0.62
普通粘胶纤维的性能
? 湿态断裂强力低 ? 易变形 ? 吸湿性大 ? 能在浓烧碱作用下溶胀、溶解 (不能进行丝光处理) ? 不需精炼、漂白处理 ? 染色性能与棉相似
铜氨纤维
1.原料:木材、甘蔗渣、芦苇、棉短绒(主要) 溶在氢氧化铜或碱性铜盐 的浓氨溶液中
作用:棉纤维的主体,决定棉纤维主要性质 组成:主要是纤维素 形态: 纵向:原纤网状组织
横向:日轮 (25~40层)
胞腔
形态:中空 组成:原生质残渣(沉积在纤维内壁上 ) 、
蛋白质,矿物盐,色素,… 染色通道
棉纤维主要成分
纤维素94% 果胶物质0.9% 蜡状物质0.8% 含氮物质1.3% 灰分1.2% 色素0.8% 其它1.0%
2.结构与性能: ? 圆型截面、全皮层、不完全透明 ? 柔软(比粘胶好),光泽柔和(圆截面) ? 吸湿接近粘胶 ? 染色好 ? 湿强高于粘胶 ? 工艺复杂(比粘胶)
(二)高湿模量粘胶纤维
1、富强纤维 形态结构 :接近圆形或全芯层结构
化学结构和超分子结构
? 聚合度:500-600 ? 结晶度:45-50% ? 晶粒大:导致耐磨性差 ? 取向度高 ? 有原纤化现象:易产生毛羽
常用纺织纤维的结构和主要性能
常用纺织纤维的结构和主要性能常用的天然纤维包括棉花、麻、蚕丝和羊毛等,而常用的化学纤维则包括涤纶、尼龙和丙纶等。
接下来,我将介绍一些常用纺织纤维的结构和主要性能。
1.棉花:棉花是纤维素纤维,主要由纤维素和微纤维素组成。
它的主要优点是柔软、透气、吸湿性好且易于染色。
然而,棉花的劣势在于容易起皱并且不耐磨损。
2.麻:麻纤维具有天然的光泽和牢度,并且结实耐磨。
它的优点包括耐高温、透气性好以及吸湿性强。
然而,麻的劣势在于易于皱缩和不易染色。
3.蚕丝:蚕丝是由蚕茧中解丝得到的纤维。
它具有良好的光泽和柔软度,并且质地轻盈。
蚕丝的优点包括吸湿性强,透气性好以及舒适性好。
然而,蚕丝的劣势在于容易破损且不耐久。
4.羊毛:羊毛是从绵羊身上剪下的纤维。
它具有很好的保暖性和弹性,并且耐磨损和吸湿性好。
羊毛的优点还包括具有良好的弹性回复性和易于染色。
然而,羊毛的劣势在于易缩水和较高的维护要求。
5.涤纶:涤纶是一种合成纤维,主要由聚酯脂合成。
它具有耐磨损、耐皱纹和易护理的优点。
此外,涤纶也有很好的弹性、强度和耐腐蚀性。
然而,涤纶的劣势在于不透气、易起静电以及对热敏感。
6.尼龙:尼龙是一种合成纤维,主要由聚酰胺合成。
它具有优秀的强度和弹性,并且具有较高的耐磨损性。
尼龙的优点还包括染色性良好、抗皱和轻盈。
然而,尼龙的劣势在于容易静电、易吸湿和不耐高温。
7.丙纶:丙纶是一种合成纤维,主要由聚丙烯合成。
它具有良好的弹性和耐磨损性,并且具有较高的阻燃性能。
丙纶的优点还包括不起皱、透气和易护理。
然而,丙纶的劣势在于易融化和容易毛玻璃化。
总的来说,不同的纺织纤维具有不同的结构和性能,在选择适合的纤维材料时,需要根据所需纺织品的特定要求来进行选择。
重要的是要权衡各种优点和劣势,以便选择最适合的纺织纤维。
纺织专业知识系列培训:常用纺织纤维的优缺点
