2014年材料性能学名词解释 (2)

合集下载

材料性能学复习总结(王从曾版)

材料性能学复习总结(王从曾版)

材料性能学课后习题答案(王从曾版)第一章1、名词解释弹性比功We:材料开始塑性变形前单位体积所能吸收的弹性变形功,又称弹性比能或应变比能。

包申格效应:金属材料经预先加载,产生少量塑性变形(1-4%),然后再同向加载,弹性极限(屈服极限)增加,反向加载,σe降低的现象。

滞弹性:材料在快速加载或则卸载后,随时间的延长而产生的附加弹性应变得性能。

粘弹性:材料在外力作用下,弹性和粘性两种变形机制同时存在的力学行为。

表现为应变对应力的响应(或反之)不是瞬时完成,而需要通过一个馳豫过程,但卸载后应变逐渐恢复,不留残余变形。

表现形式:应力松驰:恒定温度和形变作用下,材料内部的应力随时间增加而逐渐衰减的现象。

蠕变:恒定应力作用下,试样应变随时间变化的现象。

高分子材料当外力去除后,这部分蠕变可缓慢恢复。

伪弹性:在一定温度条件下,当应力达到一定水平后,金属或合金将由应力诱发马氏体相变,伴随应力诱发相变产生大幅度弹性变形的现象。

伪弹性变形量60%左右。

工程应用:形状记忆合金内耗:在非理想弹性条件下,由于应力-应变不同步,使加载线与卸载线不重合而形成一封闭回线,这个封闭回线称为弹性滞后环。

存在弹性滞后环的现象说明加载材料时吸收的变形功大于卸载时材料释放的变形功,有一部分加载变形功被材料所吸收。

这部分在变形过程中被吸收的功称为材料的内耗,其大小可用回线面积度量。

塑性:指金属材料断裂前发生塑性变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。

银纹:高分子材料在变形过程中产生的一种缺陷,其密度低对光线的反射能力很高,看起来呈银色,故称银纹。

其内部为有取向的纤维和空洞交织分布。

超塑性:是指材料在一定的内部条件和外部条件下,呈现非常大的伸长率而不发生颈缩和断裂的现象。

脆性断裂:材料未经明显的宏观塑性变形而发生的断裂。

断口平齐而光亮,且与正应力垂直,断口呈人字或放射花样。

(完整word版)《材料性能学》课后答案

(完整word版)《材料性能学》课后答案

《工程材料力学性能》(第二版)课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。

静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。

弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

比例极限:应力—应变曲线上符合线性关系的最高应力。

包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。

解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。

晶体学平面--解理面,一般是低指数,表面能低的晶面。

解理面:在解理断裂中具有低指数,表面能低的晶体学平面。

韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。

静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。

是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。

二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。

改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。

三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

包辛格效应可以用位错理论解释。

第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。

材料性能学名词解释

材料性能学名词解释

一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε= ,为真实应变。

2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L ,ε为名义应变。

3.弹性模量材料在弹性变形阶段,其应力和应变成线性关系(即符合胡克定律),其比例系数称为弹性模量。

对各向同性体为一常数。

是原子间结合强度的一个标志。

4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。

S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。

5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。

6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。

7.位错增殖系数n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。

8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。

9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。

10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。

单位Pa·S. 是流体抵抗流动的量度。

11.脆性断裂构件未经明显的变形而发生的断裂。

断裂时材料几乎没有发生过塑性变形。

在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。

与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。

12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。

其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。

13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。

单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ= Eγ/a 。

材料性能学历年真题及答案

材料性能学历年真题及答案

一、名词解释低温脆性:材料随着温度下降,脆性增加,当其低于某一温度时,材料由韧性状态变为脆性状态,这种现象为低温脆性。

疲劳条带:每个应力周期内疲劳裂纹扩展过程中在疲劳断口上留下相互平行的沟槽状花样。

韧性:材料断裂前吸收塑性变形功和断裂功的能力。

缺口强化:缺口的存在使得其呈现屈服应力比单向拉伸时高的现象。

50%FATT:冲击试验中采用结晶区面积占整个断口面积 50%时所应的温度表征的韧脆转变温度。

破损安全:构件内部即使存在裂纹也不导致断裂的情况。

应力疲劳:疲劳寿命N>105 的高周疲劳称为低应力疲劳,又称应力疲劳。

韧脆转化温度:在一定的加载方式下,当温度冷却到某一温度或温度范围时,出现韧性断裂向脆性断裂的转变,该温度称为韧脆转化温度。

应力状态软性系数:在各种加载条件下最大切应力与最大当量正应力的比值,通常用α表示。

疲劳强度:通常指规定的应力循环周次下试件不发生疲劳破坏所承受的上限应力值。

内耗:材料在弹性范围内加载时由于一部分变形功被材料吸收,则这部份能量称为内耗。

滞弹性: 在快速加载、卸载后,随着时间的延长产生附加弹性应变的现象。

缺口敏感度:常用缺口试样的抗拉强度与等截面尺寸的光滑试样的抗拉强度的比值表征材料缺口敏感性的指标,往往又称为缺口强度比。

断裂功:裂纹产生、扩展所消耗的能量。

比强度::按单位质量计算的材料的强度,其值等于材料强度与其密度之比,是衡量材料轻质高强性能的重要指标。

.缺口效应:构件由于存在缺口(广义缺口)引起外形突变处应力急剧上升,应力分布和塑性变形行为出现变化的现象。

解理断裂:材料在拉应力的作用下原于间结合破坏,沿一定的结晶学平面(即所谓“解理面”)劈开的断裂过程。

应力集中系数:构件中最大应力与名义应力(或者平均应力)的比值,写为KT。

高周疲劳:在较低的应力水平下经过很高的循环次数后(通常N>105)试件发生的疲劳现象。

弹性比功:又称弹性应变能密度,指金属吸收变形功不发生永久变形的能力,是开始塑性变形前单位体积金属所能吸收的最大弹性变形功。

材料力学性能及名词解释

材料力学性能及名词解释

材料力学性能及名词解释材料力学性能及名词解释1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。

设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。

