2019年山东高考理科数学试题

合集下载

2019年山东省高考理科数学试卷及答案【word版】

2019年山东省高考理科数学试卷及答案【word版】

2019年山东省高考理科数学试卷及答案【word版】(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年山东省高考理科数学试卷及答案【word版】(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年山东省高考理科数学试卷及答案【word版】(word版可编辑修改)的全部内容。

2019年高考山东卷理科数学真题及参考答案一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选择符合题目要求的选项.1.已知是虚数单位,若与互为共轭复数,则i R b a ,,∈i a -bi +2=+2)(bi a (A ) (B) (C ) (D ) i 45-i 45+i 43-i 43+答案:D2.设集合则},]2,0[,2{},21{∈==<-=x y y B x x A x =B A (A) [0,2] (B) (1,3) (C ) [1,3) (D ) (1,4) 答案:C3.函数的定义域为1)(log 1)(22-=x x f (A) (B) (C ) (D ) )210(,)2(∞+,),2()210(+∞ ,)2[]210(∞+,, 答案:C4。

用反证法证明命题“设则方程至少有一个实根”时要做的假设是,,R b a ∈02=++b ax x (A)方程没有实根 (B )方程至多有一个实根02=++b ax x 02=++b ax x (C )方程至多有两个实根 (D )方程恰好有两个实根02=++b ax x 02=++b ax x 答案:A5.已知实数满足,则下列关系式恒成立的是y x ,)10(<<<a a a yx(A)(B) (C ) (D ) 111122+>+y x )1ln()1ln(22+>+y x y x sin sin >33y x >答案:D6.直线与曲线在第一象限内围成的封闭图形的面积为x y 4=2x y =(A )(B )(C )2(D )42224答案:D7.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右kPa 的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(A) (B ) (C ) (D)681218答案:C8.已知函数,.若方程有两个不相等的实根,则实数k 的()12+-=x x f ()kx x g =()()x g x f =取值范围是(A )(B )(C )(D)),(210),(121),(21),(∞+2答案:B9.已知满足的约束条件当目标函数在该约束条件下取得y x,⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 0)b 0,by(a ax z >>+=最小值时,的最小值为5222a b +(A)(B )(C )(D)5452答案:B10。

2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)(解析版)

2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)(解析版)