纺织专业知识系列培训:常用纺织纤维的优缺点纺织专业知识系列培训:常用纺织纤维的优缺点夏钰翔针织工程硕士,省级针织工程专家,广东省纺织工程学会理事2013.7于广州一.天然纤维类天然纤维---植物纤维--棉:优点:棉纤维的强度高,透气性好,亲肤感好,卫生性良好,易洗快干,耐热性较好,仅次与麻,柔软滑爽而保暖,吸湿性强,对染色具有良好的亲和力,染色容易,色谱齐全,色泽比较鲜艳。
缺点:抗皱性差,拉伸性也较差,耐酸性差,在常温下耐稀碱,不耐霉菌。
附1:丝光棉的优势:丝光纱:1.纱线强力增大,不易断裂;2.光泽度增加,有丝一般的亮度;3.染色性能提高,色泽鲜亮,不易掉色;4.纱线断裂深度随张力的增大而减少,即不易拉长而变型。
丝光面料:1.面料色泽明亮,久洗不变色;2.具有丝绸面料一般的光泽;3.面料尺寸比较稳定,垂悬感较好;4.面料挺括,抗皱性能好,不易起球起皱。
附2:彩棉彩棉是采用现代生物工程技术培育出来的一种在棉花吐絮时纤维就具有天然色彩的新型纺织原料。
彩棉面料的特点1、穿着舒适、不起静电,亲和皮肤,对皮肤无刺激。
2、透气性好,能快速吸收人体皮肤上的汗水,真正达到透气、吸汗效果。
3、色泽柔和、自然、典雅,庄重大方又不失轻松自然,温馨舒适给人以反璞归真的感受。
4、颜色天然生成,健康环保。
加工过程无需印染,织物不残留有害化学物质。
彩棉面料的保养1、彩棉纤维短粗,织出的衣物纤维牢度较差,轻易泛起掉毛现象,在太阳下久晒也会掉色,因此要避免暴晒。
2、彩棉的色彩源于天然色素,耐碱性强,不耐酸,其中个别色素(如绿、灰、褐色)遇酸会发生变化,因此洗涤彩色棉制品时,不能使用带酸性洗涤剂,而应选用中性肥皂和洗涤剂,同时注意将洗涤剂溶解均匀后再将衣服浸泡在其中。
天然纤维---植物纤维--麻麻的优点:苎麻纤维最长最细,纤维长度比最高级的棉还长2-7倍;麻纤维胞壁中纤维素大分子的取向度比棉纤维大,结晶度好,因而强度比棉纤维高,可达6.5克/旦;伸长率小,只有棉的一半,约3.5%,比棉纤维脆;麻纤维表面平滑,有丝样的光泽,较易吸收水份,向大气中散发的速度快,具有冰凉感;纤维较为挺直,不易变型;麻纤维不易受霉菌腐蚀和虫蛀,而且轻盈,比棉轻20%;可防污,灰尘不易吸附;抗静电效果明显。
纺织材料学 常用纤维的结构与性质
1.结构
准结晶结构
2.性质
强度较低,伸长较大;
初始模量:E锦纶<E腈纶<E涤纶; 弹性:比棉、麻、粘胶好,但比羊毛、涤纶、 锦纶差;
染色性较好;没有明显的熔点,不会产生熔孔 现象;
W=4.5%,比涤纶好
(3)热学性质 耐热性差; 安 全 使 用 温 度 : 低 于 93°C ( 锦 纶 6 ) , 低 于 130°C(锦纶66); 熔点:215°C(锦纶6),250°C(锦纶66)
(4)耐光性差 (5)耐碱不耐酸 (6)密度较小:1.14 g/cm3
三、腈纶
第一单体:丙烯腈(超过85%) 第二单体:丙烯酸甲酯、甲醛丙烯酸甲酯、
羊毛在湿热及化学试剂作用下,经机械 外力反复挤压,纤维集合体逐渐收缩紧 密,并相互穿插,纠缠,交编毡化。这 一性能称之。
利:缩绒使毛织物有独特的风格;
弊:缩绒使毛织物的尺寸稳定性变差(洗 涤后易收缩,变形)影响穿着的舒适性 与美观(起毛起球)
第三节 化学纤维
一、涤纶(聚对苯二甲酸乙二酯) 1.结构
3. 形态结构: 羊毛——鳞片层、皮质层、髓质层