3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。

它表示钢材抵抗断裂的能力大小。

与抗拉强度相应的还有抗压强度、抗弯强度等。

设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。

5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。

屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。

6.硬度硬度表示材料抵抗硬物体压入其表面的能力。

它是金属材料的重要性能指标之一。

一般硬度越高,耐磨性越好。

常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。

它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。

材料性能学名词解释大全

材料性能学名词解释大全

名词解释第一章:弹性比功:材料在弹性变形过程中吸收变形功的能力。

包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

滞弹性:是材料在加速加载或者卸载后,随时间的延长而产生的附加应变的性能,是应变落后于应力的现象。

粘弹性:是指材料在外力的作用下,弹性和粘性两种变形机理同时存在的力学行为。

内耗:在非理想弹性变形过程中,一部分被材料所吸收的加载变形功。

塑性:材料断裂前产生塑性变形的能力。

韧性:是材料力学性能,是指材料断裂前吸取塑性变形攻和断裂功的能力。

银纹:是高分子材料在变形过程中产生的一种缺陷,由于它密度低,对光线反射高为银色。

超塑性:材料在一定条件下呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。

脆性断裂:是材料断裂前基本不产生明显的宏观塑性变形,没有明显预兆,而是突然发生的快速断裂过程。

韧性断裂:是指材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。

解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。

剪切断裂:是材料在切应力作用下沿滑移面滑移分离而造成的断裂。

河流花样:两相互平行但出于不同高度上的解理裂纹,通过次生解理或撕裂的方式相互连接形成台阶,同号台阶相遇变汇合长大,异号台阶相遇则相互抵消。

当台阶足够高时,便形成河流花样。

解理台阶:不能高度解理面之间存在的台阶韧窝:新的微孔在变形带内形核、长大、聚集,当其与已产生的裂纹连接时,裂纹便向前扩展形成纤维区,纤维区所在平面垂直于拉伸应力方向,纤维区的微观断口特征为韧窝。

2 材料的弹性模数主要取决因素:1)键合方式和原子结构2)晶体结构3)化学成分4)微观组织5)温度6)加载方式3决定金属材料屈服强度的因素1)晶体结构2)晶界与亚结构3)溶质元素4)第二相5)温度6)应变速率与应力状态4 金属的应变硬化的实际意义1)在加工方面:利用应变硬化和塑性变形的合理配合,可使金属进行均匀的塑性变形,保证冷变形工艺的顺利实施2)在材料应用方面:应变硬化可以使金属机件具有一定的抗偶然过载能力,保证机件的安全使用。

材料力学性能名词解释(2)

材料力学性能名词解释(2)

材料力学性能名词解释(2)材料力学性能名词解释1.刚度:指材料或结构在受力时抵抗弹性变形的能力。

工程商,弹性模量被称为材料的刚度。

2.形变强化:随着塑性变形量的增加,金属流变强度也增加,这种现象称为形变强化或加工硬化。

3.弹性极限:材料有弹性形变过渡到弹-塑性变形时的应力。

4.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

5.包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应为降低(特别是弹性极限在反向加载时几乎降低到0)的现象。

6.弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。

这种可恢复的变形称为弹性变形。

7.弹性比功:表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。

8.抗拉强度:韧性金属式样拉断过程中最大力所对应的应力,称为抗拉强度。

9.韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

10.脆性断裂:是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆。

11.磨损:机件表面相接触并做相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失,造成表面损伤的现象。

12.冲击韧性:在冲击载荷作用下,金属材料断裂前吸收塑性变形功和断裂功的能力。

13.应力腐蚀开裂:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象,称为应力腐蚀断裂。

14.等温强度:晶粒强度与晶界强度相等的温度。

15.缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。

16.腐蚀疲劳:化工设备中许多金属材料构件都工作在腐蚀的环境中,同时还承受着交变载荷的作用。

2014年材料性能学名词解释-(2)

2014年材料性能学名词解释-(2)

一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε= ,为真实应变。

2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L ,ε为名义应变。

3.弹性模量材料在弹性变形阶段,其应力和应变成线性关系(即符合胡克定律),其比例系数称为弹性模量。

对各向同性体为一常数。

是原子间结合强度的一个标志。

4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。

S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。

5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。

6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。

7.位错增殖系数n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。

8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。

9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。

10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。

单位Pa·S. 是流体抵抗流动的量度。

11.脆性断裂构件未经明显的变形而发生的断裂。

断裂时材料几乎没有发生过塑性变形。

在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。

与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。

12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。

其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。

13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。

单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ= Eγ/a 。

材料性能学重点

材料性能学重点

第一章材料单向静拉伸的力学性能1、名词解释:银纹:银纹是高分子材料在变形过程中产生的一种缺陷,由于它的密度低,对光线的反射能力很高,看起来呈银色,因而得名。

银纹产生于高分子材料的弱结构或缺陷部位。

超塑性:材料在一定条件下呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象,称为超塑性。

晶界滑动产生的应变εg在总应变εt中所占比例一般在50%~70%之间,这表明晶界滑动在超塑性变形中起了主要作用。

脆性断裂:材料断裂前基本上不产生明显的宏观塑性变形,没有明显的预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。