2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( )A. {x|−4<x <3}B. {x|−4<x <−2}C. {x|−2<x <2}D. {x|2<x <3}2. 设复数z 满足|z -i |=1,z 在复平面内对应的点为(x ,y ),则( )A. (x +1)2+y 2=1B. (x −1)2+y 2=1C. x 2+(y −1)2=1D. x 2+(y +1)2=1 3. 已知a =log 20.2,b =20.2,c =0.20.3,则( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190 cm5. 函数f (x )=sinx+xcosx+x 2在[-π,π]的图象大致为( )A.B.C.D.6. 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A. 516 B. 1132 C. 2132 D. 1116 7. 已知非零向量a ⃗ ,b ⃗ 满足|a ⃗ |=2|b ⃗ |,且(a ⃗ -b ⃗ )⊥b ⃗ ,则a ⃗ 与b ⃗ 的夹角为( )A. π6B. π3C. 2π3D. 5π68. 如图是求12+12+12的程序框图,图中空白框中应填入()A. A =12+A B. A =2+1A C. A =11+2A D. A =1+12A9. 记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A. a n =2n −5 B. a n =3n −10 C. S n =2n 2−8nD. S n =12n 2−2n10. 已知椭圆C 的焦点为F 1(−1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B|,|AB|=|BF 1|,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=111. 关于函数f (x )=sin|x |+|sin x |,有下述四个结论:①f (x )是偶函数②f (x )在区间(π2,π)上单调递增③f (x )在[-π,π]上有4个零点④f (x )的最大值是2 其中所有正确结论的编号是A. ①②④B. ②④C. ①④D. ①③12. 已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为() A. 8√6π B. 4√6π C. 2√6π D. √6π 二、填空题(本大题共4小题,共20.0分)13. 曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和,若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是______.16. 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为______.三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB |.20. 已知函数f (x )=sin x -ln (1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间(-1,π2)存在唯一极大值点; (2)f (x )有且仅有2个零点.21. 为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i -1+bp i +cp i +1(i =1,2,…,7),其中a =P (X =-1),b =P (X =0),c =P (X =1).假设α=0.5,β=0.8.(i )证明:{p i +1-p i }(i =0,1,2,…,7)为等比数列; (ii )求p 4,并根据p 4的值解释这种试验方案的合理性.22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =1−t 21+t 2,y =4t1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】解:∵M={x|-4<x<2},N={x|x2-x-6<0}={x|-2<x<3},∴M∩N={x|-2<x<2}.故选:C.利用一元二次不等式的解法和交集的运算即可得出.本题考查了一元二次不等式的解法和交集的运算,属基础题.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z-i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z-i=x+(y-1)i,∴|z-i|=,∴x2+(y-1)2=1,故选:C.3.【答案】B【解析】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.4.【答案】B【解析】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,可得咽喉至肚脐的长度小于≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是,可得肚脐至足底的长度小于=110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×0.618≈65cm,即该人的身高大于65+105=170cm,故选:B.充分运用黄金分割比例,结合图形,计算可估计身高.本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.5.【答案】D【解析】解:∵f(x)=,x∈[-π,π],∴f(-x)==-=-f(x),∴f(x)为[-π,π]上的奇函数,因此排除A;又f ()=,因此排除B,C;故选:D.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.6.【答案】A【解析】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.【答案】B【解析】解:∵(-)⊥,∴=,∴==,∵,∴.故选:B.由(-)⊥,可得,进一步得到,然后求出夹角即可.本题考查了平面向量的数量积和向量的夹角,属基础题.8.【答案】A【解析】解:模拟程序的运行,可得:A=,k=1;满足条件k≤2,执行循环体,A=,k=2;满足条件k≤2,执行循环体,A=,k=3;此时,不满足条件k≤2,退出循环,输出A的值为,观察A的取值规律可知图中空白框中应填入A=.故选:A.模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.【答案】A【解析】【分析】根据题意,设等差数列{a n}的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n-5,,故选:A.10.【答案】B【解析】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=,∴|AF2|=a,|BF1|=a,在Rt△AF2O中,cos∠AF2O=,在△BF1F2中,由余弦定理可得cos∠BF2F1=,根据cos∠AF2O+cos∠BF2F1=0,可得+=0,解得a2=3,∴a=.b2=a2-c2=3-1=2.所以椭圆C的方程为:+=1.故选:B.根据椭圆的定义以及余弦定理列方程可解得a=,b=,可得椭圆的方程.本题考查了椭圆的性质,属中档题.11.【答案】C【解析】解:f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sinx|=f(x),则函数f(x)是偶函数,故①正确.当x∈(,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误.当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0得2sinx=0,得x=0或x=π,由f(x)是偶函数,得在[-π,π)上还有一个零点x=-π,即函数f(x)在[-π,π]上有3个零点,故③错误.当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确的结论是①④,故选C.根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可.本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键.12.【答案】D【解析】解:如图,由PA=PB=PC ,ABC是边长为2的正三角形可知,三棱锥P-ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心.连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC.∵E,F分别是PA,AB的中点,∴EF∥PB.又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P-ABC的三条侧棱两两互相垂直.把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D=,半径为,则球O的体积为.故选D.由题意画出图形,证明三棱锥P-ABC为正三棱锥,且三条侧棱两两互相垂直,再由补形法求外接球球O的体积.本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究函数上某点的切线方程,切点处的导数值为斜率是解题关键,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,结合条件建立方程组求出q是解决本题的关键.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5==,故答案为:. 15.【答案】0.18【解析】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.16.【答案】2【解析】解:如图,∵=,且•=0,∴OA⊥F1B,则F1B:y=,联立,解得B (,),则,,∴=4c2,整理得:b2=3a2,∴c2-a2=3a2,即4a2=c2,∴,e=.故答案为:2.由题意画出图形,结合已知可得F1B⊥OA,写出F1B的方程,与y=联立求得B点坐标,再由勾股定理求解.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查计算能力,是中档题.17.【答案】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.则sin2B+sin2C-2sin B sin C=sin2A-sin B sin C,∴由正弦定理得:b2+c2-a2=bc,∴cos A =b2+c2−a22bc =bc2bc=12,∵0<A<π,∴A=π3.(2)∵√2a+b=2c,A=π3,∴由正弦定理得√2sinA+sinB=2sinC,∴√6 2+sin(2π3−C)=2sinC解得sin(C-π6)=√22,∴C-π6=π4,C=π4+π6,∴sin C=sin(π4+π6)=sinπ4cosπ6+cosπ4sinπ6=√22×√32+√22×12=√6+√24.【解析】(1)由正弦定理得:b2+c2-a2=bc,再由余弦定理能求出A.(2)由已知及正弦定理可得:sin(C-)=,可解得C的值,由两角和的正弦函数公式即可得解.本题考查了正弦定理、余弦定理、三角函数性质,考查了推理能力与计算能力,属于中档题.18.【答案】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且NH=12AA1,又MB∥AA1,MB=12AA1,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A1(√3,-1,4),NM⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2),设平面A1MN的一个法向量为m⃗⃗⃗ =(x,y,z),由{m⃗⃗ ⋅NM⃗⃗⃗⃗⃗⃗⃗ =√32x+32y=0m⃗⃗ ⋅NA1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x−12y+2z=0,取x=√3,得m⃗⃗⃗ =(√3,−1,−1),又平面MAA1的一个法向量为n⃗=(1,0,0),∴cos<m⃗⃗⃗ ,n⃗>=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ |⋅|n⃗⃗ |=√3√5=√155.∴二面角A-MA1-N的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N作NH⊥AD,证明NM∥BH,再证明BH∥DE,可得NM∥DE,再由线面平行的判定可得MN∥平面C1DE;(2)以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,分别求出平面A1MN与平面MAA1的一个法向量,由两法向量所成角的余弦值可得二面角A-MA1-N的正弦值.19.【答案】解:(1)设直线l的方程为y=32(x-t),将其代入抛物线y2=3x得:94x2-(92t+3)x+94t2=0,设A(x1,y1),B(x2,y2),则x1+x2=92t+394=2t+43,①,x1x2=t2②,由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t+43+32=4,解得t=712,直线l 的方程为y =32x -78.(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,则y 1=-3y 2,∴32(x 1-t )=-3×32(x 2-t ),化简得x 1=-3x 2+4t ,③ 由①②③解得t =1,x 1=3,x 2=13, ∴|AB |=√1+94√(3+13)2−4=4√133. 【解析】(1)很具韦达定理以及抛物线的定义可得. (2)若=3,则y 1=-3y 2,⇒x 1=-3x 2+4t ,再结合韦达定理可解得t=1,x 1=3,x 2=,再用弦长公式可得.本题考查了抛物线的性质,属中档题.20.【答案】证明:(1)f (x )的定义域为(-1,+∞),f ′(x )=cos x −11+x ,f ″(x )=-sin x +1(1+x)2,令g (x )=-sin x +1(1+x)2,则g ′(x )=-cos x −2(1+x)3<0在(-1,π2)恒成立, ∴f ″(x )在(-1,π2)上为减函数,又∵f ″(0)=1,f ″(π2)=-1+1(1+π2)2<-1+1=0,由零点存在定理可知,函数f ″(x )在(-1,π2)上存在唯一的零点x 0,结合单调性可得,f ′(x )在(-1,x 0)上单调递增, 在(x 0,π2)上单调递减,可得f ′(x )在区间(-1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f ′(x )单调递增,f ′(x )<f ′(0)=0,f (x )单调递减; 当x ∈(0,x 0)时,f ′(x )单调递增,f ′(x )>f ′(0)=0,f (x )单调递增;由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)=−11+π2<0,由零点存在定理可知,函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f ′(x )单调递减,f ′(x )>f ′(x 1)=0,f (x )单调递增; 当x ∈(x 1,π2)时,f ′(x )单调递减,f ′(x )<f ′(x 1)=0,f (x )单调递减. 当x ∈(π2,π)时,cos x <0,-11+x <0,于是f ′(x )=cos x -11+x <0,f (x )单调递减, 其中f (π2)=1-ln (1+π2)>1-ln (1+3.22)=1-ln2.6>1-ln e =0, f (π)=-ln (1+π)<-ln3<0. 于是可得下表:x (-1,0) 0 (0,x 1) x 1(x 1,π2) π2 (π2,π) π f ′(x ) - 0 + 0---- f (x )减函数0 增函数大于0 减函数大于0 减函数小于0结合单调性可知,函数f (x )在(-1,π2]上有且只有一个零点0, 由函数零点存在性定理可知,f (x )在(π2,π)上有且只有一个零点x 2,当x ∈[π,+∞)时,f (x )=sin x -ln (1+x )<1-ln (1+π)<1-ln3<0,因此函数f (x )在[π,+∞)上无零点. 综上,f (x )有且仅有2个零点. 【解析】(1)f (x )的定义域为(-1,+∞),求出原函数的导函数,进一步求导,得到f″(x )在(-1,)上为减函数,结合f″(0)=1,f″()=-1+<-1+1=0,由零点存在定理可知,函数f″(x )在(-1,)上存在唯一得零点x 0,结合单调性可得,f′(x )在(-1,x 0)上单调递增,在(x 0,)上单调递减,可得f′(x )在区间(-1,)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f′(x )<0,f (x )单调递减;当x ∈(0,x 0)时,f′(x )>0,f (x )单调递增;由于f′(x )在(x 0,)上单调递减,且f′(x 0)>0,f′()<0,可得函数f′(x )在(x 0,)上存在唯一零点x 1,结合单调性可知,当x ∈(x 0,x 1)时,f (x )单调递增;当x ∈()时,f (x )单调递减.当x ∈(,π)时,f (x )单调递减,再由f ()>0,f (π)<0.然后列x ,f′(x )与f (x )的变化情况表得答案.本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查函数与方程思想,考查逻辑思维能力与推理运算能力,难度较大. 21.【答案】(1)解:X 的所有可能取值为-1,0,1.P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β), X -11P (1-α)β αβ+(1-α)(1-β) α(1-β)()()证明:∵,, ∴由(1)得,a =0.4,b =0.5,c =0.1.因此p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2,…,7),故0.1(p i +1-p i )=0.4(p i -p i -1),即(p i +1-p i )=4(p i -p i -1),又∵p 1-p 0=p 1≠0,∴{p i +1-p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )解:由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0=p 1(1−48)1−4=48−13P 1,∵p 8=1,∴p 1=348−1,∴P 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44−13p 1=1257.P 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为P 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理. 【解析】(1)由题意可得X 的所有可能取值为-1,0,1,再由相互独立试验的概率求P (X=-1),P (X=0),P (X=1)的值,则X 的分布列可求;(2)(i )由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i-1+bp i +cp i+1,得到(p i+1-p i )=4(p i -p i-1),由p 1-p 0=p 1≠0,可得{p i+1-p i }(i=0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=,进一步求得p 4=.P 4表示最终认为甲药更有效的概率,结合α=0.5,β=0.8,可得在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列,根据条件推出数列的递推关系是解决本题的关键.综合性较强,有一定的难度. 22.【答案】解:(1)由{x =1−t 21+t 2,y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t 2, 两式平方相加,得x 2+y 24=1(x ≠-1),∴C 的直角坐标方程为x 2+y 24=1(x ≠-1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0. 即直线l 的直角坐标方程为得2x +√3y +11=0;(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0, 联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2-12=0. 由△=16m 2-64(m 2-12)=0,得m =±4. ∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小,为|11−4|√22+3=√7. 【解析】(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x=ρcosθ,y=ρsinθ代入2ρcosθ+ρsinθ+11=0,可得直线l 的直角坐标方程; (2)写出与直线l 平行的直线方程为,与曲线C 联立,化为关于x 的一元二次方程,利用判别式大于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值. 本题考查间单曲线的极坐标方程,考查参数方程化普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证(1)1a +1b +1c ≤a 2+b 2+c 2;因为abc =1. 就要证:abc a +abc b+abc c≤a 2+b 2+c 2;即证:bc +ac +ab ≤a 2+b 2+c 2; 即:2bc +2ac +2ab ≤2a 2+2b 2+2c 2; 2a 2+2b 2+2c 2-2bc -2ac -2ab ≥0(a -b )2+(a -c )2+(b -c )2≥0; ∵a ,b ,c 为正数,且满足abc =1.∴(a -b )2≥0;(a -c )2≥0;(b -c )2≥0恒成立;当且仅当:a =b =c =1时取等号. 即(a -b )2+(a -c )2+(b -c )2≥0得证. 故1a +1b +1c ≤a 2+b 2+c 2得证.(2)证(a +b )3+(b +c )3+(c +a )3≥24成立; 即:已知a ,b ,c 为正数,且满足abc =1.(a +b )为正数;(b +c )为正数;(c +a )为正数;(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a );当且仅当(a +b )=(b +c )=(c +a )时取等号;即:a =b =c =1时取等号; ∵a ,b ,c 为正数,且满足abc =1.(a +b )≥2√ab ;(b +c )≥2√bc ;(c +a )≥2√ac ;当且仅当a =b ,b =c ;c =a 时取等号;即:a =b =c =1时取等号;∴(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a )≥3×8√ab •√bc •√ac =24abc =24; 当且仅当a =b =c =1时取等号;故(a +b )3+(b +c )3+(c +a )3≥24.得证. 故得证. 【解析】(1)利用基本不等式和1的运用可证,(2)分析法和综合法的证明方法可证. 本题考查重要不等式和基本不等式的运用,分析法和综合法的证明方法.。

2019山东理数高考真题

2019山东理数高考真题

2019山东理数高考真题绝密★启用并使用完毕前2019年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分, 共4页。

满分150分。

考试用时150分钟。

考试结束后, 将本试卷和答题卡一并交回。

注意事项:1. 答题前, 考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后, 用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动, 用橡皮擦干净后, 再选涂其他答案标号。