1)鳞片层:
作用如下:
①保护纤维,使羊毛内层组织不受外界的 生物、 化学、机械等作用;
②由于鳞片具有方向性,形成差微摩擦效 应。
鳞片形状: 环状、瓦状、龟裂状
2)皮质层:羊毛纤维的主体,占90%左右。
皮质细胞:正皮质——结构疏松; 偏皮质(副皮质)——结构紧密;
2.性质
机械性质:强度较低,伸长率大(450800%), 初始模量低,弹性特别好
完整版常用纺织纤维的结构和主要性能
丝胶的性质
? 吸湿性高于丝素:支化程度比丝素高,极性基团含量高 ? 在水中溶胀、溶解 ? 弱碱脱胶
大豆蛋白纤维的结构和性能
结构:
? 取材于榨过油的豆粕 ? 由大豆蛋白质溶液(23-55%)和聚乙烯醇溶液(45-77%)混合
纺丝而成 ? 横截面哑铃形,有微细孔隙
性质
? 等电点4.6 ? 耐酸性好,耐碱性一般,纯碱对它无损伤 ? 米黄色,难漂白 ? 耐热性差,120℃变黄,发粘 ? 使用活性、酸性、中性染料染色:活性(深染性差)
(二)麻纤维
麻纤维的化学组成
(苎麻为例)
? 纤维素:57-80%
? 半纤维素:12-17%
? 木质素:苎麻08-1.5%,亚麻2.5-5%,黄麻10-13%
? 果胶:1-5.7%
? 蜡质:0.3-1.8%
? 灰分:0.5-5%
纤维素纤维68.64
蜡状物质1.15
果胶物质17.78
木质素2.25
未测定部份10.18
第二节 蛋白质纤维的结构和主要性能
? 羊毛 ? 蚕丝 ? 大豆蛋白纤维
蛋白质:
基本组成单位:氨基酸
H2N CH COOH R
由大量氨基酸以一定顺序首尾联接形成的多肽
蛋白质的两性性质: 分子末端含有氨基和羧基,侧基上还含有许多酸性基团和碱性基团
等电点:调节pH,使蛋白质分子上正、负离子数目相等,此时的 pH 值为等电点。
? 共同特点:大分子主链上都有酰胺基
锦纶形态结构:
纵向:光滑、无条痕 普通锦纶
异形锦纶
锦纶性质:
? 耐磨性六大纶中最好 ? 耐日晒差:强力下降、变黄 ? 耐热性较差:100℃以上,强力损失严重;150℃,5h,变黄、收缩 ? 耐碱、耐还原剂 ? 耐酸性和耐氧化剂性能较差:酸催化大分子降解,氧化剂漂白后易泛黄
服装材料学 常用天然纤维的性能特征
亚麻纤维的强度和 刚性都大于棉纤维,但 小于苎麻。伸长率很低 ,亚麻织物具有挺括、 滑爽、弹性差,悬垂性 差,易折皱,亚麻织物 的秀气率高。 亚麻织物的吸水速 度次于苎麻织物,但高 于绵织物。 亚麻导热性较好, 通气性好,日光照射下 不易变色。
2、用途
优良的亚麻纤维织物是高档的纺织品 ,是优良的服装用料的抽绣或绣花服装的 面料。还可以用于耐水要求高的场合,如 消防管等。
麻类的总结
1、麻纤维大都比较短,而且长短不一,纱条干 不匀,织出的面料外观粗犷、豪放;具有立 体感; 2、强力高于棉、毛、丝、粘胶纤维; 3、吸湿后纤维强力大于干态强力,麻织品较耐 水洗; 4、容易折皱,折叠处易断裂,因此,保存麻制 品时不宜重压,褶裥处也不宜反复熨烫。 5、麻纤维吸湿性好,放湿也快,不易产生静电 ; 6、热传导率大,导热性比其它纤维强。 7、麻纤维具有良好的绝缘性能,耐热性能。