韧性断裂:材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。

韧性断裂时一般裂纹扩展过程较慢,而且消耗大量塑性变形能。

解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂称为解理断裂。

(解理台阶、河流花样和舌状花样是解理断口的基本微观特征。

) 剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离而造成的断裂。

(微孔聚集型断裂是材料韧性断裂的普通方式。

其断口在宏观上常呈现暗灰色、纤维状,微观断口特征花样则是断口上分布大量“韧窝”。

)4、试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险?应力类型,塑性变形程度、有无预兆、裂纹扩展快慢。

5、断裂强度σc与抗拉强度σb有何区别?若断裂前不发生塑性变形或塑性变形很小,没有缩颈产生,材料发生脆性断裂,则σc=σb。

若断裂前产生缩颈现象,则σc与σb不相等。

6、格里菲斯公式适用哪些范围及在什么情况下需要修正?格里菲斯公式只适用于含有微裂纹的脆性固体,如玻璃、无机晶体材料、超高强钢等。

对于许多工程结构材料,如结构钢、高分子材料等,裂纹尖端会产生较大塑性变形,要消耗大量塑性变形功。

因此,必须对格里菲斯公式进行修正。

第二章材料单向静拉伸的力学性能1、应力状态软性系数;τmax和σmax的比值称为,用α表示。

α越大,最大切应力分量越大,表示应力状态越软,材料越易于产生塑性变形。

材料力学性能总复习

材料力学性能总复习

《材料力学性能》课程期末总复习一、名词解释刚度、形变强化、弹性极限、应力腐蚀开裂、韧性、等温强度、缺口效应、磨损、腐蚀疲劳、脆性断裂、等强温度、应力松弛、Bauschinger效应、粘着磨损、缺口敏感度、冲击韧度、滞弹性、韧脆转变温度、应力腐蚀、抗拉强度、蠕变、高温疲劳、低应力脆断、氢脆、弹性变形、应力状态软性系数、应力幅、应力场强度因子、变动载荷、抗热震性、弹性比功、残余应力、比强度、高周疲劳、约比温度、滑移、应变时效、内耗、断面收缩率、腐蚀磨损二、选择题1、Bauschinger效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限()的现象。

A.升高 B.降低 C.不变 D.无规律可循2、橡胶在室温下处于:()A.硬玻璃态 B.软玻璃态 C.高弹态 D.粘流态3、下列金属中,拉伸曲线上有明显屈服平台的是:()A.低碳钢 B.高碳钢 C.白口铸铁 D.陶瓷4、HBS所用压头为()。

A.硬质合金球B.淬火钢球C.正四棱金刚石锥D.金刚石圆锥体5、对称循环交变应力的应力比r为()。

A.-1 B.0 C.-∞ D.+∞6、Griffith强度理论适用于()。

A.金属 B.陶瓷 C.有机高分子 D.晶须7、疲劳裂纹最易在材料的什么部位产生()。

A.表面 B.次表面 C.内部 D.不一定8、⊿Kth表示材料的()。

A.断裂韧性B.疲劳裂纹扩展门槛值C.应力腐蚀破裂门槛值D.应力场强度因子9、拉伸试样的直径一定,标距越长则测出的断面收缩率会()。

A.越高 B.越低 C.不变 D.无规律可循10、下述断口哪一种是延性断口()。

A.穿晶断口 B.沿晶断口 C.河流花样 D.韧窝断口11、与维氏硬度可以相互比较的是()。

A.布氏硬度 B.洛氏硬度 C.莫氏硬度 D.肖氏硬度12、为提高材料的疲劳寿命可采取如下措施()。

A.引入表面拉应力B.引入表面压应力C.引入内部压应力D.引入内部拉应力13、材料的断裂韧性随板材厚度或构件截面尺寸的增加而()。

材料性能基本概念

材料性能基本概念

材料性能基本概念1、抗拉强度(也叫拉伸强度):是指拉伸试验时,试样拉断过程中最⼤的试验⼒所对应的应⼒,其值等于最⼤拉⼒F b以试样的原始横截⾯积A o抗拉强度⽤σb表⽰,即σb =F b/A o抗拉强度是材料的重要⼒学性能指标之⼀,标志着材料在承受拉伸载荷时的实际承载能⼒。

拉伸强度(tensile strength)是指材料产⽣最⼤均匀塑性变形时的应⼒。

抗拉强度(tensile strength)也叫强度极限指材料在拉断前承受最⼤应⼒值。

当钢材屈服到⼀定程度后,由于内部晶粒重新排列,其抵抗变形能⼒⼜重新进步,此时变形固然发展很快,但却只能随着应⼒的进步⽽进步,直⾄应⼒达最⼤值。

此后,钢材抵抗变形的能⼒明显降低,并在最薄弱处发⽣较⼤的塑性变形,此处试件截⾯迅速缩⼩,出现颈缩现象,直⾄断裂破坏。

钢材受拉断裂前的最⼤应⼒值称为强度极限或抗拉强度。

(1)在拉伸试验中,试样直⾄断裂为⽌所受的最⼤拉伸应⼒即为拉伸强度,其结果以MPa表⽰。

有些错误地称之为抗张强度、抗拉强度等。

(2)⽤仪器测试样拉伸强度时,可以⼀并获得拉伸断裂应⼒、拉伸屈服应⼒、断裂伸长率等数据。

(3)拉伸强度的计算:σt = p /( b×d)式中,σt为拉伸强度(MPa);p为最⼤负荷(N);b为试样宽度(mm);d为试样厚度(mm)。

注意:计算时采⽤的⾯积是断裂处试样的原始截⾯积,⽽不是断裂后端⼝截⾯积。

(4)在应⼒应变曲线中,即使负荷不增加,伸长率也会上升的那⼀点通常称为屈服点,此时的应⼒称为屈服强度,此时的变形率就叫屈服伸长率;同理,在断裂点的应⼒和变形率就分别称为断裂拉伸强度和断裂伸长率。