答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答, 答案必须写在答题卡个题目指定区域内相应的位置, 不能写在试卷上;如需改动, 先划掉原来的答案, 然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案, 解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A, B互斥, 那么P(A+B)=P(A)+P(B); 如果事件A, B独立, 那么P(AB)=P(A)·P(B).第Ⅰ卷(共60分)一、选择题: 本大题共12个小题, 每小题5分, 共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 复数z满足(z-3)(2-i)=5, 则z的共轭复数为 (A) 2+i (B) 2-i (C) 5+i(D) 5-i (2) 已知集合A={0,1,2}, 则集合B={x-y | x∈A, y∈A}中元素的个数是(A)1(B) 3(C) 51x(D) 9, 则f (-1)=(D) 294(3) 已知函数f (x)为奇函数, 且当x>0时(A) -2(B) 6(C) 1(4) 已知三棱柱ABC-A1B1C1的侧棱与底面垂直, 体积为,.若 P为底面A1B1C1的中心, 则PA与平面ABC所成角的大小为 (A)(B)3(C)(D)(5) 将函数的图象沿x轴向左平移的一个可能取值为 (A)个单位后, 得到一个偶函数的图象, 则(B)(C) 0本卷第1页(共4页)4(6) 在平面直角坐标系xOy中, M为不等式组所表示的区域上一动点, 则直线OM斜率的最小值为 (A) 2(B) 13112(7) 给定两个命题p, q, 若是q的必要而不充分条件, 则p是的 (A) 充分而不必要条件 (C) 充要条件(8) 函数的图象大致为(B) 必要而不充分条件(D) 既不充分也不必要条件(A)(B)(C)(D)(9) 过点(3,1)作圆的两条切线, 切点分别为A, B, 则直线AB的方程为 (A) 2x+y-3=0 (B) 2x-y-3=0 (C) 4x-y-3=0 (D) 4x+y-3=0(10) 用0, 1, …, 9十个数字, 可以组成有重复数字的三位数的个数为 (A) 243 (B) 252 (C) 261 (D) 279 (11) 抛物线12p的焦点与双曲线C2:2x23的右焦点的连线交C1于第一象限的点M. 若C1在点M处的切线平行于C2的一条渐近线, 则p= (A)16(B)8(C)3(D)取得最大值时,2x(12) 设正实数x, y, z满足则当为 (A) 0(B) 1(C)94xyz的最大值(D) 3本卷第2页(共4页)第Ⅱ卷(共90分)二、填空题: 本大题共4小题, 每小题4分, 共16分.(13) 执行右面的程序框图, 若输入的ò的值为0.25, 则输出的n的值为_________.(14) 在区间[-3,3]上随机取一个数x, 使得成立的概率为_________.(15) 已知向量AB与AC的夹角为120°, 且若且则实数λ的值为_________.(16) 定义“正对数现有四个命题:①若a>0, b>0, 则若a>0, b>0, 则若a>0, b>0, 则若a>0, b >0, 则其中的真命题有_________. (写出所有真命题的编号)三、解答题: 本大题共6小题, 共74分. (17) (本小题满分12分)设△ABC的内角A, B, C所对的边分别为a, b, c, 且a+c=6, b=求a, c的值;(Ⅱ) 求的值.(18) (本小题满分12分)如图所示, 在三棱锥P-ABQ中, PB⊥平面ABQ, BA=BP=BQ, D, C, E, F分别是AQ, BQ, AP, BP的中点, AQ=2BD, PD与EQ交于点G, PC与FQ交于点H, 连接GH. (Ⅰ) 求证: AB//GH;(Ⅱ) 求二面角D-GH-E的余弦值.(19) 甲、乙两支球队进行比赛, 约定先胜3局者获得比赛的胜本卷第3页(共4页)79.利, 比赛随即结束. 除第五局甲队获胜的概率是是2312外, 其余每局比赛加队获胜的概率都. 假设每局比赛结果相互独立.(Ⅰ) 分别求甲队以3:0, 3:1, 3:2胜利的概率;(Ⅱ) 若比赛结果为3:0 或 3:1, 则胜利方得3分、对方得0分; 若比赛结果为3:2, 则胜利方得2分, 对方得1分. 求乙队得分X的分布列及数学期望.(20) (本小题满分12分)设等差数列{an}的前n项和为Sn, 且S4=4S2, a2n=2an+1. (Ⅰ) 求数列{an}的通项公式.(Ⅱ) 设数列{bn}的前n项和为Tn, 且的前n项和Rn.(21)(本小题满分13分) 设函数xe2x=2.71828…是自然对数的底数, c∈R)n*λ为常数). 令求数列cn(Ⅰ) 求f (x)的单调区间, 最大值;(Ⅱ) 讨论关于x的方程根的个数.(22)(本小题满分13分) 椭圆C:x2a2的左、右焦点分别是F1,F2,, 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ) 求椭圆C的方程.(Ⅱ) 点P是椭圆C上除长轴端点外的任一点, 连接PF1, PF2, 设的角平分线PM交C的长轴于点M(m,0), 求m的取值范围;(Ⅲ) 在(Ⅱ)的条件下, 过点P作斜率为k的直线l, 使得l与椭圆C有且只有一个公共点. 设直线PF1, PF2的斜率分别为k1, k2. 若k≠0, 试证明1kk11kk2为定值, 并求出这个定值.本卷第4页(共4页)。

2019年山东省高考数学真题(理科)及答案

2019年山东省高考数学真题(理科)及答案

数学试卷绝密★启用并使用完毕前2019 年普通高等学校招生全国统一考试(山东卷 )理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共 4 页,满分150 分。

考试用时150 分钟 .考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5 毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第Ⅱ卷必须用 0.5 毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案 ,解答题应写出文字说明证明过程或演算步骤 .参考公式 :如果事件 A , B 互斥,那么 P( A+B ) =P(A)+P(B) ;如果事件 A , B 独立,那么 P (AB ) =P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共 12 小题,每小题 5 分,满分 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的 .1z为()、复数 z 满足 (z 3)(2 i) 5(i 为虚数单位),则 z 的共轭复数( A ) 2+i(B ) 2-i( C) 5+i(D ) 5-i2、已知集合 A { 0,1,2} ,则集合B{ x y | x A, y A} 中元素的个数是()(A)1(B)3(C) 5(D)93、已知函数 f (x) 为奇函数,且当x0 时, f ( x)x21,则 f ( 1) =()x(A)-2(B)0(C)1(D)24、已知三棱柱ABC A1B1C1的侧棱与底面垂直,体积为9,底面是边长为 3 的正三角4形,若 P 为底面A1B1C1的中心,则 PA 与平面 ABC 所成角的大小为()5( B)( C)( D)( A )312465、若函数f (x)sin( 2x) 的图像沿x轴向左平移个单位,得到一个偶函数的图像,8则的一个可能取值为()3(A)(B)(C)0(D)444数学试卷2x y206、在平面直角坐标系xOy 中, M 为不等式组x 2 y10 ,所表示的区域上一动点,3x y80则直线 OM 斜率的最小值为A 2B 11D1 C2 37、给定两个命题p、q,若p 是 q 的必要而不充分条件,则p 是q 的(A )充分而不必要条件( B )必要而不充分条件(C)充要条件(D )既不充分也不必要条件8、函数y x cos x sin x 的图象大致为yyy yππππO xO x O x O x(A)(B)(C)(D)9、过点( 3, 1)作圆( x1) 2y21作圆的两条切线切点为A,B,则直线AB的方程(A )2xy30(B )(C)4xy30(D )2x y 304x y 3010、用 0,1,, 9十个数字可以组成有重复数字的三位数的个数为(A ) 243( B)252( C)261( D) 279C1 : y1x2 ( p 0)C2: x2y21C1 于11、抛物线2 p的焦点与双曲线3的右焦点的连线交第一象限的点 M ,若C1在点 M 处的切线平行于C2的一条渐近线,则p3323436(B)8( C)3( D)312、设正实数x, y, z满足x24y 2xy2123xy z,则当 z取最大值时,xyz的最大值为9(A )0(B)1(C)4(D)3二、填空题:本大题共 4 小题,每小题 4 分,共 16 分13、执行右面的程序框图,若输入的值为0.25,则输出的 n 的值为______________14、在区间3,3 上随机取一个数 x ,使得 x 1x 21 成立的概率为 ______________.15 、已知向量AB 与 AC 的夹角 120 0 ,且| AB |=3 ,|AC |=2 ,若AP ABAC,且 APBC ,则实数的值为 ____________.16、 定义“正对数 ” : lnx0,0 x 1ln x, x, 现有四个命题:1①若 a 0, b 0, l n a bb l n a;②若 a0, b0, ln abln a ln b;③若 a 0, b 0, l naln al n b;b④若 a 0, b0, ln a b ln a ln b+ ln 2;其中真命题有 ____________. (写出所有真命题的编号)三、解答题:本大题共6 小题,共 74 分。