棉纤维细而短 ,手感柔软,弹性 4、耐光性能:如长时 差,穿着时和洗后 容易起皱,为了改 间与日光接触,纤维 善棉纤维的皱缩、 强力会降低,并发硬 尺寸不稳定,常对 变脆。 棉织物进行免烫整 理。 注:棉纤维吸湿后强 力增加,因此棉织 物耐水洗,可用热 水浸泡和高温烘干 。
(四)用途
棉的用途:1纯棉织物,2混纺织物,3交织物
剑 麻
苎麻
强度与吸湿:苎麻纤 维的纤维强度很高, 1、性能 刚性很大,断裂伸长 光泽与手感:芝麻 率小,弹性回复率低 是麻纤维中品质最好 ,弹性差。因此,苎 的纤维,色白且具有 麻织物手感硬挺,不 真丝般的光泽,在日 贴身,但折皱回复性 本,苎麻织物又称为 差,耐磨性差,易起 皱且皱不易消失的缺 绢麻织物。经整理, 点。 也可使粗糙的手感变 苎麻纤维吸湿 得柔软和光滑。 、放混性能很好,透 气性能好,耐热性能 一般,耐碱不耐酸, 但耐水洗涤。
常用纤维结构和主要性能
第一章、常用纺织纤维的结构和主要性能
CLICK HERE TO ADD A TITLE
单击此处添加文本具体内容
演讲人姓名
第一: 骆驼有双峰和单峰之分,单峰驼绒无纺织价值 , 驼绒是骆驼身上的细毛,直径在5-40µm之间, 特点: 保暖性好 ,不易毡缩,强度与羊毛接近, 是织造 高级粗纺织物,毛毯等的高档原料。 但驼绒上有天然色,不 能染其它彩色, 限制了产品花色。
02
棉麻丝毛四种天然纤维的主要性能。
根据纤维的形态结构和超分子结构来分析一下
01
作业
七、改性羊毛 :
(1)拉伸细化绵羊毛:
采用物理拉伸改性的方法获得的细绵羊毛, 其可提高可纺纱支数
拉伸使鳞片受损,皮质层受破坏,染色易 产生色花。
(2)超卷曲羊毛:
线密度降低,可纺性提高。
又称膨化羊毛,粗羊毛卷曲少,成纱手蓬松 度低。
粗羊毛经拉伸、加热松弛后收缩,外观 卷曲,
丝光羊毛和防缩羊毛:
01
02
03
两者皆通过化学处理将羊毛的鳞片进行剥蚀, 产品都具有防缩绒、可机洗效果。
丝光羊毛有丝一般的光泽,手感更滑糯,被誉为纺羊绒的羊毛。
补充:涤纶吸湿性和染色性能很差
腈纶的主要性能。
根据纤维的化学结构来分析一下涤纶、锦纶、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用纺织纤维的结构与性能纺织纤维属于高分子化合物(高聚物)由分子量很大的大分子组成由比较简单的原子团(基本链节或单基),以主价键的形式相互重复联结而成。
有一定的结晶度和取向度所谓纺织纤维,指的是长度远大于直径(一般长度与直径之比大于1000),并且具有一定柔韧性的物质。
纺织纤维都是高分子化合物。
分子量在1000以上。
平均分子量一般在104~107之间。
一、纺织纤维分类:天然纤维和化学纤维。
①天然纤维包括植物纤维、动物纤维和矿物纤维。
A 植物纤维如:棉、麻。
B 动物纤维如:羊毛、免毛、蚕丝。
C 矿物纤维如:石棉。
②化学纤维包括再生纤维、合成纤维和无机纤维。
A 再生纤维(利用天然原料经过一定的加工如溶解或熔融而纺制成的纤维)如:粘胶纤维、醋酯纤维。
B 合成纤维(是一类以水、空气、石油或煤为原料,通过化学合成的方法制得的高分子化合物,再经纺丝制得的纤维)如:锦纶、涤纶、腈纶、氨纶、维纶、丙纶等。
C 无机纤维如:玻璃纤维、金属纤维等。