2、⽐例极限proportional limit符号:σP拉伸曲线中OE段,材料在不偏离应⼒与应变正⽐关系(虎克定律)条件下所能承受的最⼤应⼒。

钢材在弹性阶段分成线弹性和⾮线弹性两个部分,线弹性阶段钢材的应⼒与变形完全为直线关系,其应⼒最⾼点为⽐例极限3、弹性极限σe(elastic limit)材料做拉伸试验时,应⼒与应变将呈现⼀函数关系,⽽当应⼒达到某⼀值,材料将不会⾃⾏恢复原状,此⼀应⼒值,称为弹性限度。

材料性能名词解释(2)

材料性能名词解释(2)

材料性能名词解释(2)材料性能名词解释上分布大量“韧窝” 热应力:温度变化产生膨胀变形,变形受约束产生的应力。

氢脆:氢扩散到金属中以固溶态存在或者生产金属氢化物导温系数:材料棒各点的温度随时间变化,截面上各点温应力状态软性系数:不同加载条件下材料中最大切应力与热震性:材料经受急冷急热变化产生的冲击热应力而不失而导致材料脆断现象;度的变化率。

正应力的比值效的能力。

氢鼓泡:扩散到金属中的氢聚集在金属的孔洞处,形成氢热传导:当固体两端存在温差时,热量从热端自动地传向剪切弹性模量:材料在扭转过程中,扭矩与切应变的比值热疲劳抗力:通常以一定温度下产生一定尺寸疲劳裂纹的分子,产生很大压力,形成裂纹失效,又称为氢诱发开裂冷端的现象缺口敏感度:材料因存在缺口造成三向应力状态和应力应氢腐蚀:高温高压下,氢进入金属产生化学反应,如氢和线性光学:介质的电极化强度P与入射光波中的电场E成变集中而变脆的倾向,NSR= σBN /σb 磨损:物体表面相互摩擦时,材料自表面逐渐减少时的过碳生成甲烷气体,导致材料脱碳;简单的线性关系硬度:硬度是表征材料软硬程度的一种性能。

一般认为硬程。

电介质:电场下能极化的材料。

电子极化:电场分量引起固体中电子云和原子核电荷重心度是一定体积内材料表面抵抗变形或破裂的能力粘着磨损:材料表面某些接触点局部压应力超过该处材料极化强度:电介质材料在电场作用下的极化程度,单位体发生相对移动,部分光能量吸收,速度减小,产生折射;静力韧度:静拉伸的σ-ε曲线下包围的面积减去试样断屈服强度发生粘合并拉开而产生的磨损积内的感生电偶极矩。

电子能态转变:固体原子吸收光子能量后,激发低能级电裂前吸收的弹性能磨粒磨损:摩擦副的一方表面存在坚硬的细微凸起或在接铁电体:就有铁电性的晶体。

子至高能级冲击韧度:一次冲断时,冲击功与缺口处截面积的比值。

触间存在硬质粒子时产生的磨损热释电效应:晶体因温度均匀变化而发生极化强度改变的双折射:光通过时,一般都要分为振动方向相互垂直、传冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的腐蚀磨损:在腐蚀应用环境中摩擦表面与周围介质发生反现象称为晶体的热释电效应。

材料的力学性能名词解释总结

材料的力学性能名词解释总结

屈服强度:表示金属对塑性变形的抗力
抗拉强度:试样断裂前所能承受的最大工程应力
断裂强度:指材料发生断裂时的最大应力与断裂横截面积的比值
断裂延性:拉伸断裂时的真塑性应变
段裂韧性:表征材料阻止裂纹扩展的能力
静力韧度:单位体积材料在断裂前所吸收的能量
冲击韧性:材料在冲击载荷下吸收变形功和断裂功的能力
疲劳强度:金属材料在无限多次交变载荷作用下而不破坏的最大应力持久强度:在给定的温度下和规定时间内,试样发生断裂的应力值蠕变极限:材料在高温长时间载荷作用下的塑性变形抗力指标
疲劳极限:在给定的疲劳寿命下,试件所能承受的上限应力幅值
强度:对塑性变形和断裂的抵抗力
塑性:材料产生不可逆变形的能力
韧性:表示材料在塑性变形和断裂过程中吸收能量的能力
解理断裂:材料在拉应力的作用下,由于原子间结合键遭到破坏,严格地沿一定的结晶学平面劈开而造成的
脆性断裂:断裂前不发生可测得塑性变形
冷脆转变温度:材料从韧性断裂变为脆性断裂时的温度
形变(应变)强化:阻止材料继续发生塑性变形的能力。