(完整word版)山东省高考理科数学试卷及【word版】

(完整word版)山东省高考理科数学试卷及【word版】

2019年高考山东卷理科数学真题及参照答案一.:本大共10 小,每小 5 分,共50 分。

在每小出的四个中,切合目要求的。

1. 已知a, b R, i 是虚数位,若 a i 与2 bi 互共复数,(a2 bi )( A)5 4i (B) 5 4i (C) 3 4i (D) 3 4i答案: D2. 会合A { x x 1 2}, B { y y 2x , x [ 0,2]}, A B(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)答案: C3. 函数f (x) 1 的定域(log 2 x) 2 1(A)1(B) (2,) (C)1) (D)1) (0, ) (0, ) (2, (0, ] [ 2,2 2 2答案: C4. 用反法明命“ a, b R, 方程 x2 ax b 0 起码有一个根” 要做的假是(A) 方程x2 ax b 0 没有根(B) 方程 x2 ax b 0 至多有一个根(C) 方程x2 ax b 0 至多有两个根(D) 方程 x2 ax b 0 恰巧有两个根答案: A5. 已知数x, y足a x a y (0 a 1) ,以下关系式恒成立的是(A) 11 11(B) ln( x2 1) ln( y 2 1) (C) sin x sin y (D) x3 y3x2 y2答案: D6.直 y 4x 与曲y x2在第一象限内成的封形的面(A)2 2( B)4 2(C) 2( D) 4 答案:D7. 了研究某厂的效,取若干名志愿者行床,全部志愿者的舒数据(位:kPa )的分区[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的序分号第一,第二,⋯⋯,第五,右是依据数据制成的率散布直方,已知第一与第二共有20 人,第三中没有效的有 6 人,第三中有效的人数频次 / 组距0.360.240.160.080 12 13 14 15 16 17 舒张压 /kPa( A)6 ( B)8 ( C)12 (D) 18答案: C8. 已知函数 f x x 2 1 g x kx .若方程 f x g x 有两个不相等的实根,则实数k 的取值范围是,1 1 ( C)(1,2)( D)(2,)( A)(,)()0 B (,1)2 2答案: B9. 已知x, y知足的拘束条件x - y - 1 0,z ax by(a 0, b 0) 在该拘束条件下获得最小值2x - y - 3当目标函数0,2 5 时,a2 b2的最小值为( A)5( B)4(C)5( D)2答案: B10. 已知a 0, b 0 ,椭圆 C 的方程为 x2 y2 1,双曲线 C 的方程为x2 y2 1 , C 与 C 的离心率之积为1 a2 b2 2 a2 b2 123,则 C2的渐近线方程为2( A)x 2 y 0 (B) 2x y 0 (C) x 2y 0(D) 2x y 0答案: A二.填空题:本大题共 5 小题,每题 5 分,共 25 分,答案须填在题中横线上。

2019年(山东卷)高考数学(理科)

2019年(山东卷)高考数学(理科)

2019年(山东卷)高考数学(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( ) A. 1 B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时, f(x) =x2+ ,则f(-1)= ( )(A)-2 (B)0 (C)1 (D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )(A)(B)(C)(D)(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0 (D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)(D)(7)给定两个命题p,q。

若﹁p是q的必要而不充分条件,则p是﹁q的(A)充分而不必条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(8)函数y=xcosx + sinx 的图象大致为(B)(9)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为(A)2x+y-3=0 (B)2X-Y-3=0(C)4x-y-3=0 (D)4x+y-3=0(10)用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为(A)243 (B)252 (C)261 (D)279(11)抛物线C1:y= x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平等于C2的一条渐近线,则p=(A)(B)(C)(D)(12)设正实数x,y,z满足x2-3xy+4y2-z=0.则当取得最大值时,+-的最大值为(A)0 (B)1 (C)(D)3二.填空题:本大题共4小题,每小题4分,共16分(13)执行右面的程序框图,若输入的∈的值为0.25,则输入的n的值为___.(14)在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥成立的概率为____.(15)已知向量与的夹角2018,且||=3,||=2,若,且,则实数γ的值为_____.(16)定义“正对数”:ln+x=现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a②若a>0,b>0,则ln+(ab)=ln+a+ ln+b③若a>0,b>0,则ln+()≥ln+a-ln+b④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2三、解答题:本大题共6小题,共74分。

2019年山东省高考数学理科试题含答案(Word版)

2019年山东省高考数学理科试题含答案(Word版)

2019年山东省高考数学理科试题含答案(Word版)2019年山东卷数学理科试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.在答题卡和试卷规定的位置上,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写。

2.第Ⅰ卷每小题选出答案后,在答题卡上对应题目的答案标号处涂黑,如需改动,用橡皮擦干净后再涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上。

如需改动,先划掉原来的答案,然后再写上新的答案。

不能使用涂改液、胶带纸、修正带。

不按要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:若复数z满足2z+z=3-2i,其中i为虚数单位,则z=()A)1+2i(B)1-2i(C)-1+2i(D)-1-2i设集合A={y|y=2,x∈R},B={x|x-1<0},则A)(-1,1)(B)(0,1)(C)(-1,+∞)(D)(0,+∞)某高校调查了200名学生每周的自时间(单位:小时),制成了如图所示的频率分布直方图,其中自时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]。

根据直方图,这200名学生中每周的自时间不少于22.5小时的人数是()A)56(B)60(C)120(D)140若变量x,y满足x>0,y>0,xy2,2x3y9,则x2y2的最大值是()A)4(B)9(C)10(D)12一个由半球和四棱锥组成的几何体,其三视图如图所示。

则该几何体的体积为()A)(1/3+2/3)π(B)(1/3+2/3)π(C)122/3+6π(D)1+6π已知直线a和直线b分别在两个不同的平面α和β内,则直线a和直线b相交是平面α和平面β相交的(C)充要条件。

2019年山东理数高考试题文档版(含答案解析)

2019年山东理数高考试题文档版(含答案解析)

绝密★启用前2019年普通高等学校招生全国统一考试(山东卷)理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合?242{60{}MxxNxxx????????,,则M N=A?{43xx??? B?42{xx???? C?{22xx??? D?{23xx??2.设复数z满足=1iz?,z在复平面内对应的点为(x,y),则A.22+11()xy?? B.221(1)xy??? C.22(1)1yx??? D.22(+1)1yx?? 3.已知0.20.32 log0.220.2abc???,,,则A.abc?? B.acb?? C.cab?? D.bca??4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512?(512?≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512?.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是A.165 cm B.175 cm C.185 cm D.190 cm5.函数f(x)=2sincos??xxxx在[,]???的图像大致为A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A516 B1132 C2132 D11167.已知非零向量a,b满足||2||?ab,且()?ab?b,则a与b的夹角为Aπ6 Bπ3 C2π3 D5π68.如图是求112122??的程序框图,图中空白框中应填入A.A=12A? B.A=12A? C.A=112A? D.A=112A? 9.记n S为等差数列{}n a的前n项和.已知4505Sa??,,则A.25n an?? B. 310n an?? C.228n Snn?? D2122n Snn??10.已知椭圆C的焦点为121,01,0FF?(),(),过F2的直线与C交于A,B两点.若22||2||AFFB?,1||||ABBF?,则C的方程为A2212xy?? B22132xy?? C22143xy?? D22154xy??11.关于函数()sin|||sin |fxxx??有下述四个结论:①f(x)是偶函数②f(x)在区间(2?,?)单调递增③f(x)在[,]???有4个零点④f(x)的最大值为2其中所有正确结论的编号是A.①②④ B.②④ C.①④ D.①③12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,PB的中点,∠CEF=90°,则球O的体积为A68? B64? C62? D6?二、填空题:本题共4小题,每小题5分,共20分。

2019年山东省高考理科数学试卷及答案【word版】[2]

2019年山东省高考理科数学试卷及答案【word版】[2]

2019年山东省高考理科数学试卷及答案【word版】(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年山东省高考理科数学试卷及答案【word版】(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年山东省高考理科数学试卷及答案【word版】(word版可编辑修改)的全部内容。

2019年高考山东卷理科数学真题及参考答案一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选择符合题目要求的选项.1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C ) i 43- (D ) i 43+ 答案:D2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A (A) [0,2] (B) (1,3) (C ) [1,3) (D ) (1,4) 答案:C3.函数1)(log 1)(22-=x x f 的定义域为(A))210(, (B) )2(∞+, (C ) ),2()210(+∞ , (D ) )2[]210(∞+,,答案:C4。

用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是 (A)方程02=++b ax x 没有实根 (B )方程02=++b ax x 至多有一个实根(C )方程02=++b ax x 至多有两个实根 (D )方程02=++b ax x 恰好有两个实根 答案:A5.已知实数y x ,满足)10(<<<a a a yx,则下列关系式恒成立的是(A)111122+>+y x (B) )1ln()1ln(22+>+y x (C ) y x sin sin > (D ) 33y x > 答案:D6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为(A )22(B )24(C )2(D )4 答案:D7.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为舒张压/kPa(A)6 (B )8 (C ) 12(D)18 答案:C8.已知函数()12+-=x x f ,()kx x g =.若方程()()x g x f =有两个不相等的实根,则实数k 的取值范围是(A )),(210(B )),(121(C )),(21(D)),(∞+2答案:B9.已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A)5(B )4(C )5(D)2 答案:B10。

2019年山东省高考数学理科试题含答案(Word版)

2019年山东省高考数学理科试题含答案(Word版)

绝密★启用前2019年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).如果事件A ,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56 (B)60 (C)120 (D)140(4)若变量x,y满足2,239,0,x yx yx则22x y的最大值是()(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)1233+π(C)1236+π(D)216+π(6)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2019年山东数学(理)高考试题(Word版,含答案解析)

2019年山东数学(理)高考试题(Word版,含答案解析)