第一节纤维素纤维的结构和主要化学性质纤维素纤维天然纤维素纤维(棉、麻)再生纤维素纤维(粘胶纤维、醋酯纤维等)一、天然纤维素纤维1. 棉纤维外形:纵向呈扁平带状,并有天然扭曲,横截面呈腰子形或耳形,中间干瘪空腔。
棉纤维从外到内分成三层:初生胞壁:纤维素含量低,纤维素共生物特别是果胶物质、蜡状物质的含量较高。
初生胞壁决定棉纤维的表面性质,具有拒水性阻碍化学品向纤维内部扩散,织物渗透性差。
可分为三层:外层是由果胶物质和蜡状物质组成的皮层,二、三层纤维素成网状结构,对纤维溶胀起束缚作用。
次生胞壁:由纤维素组成,为棉纤维的主体,质量约占整个纤维的90%以上。
胞腔:含有蛋白质及色素,决定棉纤维颜色。
为纤维内最大的空隙,是化学品的主要通道。
纤维素结构特点中间葡萄糖剩基三个自由羟基两个仲羟基、一个伯羟基醇羟基:酯化、醚化分子间和分子内氢键:刚性、强度高棉纤维聚集态结构结晶度棉70%,麻90%,丝光棉50%,黏胶40%取向度(取向因子)陆地棉0.62,苎麻0.97,普通黏胶0.542. 麻纤维主要化学组成和棉纤维一样是纤维素,但含量低。
并含有较多的半纤维素、果胶和木质素。
结晶度高、取向度高,含有一定量的木质素和半纤维素等杂质,染色性能差,染料扩散困难,上染率低,得色量低,不易染深色。
二. 再生纤维素纤维1. 粘胶纤维化学结构与棉纤维相似,聚合度低,普通粘胶300~400,高强粘胶500~600,存在皮层和芯层。
普通粘胶纤维性能:强度低,宜低张力或松式加工;无定形区多,结构松散,对化学试剂的吸附能力大;其耐酸、碱性比棉差,特别是耐碱性差,在浓碱的作用下会剧烈溶胀直至溶解,避免浓碱处理;皮芯结构对染色有影响,对染料吸附量大于棉,但皮层结构紧密,妨碍染料的吸附和扩散。
一般粘胶纤维:纵向平直有沟横,截面是不规则的锯齿形。
粘胶纤维具有良好的吸湿性,吸湿后显著膨胀,直径增加可达50%,所以织物下水后手感发硬。
粘胶纤维的强度较低,润湿后的粘胶纤维强力下降,其湿干强度比为40%-50%。
2. 高湿模量粘胶(1) 富强纤维:组成和结构与普通粘胶纤维相似,但聚合度较大。
较高的聚合度、强力和湿模量。
(2) Modal(莫代尔)纤维:是奥地利兰精公司开发的高湿模量的再生纤维素纤维, 原料采用欧洲的榉木,先将其制成木浆,再纺丝加工成纤维。
Model纤维是具有较高的聚合度、强力和湿模量的粘胶纤维。
Modal纤维系第二代再生纤维素纤维。
Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。
(3) Lyocell纤维:商品名“Tencel”,中文商品名称有“天丝”“木浆纤维”等。
采用4-甲基吗啉-N-氧化物(NMMO)溶解纤维素,纺丝制得。
溶剂不含毒,且98.5%的溶液可以循环再利用。
废弃的天丝纤维在泥土中可以完全降解,因此对人体及生态环境不构成污染,被誉为“二十一世纪绿色纤维”。
天丝具有许多突出的优良性能,干、湿强度大,具有较高的湿模量。
干强接近涤纶,远大于棉,是粘胶纤维的1.6倍;湿强降低很小,约为干强的85%-90%。
天丝纤维集棉的舒适性,粘胶纤维的悬垂性,涤纶的强度和真丝的手感于一身,用其制作的服装面料,具有很高的附加值。