材料力学性能名词解释部分

材料力学性能名词解释部分

力学性能指标及定义:脆性材料:弹性变形,然后断裂塑性材料:弹性变形,塑性变形低塑性变形材料:无颈缩高塑性材料:有颈缩弹性:是材料的可逆变形。

本质:晶体点阵内的原子具有抵抗相互分开、接近或剪切移动的性质。

弹性模量Ε:表明材料对弹性形变的抗力,代表了材料的刚度。

(斜率)弹性极限ζe:材料发生最大弹性形变时的应力值。

弹性比功W e:材料吸收变形功而又不发生永久变形的能力。

W e=1/2ζeεe=εe2/2Ε(面积)普弹形变(高分子):应力与应变的关系符合胡克定律,变形由分子链内部键长和键角发生变化产生。

高弹形变(高分子):分子链在外力作用下,原先卷曲的链沿受力方向逐渐伸展产生,伸展长度与应力不成线性关系。

弹性的不完整性:应变滞后于应力。

本质:组织的不均匀性,使材料受应力作用时各晶粒的应变不均匀或应变明显受时间的影响。

弹性后效:加载时应变落后于应力而和时间有关的现象称为正弹性后效;反之,卸载时应变落后于应力的现象称为反弹性后效。

弹性滞后:由于正反弹性后效使得应力-应变得到的封闭回线内耗:加载时消耗于材料的的变形功大于卸载时材料所放出的变形功,因而有部分变形功被材料所吸收,这被吸收的功为内耗。

(例子:①音响效果好的元件要求内耗小such as音叉、琴弦等②机件在运转时常伴有振动,需要良好的消振材料such as灰口铸铁)包申格效应:金属材料预先经少量塑性变形后再同向加载,弹性极限升高,反之降低的现象。

与位错运动所受阻力有关。

(例子:高速运转部件预先进行高速离心处理,有利于提高材料的抗变形能力。

)超弹性材料:材料在外力作用下产生远大于其弹性极限时的应变量,外力去除自动恢复其变形的现象。

脆性:弹性极限前断裂(断裂前不产生塑性变形的性质)韧性:断裂前单位体积材料所吸收的变性能和断裂能,即外力所作的功①弹性变形能②塑性变形能③断裂能塑性:材料在断裂前发生的永久型变形(不可逆变形)塑性变形:位错在外力的作用下发生滑移和孪生。

材料性能学复习资料

材料性能学复习资料

第一篇材料的力学性能第一章材料的弹性变形一、名词解释1、弹性变形:外力去除后,变形消失而恢复原状的变形。

P42弹性模量:表示材料对弹性变形的抗力,即材料在弹性变形范兩内,产生单位弹性应变的需应力。

P103、比例极限:是保证材料的弹性变形按正比例关系变化的最大应力。

P154、弹性极限:是材料只发生弹性变形所能承受的最大应力。

P155、弹性比功:是材料在弹性变形过程中吸收变形功的能力。

P156、包格申效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%), 而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

P207、内耗:在加载变形过程中,被材料吸收的功称为内耗。

P21二、填空题1、金属材料的力学性能是指在载荷作用下其抵抗(变形)和(断裂)的能力。

P22、低碳钢拉伸试验的过程可以分为(弹性变形)、(塑性变形)和(断裂)三个阶段。

P2三、选择题1、表示金属材料刚度的性能指标是(B )。

P10A比例极限B弹性模量C弹性比功2、弹簧作为广泛应用的减振或储能元件,应具有较高的(C )<> P16A塑性B弹性模量C弹性比功D硬度3、下列材料中(C )最适宜制作弹簧。

A 08 钢B 45 钢C 60Si:Mn C T12 钢4、下列因素中,对金属材料弹性模量影响最小的因素是(D )。

A化学成分B键合方式C晶体结构D晶粒大小四、问答题影响金属材料弹性模量的因素有哪些?为什么说它是组织不敬感参数?答:影响金属材料弹性模量的因素有:键合方式和原子结构、晶体结构、化学成分、温度及加载方式和速度。