高考数学精品复习资料2019.5绝密★启用前普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数A ,函数y=ln(1-x)的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.(2)已知a R ∈,i 是虚数单位,若,4z a z z =⋅=,则a=(A )1或-1 (B (C ) (D 【答案】A【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 (A ) pq∧ (B )p q⌝∧ (C )p q ⌝∧ (D )p q ⌝⌝∧【答案】B(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C. (5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )170 【答案】C【解析】22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.(6)执行学科#网两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D. (7)若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】221,01,1,log ()log 1,2aba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. (8)从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】125425989C C =⨯ ,选C. (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.(10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()23,⎡+∞⎣(D )([)3,+∞【答案】B二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.(12)已知12,e e 是互相垂直的单位向量,若12-e 与12λ+e e 的夹角为60,则实数λ的值是 .【解析】)()221212112122333e e e e e e e e e λλλλ-⋅+=+⋅-⋅-=,()2221233232e e e e e e e -=-=-⋅+=,()22221221e e e e e e e e λλλλ+=+=+⋅+=+∴2cos601λ==+,解得:3λ=. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21V 112211242ππ=⨯⨯⨯+⨯⨯=+. (14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】y x =(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】①()22xxxxe ef x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22xg xe x =+,则()()()2222110xxx g xe x e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分。

2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)(解析版)

2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)(解析版)

2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( )A. {x|−4<x <3}B. {x|−4<x <−2}C. {x|−2<x <2}D. {x|2<x <3}2. 设复数z 满足|z -i |=1,z 在复平面内对应的点为(x ,y ),则( )A. (x +1)2+y 2=1B. (x −1)2+y 2=1C. x 2+(y −1)2=1D. x 2+(y +1)2=1 3. 已知a =log 20.2,b =20.2,c =0.20.3,则( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190 cm5. 函数f (x )=sinx+xcosx+x 2在[-π,π]的图象大致为( )A.B.C.D.6. 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A. 516 B. 1132 C. 2132 D. 1116 7. 已知非零向量a ⃗ ,b ⃗ 满足|a ⃗ |=2|b ⃗ |,且(a ⃗ -b ⃗ )⊥b ⃗ ,则a ⃗ 与b ⃗ 的夹角为( )A. π6B. π3C. 2π3D. 5π68. 如图是求12+12+12的程序框图,图中空白框中应填入()A. A =12+A B. A =2+1A C. A =11+2A D. A =1+12A9. 记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A. a n =2n −5 B. a n =3n −10 C. S n =2n 2−8nD. S n =12n 2−2n10. 已知椭圆C 的焦点为F 1(−1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B|,|AB|=|BF 1|,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=111. 关于函数f (x )=sin|x |+|sin x |,有下述四个结论:①f (x )是偶函数②f (x )在区间(π2,π)上单调递增③f (x )在[-π,π]上有4个零点④f (x )的最大值是2 其中所有正确结论的编号是A. ①②④B. ②④C. ①④D. ①③12. 已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为() A. 8√6π B. 4√6π C. 2√6π D. √6π 二、填空题(本大题共4小题,共20.0分)13. 曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和,若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是______.16. 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为______.三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB |.20. 已知函数f (x )=sin x -ln (1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间(-1,π2)存在唯一极大值点; (2)f (x )有且仅有2个零点.21. 为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i -1+bp i +cp i +1(i =1,2,…,7),其中a =P (X =-1),b =P (X =0),c =P (X =1).假设α=0.5,β=0.8.(i )证明:{p i +1-p i }(i =0,1,2,…,7)为等比数列; (ii )求p 4,并根据p 4的值解释这种试验方案的合理性.22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =1−t 21+t 2,y =4t1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】解:∵M={x|-4<x<2},N={x|x2-x-6<0}={x|-2<x<3},∴M∩N={x|-2<x<2}.故选:C.利用一元二次不等式的解法和交集的运算即可得出.本题考查了一元二次不等式的解法和交集的运算,属基础题.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z-i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z-i=x+(y-1)i,∴|z-i|=,∴x2+(y-1)2=1,故选:C.3.【答案】B【解析】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.4.【答案】B【解析】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,可得咽喉至肚脐的长度小于≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是,可得肚脐至足底的长度小于=110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×0.618≈65cm,即该人的身高大于65+105=170cm,故选:B.充分运用黄金分割比例,结合图形,计算可估计身高.本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.5.【答案】D【解析】解:∵f(x)=,x∈[-π,π],∴f(-x)==-=-f(x),∴f(x)为[-π,π]上的奇函数,因此排除A;又f ()=,因此排除B,C;故选:D.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.6.【答案】A【解析】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.【答案】B【解析】解:∵(-)⊥,∴=,∴==,∵,∴.故选:B.由(-)⊥,可得,进一步得到,然后求出夹角即可.本题考查了平面向量的数量积和向量的夹角,属基础题.8.【答案】A【解析】解:模拟程序的运行,可得:A=,k=1;满足条件k≤2,执行循环体,A=,k=2;满足条件k≤2,执行循环体,A=,k=3;此时,不满足条件k≤2,退出循环,输出A的值为,观察A的取值规律可知图中空白框中应填入A=.故选:A.模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.【答案】A【解析】【分析】根据题意,设等差数列{a n}的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n-5,,故选:A.10.【答案】B【解析】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=,∴|AF2|=a,|BF1|=a,在Rt△AF2O中,cos∠AF2O=,在△BF1F2中,由余弦定理可得cos∠BF2F1=,根据cos∠AF2O+cos∠BF2F1=0,可得+=0,解得a2=3,∴a=.b2=a2-c2=3-1=2.所以椭圆C的方程为:+=1.故选:B.根据椭圆的定义以及余弦定理列方程可解得a=,b=,可得椭圆的方程.本题考查了椭圆的性质,属中档题.11.【答案】C【解析】解:f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sinx|=f(x),则函数f(x)是偶函数,故①正确.当x∈(,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误.当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0得2sinx=0,得x=0或x=π,由f(x)是偶函数,得在[-π,π)上还有一个零点x=-π,即函数f(x)在[-π,π]上有3个零点,故③错误.当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确的结论是①④,故选C.根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可.本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键.12.【答案】D【解析】解:如图,由PA=PB=PC ,ABC是边长为2的正三角形可知,三棱锥P-ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心.连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC.∵E,F分别是PA,AB的中点,∴EF∥PB.又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P-ABC的三条侧棱两两互相垂直.把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D=,半径为,则球O的体积为.故选D.由题意画出图形,证明三棱锥P-ABC为正三棱锥,且三条侧棱两两互相垂直,再由补形法求外接球球O的体积.本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究函数上某点的切线方程,切点处的导数值为斜率是解题关键,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,结合条件建立方程组求出q是解决本题的关键.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5==,故答案为:. 15.【答案】0.18【解析】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.16.