三、纤维素的化学结构由β-D-葡萄糖剩基以1,4甙键联结而成,分子式为(C6H10O5)n。
每隔两环有周期性重复,两环为一基本链节,链节数为(n-2)/2,n为聚合度,棉和麻为10000~15000,粘胶纤维为250~500。
四、纤维素纤维的化学性质(1)碱的作用甙键对碱的作用比较稳定。
在常温下,浓NaOH溶液会使天然纤维素纤维溶胀,纵向收缩,直径增大。
如果施加张力,可防止收缩,及时洗除碱液可达到丝光效果。
如不施加张力,则发生碱缩。
对于针织物,增加弹性和厚实的手感。
(2)酸的作用酸对纤维素分子中的甙键水解起催化作用,导致纤维素大分子聚合度降低和潜在的醛基增加,使纤维受到损伤。
甙键在酸性条件下发生水解。
酸性越强,水解速率越快,强酸催化作用强,弱酸较弱,有机酸更缓和;浓度越大,水解速率越高;温度越高,水解速率愈快,温度升高10℃,速率增加2~3倍。
麻、棉、丝光棉、粘胶水解速率依次递增。
棉织物用酸处理生产蝉翼纱、涤/棉织物的烂花。
中和织物上的残余碱。
注意:酸的浓度很稀,温度低于50℃,彻底洗净,避免带酸干燥。
(3)与氧化剂的作用氧化剂能使纤维素氧化成为氧化纤维素,使纤维受到损伤。
氧化剂漂白时,应注意工艺条件。
第二节蛋白质纤维的结构和主要化学性质蛋白质纤维天然蛋白质纤维:羊毛、蚕丝再生蛋白质纤维:大豆蛋白纤维、酪素纤维、含牛奶蛋白纤维有机含氮高分子化合物,分子量很高。
组成蛋白质的元素包括:碳、氢、氧、氮,有的含有硫、磷。
蛋白质蛋白质的基本组成单位是氨基酸。
天然蛋白质中的氨基酸均属于α-氨基酸,主要有20种左右,其结构上的区别在于侧基R。
不同蛋白质所含α-氨基酸的种类和数量有很大差别,造成了各种蛋白质在结构和性质上的差异。
蛋白质的分子结构:蛋白质的大分子由α-氨基酸彼此通过氨基与羧基之间的脱水缩合,以酰胺键联结而成。
酰胺键称为肽键,由肽键联结的缩氨酸叫作肽,蛋白质兼有酸、碱性质,既能吸酸也能吸碱,是典型的两性高分子物质,在不同的PH 值中,会有不同的变化。
等电点:调节溶液的pH值,使蛋白质分子上所带的正负电荷数量相等,这时溶液的pH值称为该蛋白质的等电点。
当蛋白质处于等电点时,呈现一系列特殊的也是极为重要的性质,如溶胀、溶解度等都处于最低值。
一、羊毛1、羊毛的形态结构羊毛可分为三个部分:毛尖、毛根、毛干。
外观:羊毛纤维具有天然卷曲、纵向呈鳞片覆盖的圆柱体。
从外至里分为三层:鳞片层(表皮层)、皮质层、髓质层。
2、羊毛的组成羊毛的主要成分:角质(角朊,角蛋白),由α-氨基酸缩合而成。
角蛋白:碳50.2~52.5%,氢6.4 ~7.3%,氧20.7~25%,氮16.2 ~17.7%,硫0.7~5%(取决于羊的品种、饲养条件、羊的部位、羊毛的部位。
细羊毛高于粗羊毛,鳞片层高于髓质层。
)。
杂质:羊脂(高级脂肪酸和高级一元醇组成的复杂有机混合物。
)、羊汗(有机酸盐类和无机酸盐类组成,以碳酸钾等无机盐为主。
)、砂土、植物性杂质。
3、羊毛的主要性质(1). 羊毛的可塑性:羊毛在湿热条件下,可按外力作用改变现有形态,再经冷却或烘干使形态保持下来。