弹性模量是组织不敬感参数,材料的晶粒大小和热处理对弹性模量的影响很小。

因为它是原子间结合力的反映和度量。

P11第二章材料的塑性变形一、名词解释1、塑性变形:材料在外力的作用于下,产生的不能恢复的永久变形。

P242、塑性:材料在外力作用下,能产生永久变形而不断裂的能力。

P523、屈服强度:表征材料抵抗起始塑性变形或产生微量塑性变形的能力。

材料性能学历年真题及答案

材料性能学历年真题及答案

一、名词解释低温脆性:材料随着温度下降,脆性增加,当其低于某一温度时,材料由韧性状态变为脆性状态,这种现象为低温脆性。

疲劳条带:每个应力周期内疲劳裂纹扩展过程中在疲劳断口上留下相互平行的沟槽状花样。

韧性:材料断裂前吸收塑性变形功和断裂功的能力。

缺口强化:缺口的存在使得其呈现屈服应力比单向拉伸时高的现象。

50%FATT:冲击试验中采用结晶区面积占整个断口面积 50%时所应的温度表征的韧脆转变温度。

破损安全:构件内部即使存在裂纹也不导致断裂的情况。

应力疲劳:疲劳寿命N>105 的高周疲劳称为低应力疲劳,又称应力疲劳。

韧脆转化温度:在一定的加载方式下,当温度冷却到某一温度或温度范围时,出现韧性断裂向脆性断裂的转变,该温度称为韧脆转化温度。

应力状态软性系数:在各种加载条件下最大切应力与最大当量正应力的比值,通常用α表示。

疲劳强度:通常指规定的应力循环周次下试件不发生疲劳破坏所承受的上限应力值。

内耗:材料在弹性范围内加载时由于一部分变形功被材料吸收,则这部份能量称为内耗。

滞弹性: 在快速加载、卸载后,随着时间的延长产生附加弹性应变的现象。

缺口敏感度:常用缺口试样的抗拉强度与等截面尺寸的光滑试样的抗拉强度的比值表征材料缺口敏感性的指标,往往又称为缺口强度比。

断裂功:裂纹产生、扩展所消耗的能量。

比强度::按单位质量计算的材料的强度,其值等于材料强度与其密度之比,是衡量材料轻质高强性能的重要指标。

.缺口效应:构件由于存在缺口(广义缺口)引起外形突变处应力急剧上升,应力分布和塑性变形行为出现变化的现象。

解理断裂:材料在拉应力的作用下原于间结合破坏,沿一定的结晶学平面(即所谓“解理面”)劈开的断裂过程。

应力集中系数:构件中最大应力与名义应力(或者平均应力)的比值,写为KT。

高周疲劳:在较低的应力水平下经过很高的循环次数后(通常N>105)试件发生的疲劳现象。

弹性比功:又称弹性应变能密度,指金属吸收变形功不发生永久变形的能力,是开始塑性变形前单位体积金属所能吸收的最大弹性变形功。

材料性能学

材料性能学

名词解释脆断现象。

名义应力指载荷除以试样的原始截面积A0得到的应力。

真实应力指载荷除以受载后实际的截面面积A得到的应力。

强度是指某种材料抵抗破坏的能力。

刚度是指某种构件或结构抵抗变形的能力。

硬度指材料抵抗压入或划伤的能力。

耐磨性是材料抵抗磨损的性能。

低应力脆断指造成构件在“许用应力”以下发生的断裂。

形变织构是多晶体材料由塑性变形导致的各晶粒呈择优取向的组织。

冲击载荷变形但不破坏的能力。

指开始发生屈服的点所对应的应力。

应变硬化同下加工硬化指金属材料经冷加工变形后,强度(硬度)显著提高,而塑性则很快下降的现象。

弹性变形指材料在外力作用下产生可逆变形,如果外力不超过某个限度,在外力去除后能够恢复固有形状和尺寸的可逆变形。

名义屈服极限指对于没有明显屈服阶段的塑性材料,当产生的塑性应变ε=0.2 %时所对应的应力。

一、材料在单向静拉伸载荷下的力学性能1.画出低碳钢、高碳钢和铸铁拉伸时的应力—应变曲线;低碳钢试样拉伸过程中颈缩现象出现在应力-应变图的哪一个阶段(抗拉强度、最高点以后)?吕德斯带(Lüders Band)出现在哪一个阶段?(出现在屈服台阶上)材料种类对应力—应变曲线如何产生影响?(3)吕德斯带是在拉伸时,试样表面出现的与拉伸轴呈45°角的粗糙不平的皱纹。

在屈服阶段(屈服平台)产生的与拉伸轴线成45度角的局部屈服带,该屈服带在屈服平台阶段迅速扩散到整个试样直到屈服阶段结束。

2.衡量材料弹性、塑性、冲击断裂韧性和断裂韧度的指标有哪些?各自的影响因素有哪些?弹性指标E(冷加工塑性变形后E值略降(4%—6%),大变形所产生的变形织构将引起E 的各向异性,沿变形方向E值最大;温度升高使得原子间距增加,E值下降;碳钢温度每升高100℃,E值下降3%—5%,但是在-50—50℃范围内变化不大。

弹性模量主要取决于金属、拉伸伸长率、断面收缩率。

冲击断裂韧性:冲击韧度。

原子本性和晶格类型);塑性指标S断裂韧度的指标KIC 、GIC、JIC。

材料性能学名词解释

材料性能学名词解释

材料性能学名词解释材料性能学是材料科学中的一个重要分支,研究材料的物理、化学、力学等性质以及材料的制备、加工、应用等问题。

在材料性能学中,有很多专业术语和名词,这些名词的理解和掌握对于理解材料的性能及其应用具有极为重要的意义。

下面对一些材料性能学的重要名词进行解释。

1. 强度强度是指材料抵抗外部应力的能力。

在材料的破坏临界点之前,强度越高,材料的抗拉、抗压能力越强。

强度可以分为拉伸强度、压缩强度、屈服强度等。

2. 韧性韧性是指在受到外力作用时,材料发生塑性变形能够存活的能力。

通俗地说,韧性就是材料的延展性和韧度。

相比强度,韧性更加重要,因为韧性可使材料在破坏前先发生塑性变形,从而在保证力学性能的前提下确保材料的安全性。

3. 均匀性均匀性指的是材料中的各向同性,即同一性能指标在不同方向上的值相等。

对于材料的研究和使用,均匀性也是非常重要的,因为失去了均匀性,就很难保证材料的性能。

4. 硬度硬度是指材料抵抗划痕、压痕或穿透的能力。

硬度的大小反映了材料的更加微观的特性,例如晶格形态、断裂韧度等。

5. 粘性粘性是指材料抵抗拉伸过程中的变形能力。

材料的粘性反映了材料的点缀(由于孔洞、杂质和缺陷)程度和其化学成分。

粘性的大小也是材料性能的重要指标之一。

6. 疲劳性疲劳性是指材料在长期重复载荷作用下产生的损伤。

对于一些长期受力的材料,如机械设备、建筑结构等,疲劳性能的好坏对于材料的长期稳定性有很大的影响。

7. 耐腐蚀性耐腐蚀性是指材料在化学溶液等环境中的耐受性。

材料的耐腐蚀性主要取决于其化学成分、晶格结构及其表面处理方式等因素。

8. 热膨胀系数热膨胀系数是指材料在温度变化时的膨胀性。

热膨胀系数的大小反映了材料的热胀冷缩的程度和材料的热稳定性,在一些高温工况下具有重要的应用价值。

9. 弹性模量弹性模量是指材料在受到外力作用下的变形(弹性变形)能力。

它反映了材料的弹性特征,也是材料设计和制造中的重要参数之一。

综上所述,材料性能学的专业术语和名词众多,但是掌握这些概念,对于衡量材料性能、选择材料、设计材料具有重要意义。

2014年材料性能学名词解释-(2)