【答案】2【解析】解:如图,∵=,且•=0,∴OA⊥F1B,则F1B:y=,联立,解得B (,),则,,∴=4c2,整理得:b2=3a2,∴c2-a2=3a2,即4a2=c2,∴,e=.故答案为:2.由题意画出图形,结合已知可得F1B⊥OA,写出F1B的方程,与y=联立求得B点坐标,再由勾股定理求解.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查计算能力,是中档题.17.【答案】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.则sin2B+sin2C-2sin B sin C=sin2A-sin B sin C,∴由正弦定理得:b2+c2-a2=bc,∴cos A =b2+c2−a22bc =bc2bc=12,∵0<A<π,∴A=π3.(2)∵√2a+b=2c,A=π3,∴由正弦定理得√2sinA+sinB=2sinC,∴√6 2+sin(2π3−C)=2sinC解得sin(C-π6)=√22,∴C-π6=π4,C=π4+π6,∴sin C=sin(π4+π6)=sinπ4cosπ6+cosπ4sinπ6=√22×√32+√22×12=√6+√24.【解析】(1)由正弦定理得:b2+c2-a2=bc,再由余弦定理能求出A.(2)由已知及正弦定理可得:sin(C-)=,可解得C的值,由两角和的正弦函数公式即可得解.本题考查了正弦定理、余弦定理、三角函数性质,考查了推理能力与计算能力,属于中档题.18.【答案】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且NH=12AA1,又MB∥AA1,MB=12AA1,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A1(√3,-1,4),NM⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2),设平面A1MN的一个法向量为m⃗⃗⃗ =(x,y,z),由{m⃗⃗ ⋅NM⃗⃗⃗⃗⃗⃗⃗ =√32x+32y=0m⃗⃗ ⋅NA1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x−12y+2z=0,取x=√3,得m⃗⃗⃗ =(√3,−1,−1),又平面MAA1的一个法向量为n⃗=(1,0,0),∴cos<m⃗⃗⃗ ,n⃗>=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ |⋅|n⃗⃗ |=√3√5=√155.∴二面角A-MA1-N的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N作NH⊥AD,证明NM∥BH,再证明BH∥DE,可得NM∥DE,再由线面平行的判定可得MN∥平面C1DE;(2)以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,分别求出平面A1MN与平面MAA1的一个法向量,由两法向量所成角的余弦值可得二面角A-MA1-N的正弦值.19.【答案】解:(1)设直线l的方程为y=32(x-t),将其代入抛物线y2=3x得:94x2-(92t+3)x+94t2=0,设A(x1,y1),B(x2,y2),则x1+x2=92t+394=2t+43,①,x1x2=t2②,由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t+43+32=4,解得t=712,直线l 的方程为y =32x -78.(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,则y 1=-3y 2,∴32(x 1-t )=-3×32(x 2-t ),化简得x 1=-3x 2+4t ,③ 由①②③解得t =1,x 1=3,x 2=13, ∴|AB |=√1+94√(3+13)2−4=4√133. 【解析】(1)很具韦达定理以及抛物线的定义可得. (2)若=3,则y 1=-3y 2,⇒x 1=-3x 2+4t ,再结合韦达定理可解得t=1,x 1=3,x 2=,再用弦长公式可得.本题考查了抛物线的性质,属中档题.20.【答案】证明:(1)f (x )的定义域为(-1,+∞),f ′(x )=cos x −11+x ,f ″(x )=-sin x +1(1+x)2,令g (x )=-sin x +1(1+x)2,则g ′(x )=-cos x −2(1+x)3<0在(-1,π2)恒成立, ∴f ″(x )在(-1,π2)上为减函数,又∵f ″(0)=1,f ″(π2)=-1+1(1+π2)2<-1+1=0,由零点存在定理可知,函数f ″(x )在(-1,π2)上存在唯一的零点x 0,结合单调性可得,f ′(x )在(-1,x 0)上单调递增, 在(x 0,π2)上单调递减,可得f ′(x )在区间(-1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f ′(x )单调递增,f ′(x )<f ′(0)=0,f (x )单调递减; 当x ∈(0,x 0)时,f ′(x )单调递增,f ′(x )>f ′(0)=0,f (x )单调递增;由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)=−11+π2<0,由零点存在定理可知,函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f ′(x )单调递减,f ′(x )>f ′(x 1)=0,f (x )单调递增; 当x ∈(x 1,π2)时,f ′(x )单调递减,f ′(x )<f ′(x 1)=0,f (x )单调递减. 当x ∈(π2,π)时,cos x <0,-11+x <0,于是f ′(x )=cos x -11+x <0,f (x )单调递减, 其中f (π2)=1-ln (1+π2)>1-ln (1+3.22)=1-ln2.6>1-ln e =0, f (π)=-ln (1+π)<-ln3<0. 于是可得下表:x (-1,0) 0 (0,x 1) x 1(x 1,π2) π2 (π2,π) π f ′(x ) - 0 + 0---- f (x )减函数0 增函数大于0 减函数大于0 减函数小于0结合单调性可知,函数f (x )在(-1,π2]上有且只有一个零点0, 由函数零点存在性定理可知,f (x )在(π2,π)上有且只有一个零点x 2,当x ∈[π,+∞)时,f (x )=sin x -ln (1+x )<1-ln (1+π)<1-ln3<0,因此函数f (x )在[π,+∞)上无零点. 综上,f (x )有且仅有2个零点. 【解析】(1)f (x )的定义域为(-1,+∞),求出原函数的导函数,进一步求导,得到f″(x )在(-1,)上为减函数,结合f″(0)=1,f″()=-1+<-1+1=0,由零点存在定理可知,函数f″(x )在(-1,)上存在唯一得零点x 0,结合单调性可得,f′(x )在(-1,x 0)上单调递增,在(x 0,)上单调递减,可得f′(x )在区间(-1,)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f′(x )<0,f (x )单调递减;当x ∈(0,x 0)时,f′(x )>0,f (x )单调递增;由于f′(x )在(x 0,)上单调递减,且f′(x 0)>0,f′()<0,可得函数f′(x )在(x 0,)上存在唯一零点x 1,结合单调性可知,当x ∈(x 0,x 1)时,f (x )单调递增;当x ∈()时,f (x )单调递减.当x ∈(,π)时,f (x )单调递减,再由f ()>0,f (π)<0.然后列x ,f′(x )与f (x )的变化情况表得答案.本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查函数与方程思想,考查逻辑思维能力与推理运算能力,难度较大. 21.【答案】(1)解:X 的所有可能取值为-1,0,1.P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β), X -11P (1-α)β αβ+(1-α)(1-β) α(1-β)()()证明:∵,, ∴由(1)得,a =0.4,b =0.5,c =0.1.因此p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2,…,7),故0.1(p i +1-p i )=0.4(p i -p i -1),即(p i +1-p i )=4(p i -p i -1),又∵p 1-p 0=p 1≠0,∴{p i +1-p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )解:由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0=p 1(1−48)1−4=48−13P 1,∵p 8=1,∴p 1=348−1,∴P 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44−13p 1=1257.P 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为P 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理. 【解析】(1)由题意可得X 的所有可能取值为-1,0,1,再由相互独立试验的概率求P (X=-1),P (X=0),P (X=1)的值,则X 的分布列可求;(2)(i )由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i-1+bp i +cp i+1,得到(p i+1-p i )=4(p i -p i-1),由p 1-p 0=p 1≠0,可得{p i+1-p i }(i=0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=,进一步求得p 4=.P 4表示最终认为甲药更有效的概率,结合α=0.5,β=0.8,可得在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列,根据条件推出数列的递推关系是解决本题的关键.综合性较强,有一定的难度. 22.【答案】解:(1)由{x =1−t 21+t 2,y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t 2, 两式平方相加,得x 2+y 24=1(x ≠-1),∴C 的直角坐标方程为x 2+y 24=1(x ≠-1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0. 即直线l 的直角坐标方程为得2x +√3y +11=0;(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0, 联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2-12=0. 由△=16m 2-64(m 2-12)=0,得m =±4. ∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小,为|11−4|√22+3=√7. 【解析】(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x=ρcosθ,y=ρsinθ代入2ρcosθ+ρsinθ+11=0,可得直线l 的直角坐标方程; (2)写出与直线l 平行的直线方程为,与曲线C 联立,化为关于x 的一元二次方程,利用判别式大于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值. 本题考查间单曲线的极坐标方程,考查参数方程化普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证(1)1a +1b +1c ≤a 2+b 2+c 2;因为abc =1. 就要证:abc a +abc b+abc c≤a 2+b 2+c 2;即证:bc +ac +ab ≤a 2+b 2+c 2; 即:2bc +2ac +2ab ≤2a 2+2b 2+2c 2; 2a 2+2b 2+2c 2-2bc -2ac -2ab ≥0(a -b )2+(a -c )2+(b -c )2≥0; ∵a ,b ,c 为正数,且满足abc =1.∴(a -b )2≥0;(a -c )2≥0;(b -c )2≥0恒成立;当且仅当:a =b =c =1时取等号. 即(a -b )2+(a -c )2+(b -c )2≥0得证. 故1a +1b +1c ≤a 2+b 2+c 2得证.(2)证(a +b )3+(b +c )3+(c +a )3≥24成立; 即:已知a ,b ,c 为正数,且满足abc =1.(a +b )为正数;(b +c )为正数;(c +a )为正数;(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a );当且仅当(a +b )=(b +c )=(c +a )时取等号;即:a =b =c =1时取等号; ∵a ,b ,c 为正数,且满足abc =1.(a +b )≥2√ab ;(b +c )≥2√bc ;(c +a )≥2√ac ;当且仅当a =b ,b =c ;c =a 时取等号;即:a =b =c =1时取等号;∴(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a )≥3×8√ab •√bc •√ac =24abc =24; 当且仅当a =b =c =1时取等号;故(a +b )3+(b +c )3+(c +a )3≥24.得证. 故得证. 【解析】(1)利用基本不等式和1的运用可证,(2)分析法和综合法的证明方法可证. 本题考查重要不等式和基本不等式的运用,分析法和综合法的证明方法.。