多肽链构象变化肽链间副键的拆散和重建有关毛织物的定形,熨烫(2). 热的作用:耐热性差,干热<70℃;100~105 ℃,强力降低、泛黄吸湿溶胀,截面增加18%,长度1~2%湿强:干强95~97%沸水或蒸汽剧烈溶胀,主链和支链交键水解90~100 ℃蒸汽,3h,失重18%水比蒸汽影响大(3). 酸的作用:耐酸性较好可使用强酸性染料炭化肽键水解,盐存在加剧(4). 碱的作用:耐碱性差盐式键、主链破坏部分氨基酸水解变黄,含硫量降低(二硫键被破坏)碱溶法检验羊毛损伤程度(5). 氧化剂的作用:还原剂破坏羊毛纤维中的胱氨酸键氧化剂漂白:双氧水,严格控制工艺条件防缩:含氯氧化剂,破坏鳞片二、蚕丝1. 蚕丝的形态结构(以桑蚕丝为例)一根蚕丝由两根平行的单丝(丝素)组成,外包丝胶,丝素截面为三角形,三边相差不大,角略圆钝,脱胶后蚕丝纵向为光滑表面。
蚕丝除含主要成份丝素和丝胶外,还含有色素、蜡质、无机物等少量杂质。
2.丝素的结构和性质丝素的基本结构单元是氨基酸。
桑蚕丝丝素主要由乙氨酸、丙氨酸和丝氨酸组成。
3. 丝素的性质:酸的作用:丝素为两性物质,酸性略强,对酸具有一定的抵抗力,抗酸性比棉强,但比羊毛差。
碱的作用:丝素耐碱性差,但好于羊毛,在室温下对碱较稳定。
氧化剂和还原剂作用:氧化剂容易使丝素分子中的肽键断裂,甚至造成丝素完全分解。
在丝纤维漂白时要注意氧化剂的选择以及浓度、温度、PH值、时间等条件的控制。
含氯氧化剂对丝素不仅有氧化作用,还有氯化反应,生成氯氨类带色物质,达不到漂白的目的,生产中常用过氧化氢作为漂白剂。
一般的还原剂对丝素作用很弱,没有明显的损伤。
4. 丝胶的结构和性质丝胶氨基酸组成与丝素相仿,但各氨基酸含量明显不同,分子链排列规整性差,分子间作用力小,吸湿性和水溶性好于丝素。
丝胶在碱性溶液中水解剧烈,生产上常采用弱碱性溶液进行生丝脱胶,95 ℃以下,30min内可完全脱胶。
第三节合成纤维的结构和主要性质一、涤纶(polyester;聚酯纤维)的结构与主要性质1、涤纶的结构纵向光滑、均匀无条痕的圆柱形,截面基本上是圆形实体。
涤纶的大分子组成是聚对苯二甲酸乙二酯。
大分子上不含亲水基团,只具有极性很小的酯基-COO-,属疏水性纤维,吸湿性、染色性差。
化学稳定性好。
2、涤纶的性质热学性质:涤纶的耐热性和热稳定性是常用主要合成纤维中最好的,熔点和分解点高,在高温下强度损失小。
吸湿性和染色性:涤纶吸湿率低,干湿强度几乎无差别,易洗快干。
导电性差,易产生静电和沾污,穿着发闷。
染色较困难,涤纶染色一般采用分子量不大、水溶性小的分散染料,染色条件要求高。
化学性质:尽管酯基会在酸碱作用下水解,但因涤纶纤维结构紧密,结晶度、取向度高,化学试剂不易扩散到纤维内部,抵御酸、碱、氧化剂、还原剂等的能力在常用合成纤维中是非常突出的。
涤纶无论对无机酸还是有机酸都有很好的稳定性,尽管酯基在酸中会发生水解,但酯键的水解是可逆的,不易进一步发生。
酯键在碱中比在酸中易水解,反应是不可逆的,故耐碱性较差,在浓碱液或高温稀碱液中会有所损伤。
由于涤纶具有较大的疏水性,结晶度和取向度高,所以涤纶在碱的作用下水解是由表及里发生作用的,水解过程中基本保持圆形,纤维逐渐变细(剥皮现象)。
利用这一方法可将涤纶进行“碱剥皮”,使纤维变得细而柔软,制成具有真丝绸效果的织物,又称“碱减量”。