2014年材料性能学名词解释-(2)

2014年材料性能学名词解释-(2)一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε = ,为真实应变。

2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L ,ε为名义应变。

3.弹性模量材料在弹性变形阶段,其应力和应变成线性关系(即符合胡克定律),其比例系数称为弹性模量。

对各向同性体为一常数。

是原子间结合强度的一个标志。

4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。

S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。

5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。

6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。

7.位错增殖系数n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。

8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。

9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。

word版本.10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的摩擦力。

单位Pa·S. 是流体抵抗流动的量度。

11.脆性断裂构件未经明显的变形而发生的断裂。

断裂时材料几乎没有发生过塑性变形。

在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。

与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。

12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。

其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。

13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε= ,为真实应变。

2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L ,ε为名义应变。

3.弹性模量材料在弹性变形阶段,其应力和应变成线性关系(即符合胡克定律),其比例系数称为弹性模量。

对各向同性体为一常数。

是原子间结合强度的一个标志。

4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。

S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。

5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。

6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。

7.位错增殖系数n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。

8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。

9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。

10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。

单位Pa·S. 是流体抵抗流动的量度。

11.脆性断裂构件未经明显的变形而发生的断裂。

断裂时材料几乎没有发生过塑性变形。

在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。

与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。

12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。

其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。

13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。

单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ= Eγ/a 。

理论结合强度只与弹性模量、表面能和晶格距离等材料常数有关。

14.格林菲斯微裂纹理论实际材料中总是存在许多细小的裂纹或缺陷,在外力作用下,这些裂纹和缺陷附近产生应力集中现象,当应力达到一定程度时,裂纹开始扩展而导致断裂,断裂是裂纹扩展的结果。

从能量的角度来研究裂纹扩展的条件,即物体内储存的弹性应变能的降低应大于等于由于开裂形成两个新表面所需的表面能。

15.裂纹尖端应力集中16.应力场强度因子反映裂纹尖端应力场强度的强度因子,是与外加应力、裂纹长度、裂纹种类和受力状态有关的系数。

17.应力场几何形状因子与裂纹形式、试件几何形状有关18.裂纹扩展动力裂纹扩展单位面积所降低的弹性应变能19.裂纹扩展阻力K 为材料的本征参数,反映了具有裂纹的材料对外界作用的一种抵抗能力。

是材料的固有性质。

20.断裂韧性表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标。

在加载速度和温度一定的条件下,对某种材料而言它是一个常数。

当裂纹尺寸一定时,材料的断裂韧性值愈大,其裂纹失稳扩展所需的临界应力就愈大;当给定外力时,若材料的断裂韧性值愈高,其裂纹达到失稳扩展时的临界尺寸就愈大。

第二章热学1. 晶格热振动晶体中原子以平衡位置为中心不停地振动,在晶体中,晶格热振动具有弹性波的形式,通常称之为格波。

晶格热振动是产生热容、热膨胀等现象的物理基础。

2. 格波原子热振动的一种描述。

从整体上看,处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波。

其传播介质并非连接介质,而是由原子,离子等形成的晶格,即晶格的振动模。

又分为光频支和声频支。

3. 光频支相邻原子振动方向相反,形成了一个范围很小、频率很高的振动。

4. 声频支相邻原子具有相同的振动方向。

5. 杜隆-珀替定律:恒压下元素的原子热容为25J/K.mol6. 柯普定律:化合物热容等于构成化合物个元素原子热容之和7. 热膨胀系数表征物体受热后体积或长度等变化能力的系数。

包括线膨胀系数,面膨胀系数和体膨胀系数。

热膨胀系数的大小直接与材料的热稳定性有关,一般线膨胀系数小的,热稳定性高。

8. 热容是分子热运动的能量随温度变化的一个物理量,是物体温度升高1K所需要增加的能量。

不同温度不同质量,物体的热容均有所不同。

9. 导热系数单位温度梯度下,单位时间内通过单位垂直面积的热量。

10. 导温系数:又称热扩散率,λ/(ρC p),即相对于单位密度与单位热容的导热率11. 德拜定律温度远低于德拜温度时,材料的热容与T³成正比。

12. C v与T3规律13. 热容的爱因斯坦模型每一个原子都是一个独立的振子,原子之间彼此无关,并且以相同的角频ω振动。

14. 热容的德拜模型考虑了晶体中原子的相互作用。

晶体中对热容的主要贡献是弹性波的振动,即波长较长的声频支在低温下的振动占主导地位。

由于声频波的波长远大于晶体的晶格常数,可把晶体近似为连续介质。

晶格振动的频率在0~ωmax连续分布。

低温下,热容与T³成正比。

15. 爱因斯坦温度16. 德拜温度17. 热应力由于材料热膨胀或收缩引起的内应力18. 热稳定性材料承受温度的急剧变化而不致破坏的能力19. 抗热冲击损伤材料发生瞬时断裂,抵抗这类破坏的性能20. 抗热冲击断裂在热冲击循环作用下,材料表面开裂、剥落,并不断发展,最终碎裂或变质。