山东数学高考理科真题

山东数学高考理科真题

山东数学高考理科真题2019年山东省高考理科数学试题如下:一、选择题部分1.若集合A={-2,-1,0,1,2},集合B={1,2,3,4,5},集合C={1,4,7,10},则下列命题中正确的是()。

A.集合A∩B={1,2}B.集合B∩C={4}C.集合A∪C={-2,-1,0,1,2,4,7,10}D.集合A-B={-2,-1,0}【分析】集合A∩B表示A与B的交集,即A和B共同拥有的元素;集合B∩C表示B与C的交集,即B和C共同拥有的元素;集合A∪C表示A与C的并集,即A和C所有的元素。

集合A-B表示A减去B后的结果。

经计算可知,A∩B={2, 1},B∩C={4},A∪C={-2, -1, 0, 1, 2, 4, 7, 10},A-B={-2,-1,0}。

2.设函数f(x)=2x+3,则f(f(2))=()A.19B.11C.15D.9【分析】首先求f(2),代入x=2,f(2)=2*2+3=7。

然后再求f(f(2)),将f(2)代入,即f(f(2))=f(7)=2*7+3=17。

所以f(f(2))=17。

3.如图所示,矩形ABCD的顶点A,B,C在椭圆上,矩形的长边AB与y轴平行,矩形的长边长5,短边长3,则椭圆的方程是()。

A. x^2/9+y^2/4=1B. x^2/4+y^2/9=1C. x^2/3+y^2/4=1D. x^2/4+y^2/3=1【分析】根据题意,矩形的长边长5,短边长3,可以得出AC=5,AD=3。

AC边在椭圆上,即√34+√64=5,则椭圆的方程式为x^2/4+y^2/9=1。

4.已知3<i<8,5<j<10,则()。

A. i-j>-7B. i+j<5C. ij>36D. i-j<3【分析】i的取值范围在3到8之间,j的取值范围在5到10之间,可以通过取最大和最小值代入来检验。

当i=8,j=10时,有i-j=-2,i+j=18,ij=80,i-j<3,故选D。

2019年山东省高考理科数学试卷及答案【word版】

2019年山东省高考理科数学试卷及答案【word版】

2019 年高考山东卷理科数学真题及参考答案一.选择题:本大题共10 小题,每小题 5 分,共50 分。

在每小题给出的四个选项中,选择符合题目要求的选项。

1. 已知a,b R,i 是虚数单位,若 a i 与2 bi 互为共轭复数,则(a bi)2(A)5 4i (B) 5 4i (C) 3 4i (D) 3 4i答案:Dx 则A B 2. 设集合A{ x x 1 2}, B { y y 2 ,x [ 0,2]},(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)答案:C3. 函数1f (x) 的定义域为2(log2 x) 11 1 1(A) (0,) (B) (2,) (C) (0,) (2, ) (D) (0,] [ 2,)2 2 2答案:C2 ax b4. 用反证法证明命题“设a,b R, 则方程x 0 至少有一个实根”时要做的假设是2 ax b 2 ax b(A) 方程x 0 没有实根(B) 方程x 0 至多有一个实根2 ax b 2 ax b(C) 方程x 0 至多有两个实根(D) 方程x 0 恰好有两个实根答案:Ax ,则下列关系式恒成立的是y5. 已知实数x, y满足a a (0 a 1)(A)112 y2x 112 y2(B) ln( x 1) ln( 1) (C) sin x sin y (D)3 y3x答案:D6. 直线y4x与曲线y x 在第一象限内围成的封闭图形的面积为2(A)2 2 (B)4 2 (C)2(D)4答案:D7. 为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17], 将其按从左到右的顺序分别编号为第一组,第二组,⋯⋯,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20 人,第三组中没有疗效的有 6 人,则第三组中有疗效的人数为频率/ 组距2.8.0.160.812 13 14 15 16 17舒张压/kPa (A)6 (B)8 (C)12(D)18答案:C8. 已知函数 f x x 2 1, g. 若方程f x g x 有两个不相等的实根,则实数k 的取值范围是x kx1 1(A)(0,)(B)(,1)(C)(1,2)(D)(2,)2 2 答案:B9. 已知x, y 满足的约束条件x -2xy--1y -30,0,当目标函数z ax by(a 0,b 0) 在该约束条件下取得最小值2 5 时, 2 2a b 的最小值为(A)5(B)4 (C) 5 (D)2 答案:B10. 已知a 0,b 0 , 椭圆2 2 2 2x y x yC 的方程为1,双曲线C2 的方程为 112 2 2 2a b a b,C1 与C2 的离心率之积为32 ,则C2 的渐近线方程为(A)x 2y0(B)2x y 0 (C)x 2y 0(D)2x y 0答案:A二.填空题:本大题共 5 小题,每小题 5 分,共25 分,答案须填在题中横线上。

2019年普通高等学校招生全国统一考试数学卷(山东.理)含详细讲解

2019年普通高等学校招生全国统一考试数学卷(山东.理)含详细讲解

2019年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:24πS R =,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:()(1)(012)k kn k n nP k C p p k n -=-=L ,,,,. 如果事件A B ,互斥,那么()()()P A B P A P B +=+. 如果事件A B ,相互独立,那么()()()P AB P A P B =g .一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =I ,,,的集合M 的个数是( ) A .1B .2C .3D .4解析:本小题主要考查集合子集的概念及交集运算。

集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z =g ,则zz等于( ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。

可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )xxA .B .C .D .解析:本小题主要考查复合函数的图像识别。

ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos 1lncos 0x x ≤⇒≤排除C,选A.4.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为( ) A .3B .2C .1D .1-解:1x +、x a -在数轴上表示点x 到点1-、a 的距离,他们的和()1f x x x a =++-关于1x = 对称,因此点1-、a 关于1x =对称,所以3a =(直接去绝对值化成分段函数求解比较麻烦,如取特殊值解也可以) 5.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .45解::3cos()sin sin 62παααα-+=+=14cos 25αα=,714sin()sin()sin cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭6.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=7.在某地的奥运火炬传递活动中,有编号为12318L ,,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( ) A .151B .168C .1306D .1408解:古典概型问题,基本事件总数为31817163C =⨯⨯。

2019年山东省高考数学试卷(理科)

2019年山东省高考数学试卷(理科)