抵抗这类破坏的性能。

21. 第一、二、三热应力断裂抵抗因子及其物理意义R=σ(1-μ)/αE 为第一热应力断裂抵抗因子。

表征材料热稳定性的因子。

R越大说明△Tmax越大,则材料能承受的温度变化大,热稳定性越好。

R’=λσ(1-μ)/Eσ为第二热应力断裂抵抗因子。

考虑材料的散热对热稳定性的影响。

表示△Tmax与材料表面散热速率及材料厚薄之间的关系。

R’’=σ(1-μ)λ/αEρCp=R’/Cpρ=Ra为第三热应力因子。

表示材料所能经受的最大降温速率与材料厚度的平方之间的关系。

22.表面热传递系数:材料表面温度比环境温度高1K时,在单位面积单位时间带走的热量23. 无因此表面应力:在热传导与散热等机制作用下,材料内部积累的热应力最大值σmax与时间有关,往往滞后出现,把实测应力σ与σmax的比值称为无因此表面应力,其大小与作用力、循环次数以及材料的导热能力和强度有关。

24. 热传导的傅里叶定律25. 热流密度单位时间内,通过物体单位横截面积上的热量。

按照国际单位制,时间为s,面积为㎡,热量取单位为焦耳(J),相应地热流密度单位为J/㎡·s。

26. 热膨胀机理点阵结构中的质点间平均距离随温度升高而增大。

在晶格振动中相邻质点间的作用力是非线性的,质点在平衡位置时,受力并不对称。

当r<r 时,斥力随位移增大的快,r>r 时,引力随位移的增大要慢一些,则质点振动时的平均位置向右移,相邻质点间平均距离增加。

温度越高,振幅越大,质点在r 两侧受力不对称情况越显著,平衡位置向右移动越多,相邻质点件平均距离就增加得越多,使得晶胞参数增大,晶体膨胀。

27. 热容的本质/产生热容的物理机理晶格振动的激化所产生的能量增量28 材料热传导的机理固体中的导热主要是由晶格振动的格波和自由电子来实现的。

质点间相互作用力使得振动较弱的质点在振动较强质点的影响下振动加剧,热运动能量增加,从而实现热量的转移和传递,使整个晶体中热量从温度较高处传向温度较低处,产生热传导。

第三章光学1、折射率光在真空和材料中的速度之比。

是大于1的整数,不同组成不同结构的介质的折射率不同。

2、光的色散复色光分解为单色光而形成光谱的现象叫做光的色散3、反射率物光面对垂直入射光线的反射能力,称为矿物的反射力,即矿物光面在反光显微镜下的明亮程度。

表示反射力大小的数值叫做反射率。

物体表面所能反射的光量和它所接受的光量之比。

常用百分率和小数表示。

4、透光率是表示显示设备等的透过光的效率,是透过透明或半透明体的光通量与其入射光通量的百分率5、朗波特定律光强度随厚度的变化复合指数衰减规律。

6. 光泽:光泽一词用来表征材料表面颜色、亮度以及反射影像的清晰度和完整性,材料的光泽取决于镜面反射光带的宽度与强度和总漫反射光强度的相对含量有关。

7.乳浊性(不透明性):8. 漫透明性9. 透光性:光能通过陶瓷材料后,剩余光能所占的百分比。

10. 着色剂:能对光选择性吸收而引起选择性反射或选择性投射,从而显现颜色11. 吸收系数在给定波长,溶剂和温度等条件下,吸光物质在单位浓度,单位液层厚度时的吸收度称为吸收系数。

12. 散射系数散射系数用来描述大气中各种散射元对辐射通量散射作用的强弱13 发光处于基态的分子中的电子吸收能量(电、热、化学和光能等)被激发至激发态,这些处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。

14. 固体发光固体发光是电磁波、带电粒子、电能、机械能及化学能等作用到固体上而被转化为光能的现象。

15. 电光效应:由外加电场引起介电常数的变化,称为电光效应。

16. 激光组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跃迁到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。

这就叫做“受激辐射的光放大”,简称激光。

17. 光的全反射与光纤光由光密介质射到光疏介质的界面时,全部被反射回原介质内的现象。

由玻璃或塑料制成的纤维,可作为光传导工具。

传输原理是光的全反射18. 全反射临界角能产生光反射现象最小的折射角。

第四章材料的电导1. 电导率ρ=R(S/L) 导体中某点的电流的密度正比于该点的电场,比例系数为电导率2.电阻率电导率的倒数3. 电流密度单位时间内通过单位截面的电荷量4. 欧姆定律微分形式J=σE5. 电场强度通过单位长度的电压大小6. 迁移率:μ=V/E 载流子在单位电场中的迁移速度7.霍尔效应沿试样x轴方向通入电流I(电流密度为Jx),Z轴方向加一磁场Hz,那么在y轴方向将产生一电场Ey,产生的电场Ey=RJH8. 霍尔系数R 为霍尔系数9. 直流四段电极法10. 缺陷生成能形成一个缺陷所需要的能量。

11. 离子迁移能12. 电导活化能包括缺陷形成能和迁移能。

13. 本征半导体载流子只由半导体晶格本身提供,载流子电子和空穴浓度相等。

载流子由热激发产生,其浓度与温度呈指数关系。

14. n型半导体掺入施主杂质的半导体。

其载流子主要为导带中的电子。

15. p型半导体掺入受主杂质的半导体,其载流子为空穴。

16.p-n结采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体基片上,在它们的交界面就形成空间电荷区称为PN结17. 电子有效质量能带中电子受外力时,外力与加速度的一个比例系数18. 电子能带结构禁止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍射引起的。

相关文档
最新文档