2019年山东省高考数学试卷(理科)2019年山东省高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)21.(5分)(2019•山东)已知集合A={x |x ﹣4x +3<0},B={x |2<x <4},则A ∩B=() A .(1,3) B .(1,4) C .(2,3) D .(2,4) 2.(5分)(2019•山东)若复数z 满足A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i)的图象,只需将函数y=sin4x的图象=i,其中i 为虚数单位,则z=()3.(5分)(2019•山东)要得到函数y=sin(4x ﹣() A .向左平移C .向左平移单位 B .向右平移单位 D .向右平移单位单位4.(5分)(2019•山东)已知菱形ABCD 的边长为a ,∠ABC=60°,则A .﹣a2=()B .﹣a2C .aD .a225.(5分)(2019•山东)不等式|x ﹣1|﹣|x ﹣5|<2的解集是() A .(﹣∞,4) B .(﹣∞,1) C .(1,4) D .(1,5)6.(5分)(2019•山东)已知x ,y 满足约束条件,若z=ax+y 的最大值为4,则a=() A .3 B .2C .﹣2D .﹣3,AD ∥BC ,BC=2AD=2AB=2,将7.(5分)(2019•山东)在梯形ABCD 中,∠ABC=梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A .B.C.D.2π28.(5分)(2019•山东)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,3),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N (μ,σ),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%)A .4.56%B .13.59%C .27.18%D .31.74%29.(5分)(2019•山东)一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x+3)+(y2﹣2)=1相切,则反射光线所在直线的斜率为() A .﹣或﹣B .﹣或﹣C .﹣或﹣D .﹣或﹣210.(5分)(2019•山东)设函数f (x )=的取值范围是() A .[,1] B .[0,1]C .[,+∞),则满足f (f (a ))=2f (a )的aD .[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分) 11.(5分)(2019•山东)观察下列各式:C C C C …照此规律,当n ∈N 时, C+C+C+…+C=.],tanx ≤m ”是真命题,则实数m 的最小值*=4; +C +C +C=4; +C +C=4; +C=4;32112.(5分)(2019•山东)若“∀x ∈[0,为. 13.(5分)(2019•山东)执行如图程序框图,输出的T 的值为14.(5分)(2019•山东)已知函数f (x )=a+b (a >0,a ≠1)的定义域和值域都是[﹣1,0],则a +b=.x15.(5分)(2019•山东)平面直角坐标系xOy 中,双曲线C 1:2﹣=1(a >0,b >0)的渐近线与抛物线C 2:x =2py(p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为.三、解答题16.(12分)(2019•山东)设f (x )=sinxcosx﹣cos (x +(Ⅰ)求f (x )的单调区间;(Ⅱ)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ()=0,a=1,求△ABC 面积的最大值. 17.(12分)(2019•山东)如图,在三棱台DEF ﹣ABC 中,AB=2DE,G ,H 分别为AC ,BC 的中点.(Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF=DE,∠BAC=45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.2).n18.(12分)(2019•山东)设数列{a n }的前n 项和为S n ,已知2S n=3+3.(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{b n },满足a n b n =log3a n ,求{b n }的前n 项和Tn . 19.(12分)(2019•山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX . 20.(13分)(2019•山东)平面直角坐标系xOy 中,已知椭圆C :+=1(a >b >0)的离心率为,左、右焦点分别是F 1,F 2,以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :+=1,P 为椭圆C 上任意一点,过点P 的直线y=kx+m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||的值;(ii )求△ABQ 面积的最大值.21.(14分)(2019•山东)设函数f (x )=ln(x +1)+a (x ﹣x ),其中a ∈R ,(Ⅰ)讨论函数f (x )极值点的个数,并说明理由;(Ⅱ)若∀x >0,f (x )≥0成立,求a 的取值范围.22019年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)21.(5分)(2019•山东)已知集合A={x |x ﹣4x +3<0},B={x |2<x <4},则A ∩B=() A .(1,3) B .(1,4) C .(2,3) D .(2,4)【分析】求出集合A ,然后求出两个集合的交集.2【解答】解:集合A={x |x ﹣4x +3<0}={x |1<x <3},B={x |2<x <4},则A ∩B={x |2<x <3}=(2,3).故选:C .【点评】本题考查集合的交集的求法,考查计算能力.2.(5分)(2019•山东)若复数z 满足=i,其中i 为虚数单位,则z=()A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i )=1+i ,可得z=1﹣i .故选:A .【点评】本题考查复数的基本运算,基本知识的考查.3.(5分)(2019•山东)要得到函数y=sin(4x ﹣() A .向左平移C .向左平移单位 B .向右平移单位 D .向右平移单位单位)的图象,只需将函数y=sin4x的图象【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin (4x ﹣要得到函数y=sin(4x ﹣)=sin[4(x ﹣)],单位.)的图象,只需将函数y=sin4x的图象向右平移故选:B .【点评】本题考查三角函数的图象的平移,值域平移变换中x 的系数是易错点.4.(5分)(2019•山东)已知菱形ABCD 的边长为a ,∠ABC=60°,则A .﹣a2=()B .﹣a,2C .aD .a,根据=()•=代入可求22【分析】由已知可求【解答】解:∵菱形ABCD 的边长为a ,∠ABC=60°,∴则=a,=(2=a×a ×cos60°=)•=, =故选:D【点评】本题主要考查了平面向量数量积的定义的简单运算,属于基础试题 5.(5分)(2019•山东)不等式|x ﹣1|﹣|x ﹣5|<2的解集是() A .(﹣∞,4)B .(﹣∞,1)C .(1,4)D .(1,5)【分析】运用零点分区间,求出零点为1,5,讨论①当x <1,②当1≤x ≤5,③当x >5,分别去掉绝对值,解不等式,最后求并集即可.【解答】解:①当x <1,不等式即为﹣x +1+x ﹣5<2,即﹣4<2成立,故x <1;②当1≤x ≤5,不等式即为x ﹣1+x ﹣5<2,得x <4,故1≤x <4;③当x >5,x ﹣1﹣x +5<2,即4<2不成立,故x ∈∅.综上知解集为(﹣∞,4).故选A .【点评】本题考查绝对值不等式的解法,主要考查运用零点分区间的方法,考查运算能力,属于中档题.6.(5分)(2019•山东)已知x ,y 满足约束条件,若z=ax+y 的最大值为4,则a=() A .3 B .2 C .﹣2 D .﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A (2,0),B (1,1),若z=ax+y 过A 时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y ,即y=﹣2x +z ,平移直线y=﹣2x +z ,当直线经过A (2,0)时,截距最大,此时z 最大为4,满足条件,若z=ax+y 过B 时取得最大值为4,则a +1=4,解得a=3,此时,目标函数为z=3x+y ,即y=﹣3x +z ,平移直线y=﹣3x +z ,当直线经过A (2,0)时,截距最大,此时z 最大为6,不满足条件,故a=2,故选:B【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.7.(5分)(2019•山东)在梯形ABCD 中,∠ABC=,AD ∥BC ,BC=2AD=2AB=2,将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A .B.C.D.2π【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:故选:C .=.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.画出几何体的直观图是解题的关键.8.(5分)(2019•山东)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,3),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()2(附:若随机变量ξ服从正态分布N (μ,σ),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%)A .4.56%B .13.59%C .27.18%D .31.74%【分析】由题意P (﹣3<ξ<3)=68.26%,P (﹣6<ξ<6)=95.44%,可得P (3<ξ<6)=(95.44%﹣68.26%),即可得出结论.2【解答】解:由题意P (﹣3<ξ<3)=68.26%,P (﹣6<ξ<6)=95.44%,所以P (3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B .【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.9.(5分)(2019•山东)一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x +3)+(y2﹣2)=1相切,则反射光线所在直线的斜率为() A .﹣或﹣B .﹣或﹣C .﹣或﹣D .﹣或﹣2【分析】点A (﹣2,﹣3)关于y 轴的对称点为A ′(2,﹣3),可设反射光线所在直线的方程为:y +3=k(x ﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A (﹣2,﹣3)关于y 轴的对称点为A ′(2,﹣3),故可设反射光线所在直线的方程为:y +3=k(x ﹣2),化为kx ﹣y ﹣2k ﹣3=0.22∵反射光线与圆(x +3)+(y ﹣2)=1相切,∴圆心(﹣3,2)到直线的距离d=化为24k +50k +24=0,∴k=或﹣.2=1,故选:D .【点评】本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.10.(5分)(2019•山东)设函数f (x )=的取值范围是() A .[,1] B .[0,1]C .[,+∞)t,则满足f (f (a ))=2f (a )的aD .[1,+∞)【分析】令f (a )=t,则f (t )=2,讨论t <1,运用导数判断单调性,进而得到方程无解,讨论t ≥1时,以及a <1,a ≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f (a )=t,则f (t )=2,t当t <1时,3t ﹣1=2,t t由g (t )=3t﹣1﹣2的导数为g ′(t )=3﹣2ln2,在t <1时,g ′(t )>0,g (t )在(﹣∞,1)递增,即有g (t )<g (1)=0,t则方程3t ﹣1=2无解;t t当t ≥1时,2=2成立,由f (a )≥1,即3a ﹣1≥1,解得a ≥,且a <1;t或a ≥1,2≥1解得a ≥0,即为a ≥1.综上可得a 的范围是a ≥.故选C .【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.二、填空题(本大题共5小题,每小题5分,共25分) 11.(5分)(2019•山东)观察下列各式:C C C C …照此规律,当n ∈N 时, C+C+C+…+C= 4n ﹣1*a=4; +C +C +C=4; +C +C=4; +C=4;321.【分析】仔细观察已知条件,找出规律,即可得到结果.【解答】解:因为C C C C+C +C +C=4; +C +C=4; +C=4;321=4;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同,可得:当n ∈N 时,Cn ﹣1*+C +C +…+C =4n ﹣1;故答案为:4.【点评】本题考查归纳推理的应用,找出规律是解题的关键.12.(5分)(2019•山东)若“∀x ∈[0,],tanx ≤m ”是真命题,则实数m 的最小值为 1 .【分析】求出正切函数的最大值,即可得到m 的范围.【解答】解:“∀x ∈[0,],tanx ≤m ”是真命题,可得tanx ≤1,所以,m ≥1,实数m 的最小值为:1.故答案为:1.【点评】本题考查函数的最值的应用,命题的真假的应用,考查计算能力.13.(5分)(2019•山东)执行如图程序框图,输出的T 的值为.【分析】模拟执行程序框图,依次写出每次循环得到的n ,T 的值,当n=3时不满足条件n <3,退出循环,输出T 的值为.【解答】解:模拟执行程序框图,可得 n=1,T=1满足条件n <3,T=1+满足条件n <3,T=1+xdx ,n=2 xdx +x dx=1+2=.,n=3不满足条件n <3,退出循环,输出T 的值为故答案为:【点评】本题主要考查了循环结构的程序框图,考查了定积分的应用,属于基本知识的考查.14.(5分)(2019•山东)已知函数f (x )=a+b (a >0,a ≠1)的定义域和值域都是[﹣1,0],则a +b=.xx【分析】对a 进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a >1时,函数f (x )=a+b 在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a <1时,函数f (x )=a+b 在定义域上是减函数,x所以,解得b=﹣2,a=,综上a +b=故答案为:,【点评】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题.15.(5分)(2019•山东)平面直角坐标系xOy 中,双曲线C 1:2﹣=1(a >0,b >0)的渐近线与抛物线C 2:x =2py(p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为.【分析】求出A 的坐标,可得=,利用△OAB 的垂心为C 2的焦点,可得×(﹣)=﹣1,由此可求C 1的离心率.【解答】解:双曲线C 1:2﹣=1(a >0,b >0)的渐近线方程为y=±x ,与抛物线C 2:x =2py联立,可得x=0或x=±,取A (,),设垂心H (0,),则k AH==,∵△OAB 的垂心为C 2的焦点,∴22×(﹣)=﹣1,∴5a =4b,222∴5a =4(c ﹣a )∴e==.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,确定A 的坐标是关键.三、解答题16.(12分)(2019•山东)设f (x )=sinxcosx﹣cos (x +(Ⅰ)求f (x )的单调区间;(Ⅱ)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ()=0,a=1,求△ABC 面积的最大值.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f (x )=sin2x﹣,由2k ≤2k,k ∈Z 可解得f (x )的单调递增区间,由2k≤2x ≤2k≤2x ,k ∈Z2).可解得单调递减区间.(Ⅱ)由 f ()=sinA﹣=0,可得sinA ,cosA ,由余弦定理可得:bc 时等号成立,从而可求bcsinA ≤,从而得解.,且当b=c【解答】解:(Ⅰ)由题意可知,f (x )=sin2x ﹣=sin2x ﹣=sin2x﹣由2k 由2k≤2x ≤2k ≤2x ≤2k,k ∈Z 可解得:k ,k ∈Z 可解得:k,k≤x ≤k ≤x ≤k,k ∈Z ;,k ∈Z ;,所以(f x )的单调递增区间是[k k],(k ∈Z );],(k ∈Z );单调递减区间是:[k(Ⅱ)由f ()=sinA﹣=0,可得sinA=,由题意知A 为锐角,所以cosA=由余弦定理a =b+c ﹣2bccosA ,22可得:1+bc=b+c ≥2bc ,即bc 因此S=bcsinA ≤,222,,且当b=c时等号成立.所以△ABC 面积的最大值为.【点评】本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查. 17.(12分)(2019•山东)如图,在三棱台DEF ﹣ABC 中,AB=2DE,G ,H 分别为AC ,BC 的中点.(Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF=DE,∠BAC=45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.【分析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB 为平行四边形,从而得到BE ∥HF ,便有BE ∥平面FGH ,再证明DE ∥平面FGH ,从而得到平面BDE ∥平面FGH ,从而BD ∥平面FGH ;(Ⅱ)连接HE ,根据条件能够说明HC ,HG ,HE 三直线两两垂直,从而分别以这三直线为x ,y ,z 轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG ,可说明ACFD 的一条法向量,设平面FGH 的法向量为,根据为平面即可求出法向量,设平面FGH 与平面ACFD 所成的角为θ,根据cos θ=平面FGH 与平面ACFD 所成的角的大小.【解答】解:(Ⅰ)证明:根据已知条件,DF ∥AC ,EF ∥BC ,DE ∥AB ;△DEF ∽△ABC ,又AB=2DE,∴BC=2EF=2BH,∴四边形EFHB 为平行四边形;∴BE ∥HF ,HF ⊂平面FGH ,BE ⊄平面FGH ;∴BE ∥平面FGH ;同样,因为GH 为△ABC 中位线,∴GH ∥AB ;又DE ∥AB ;∴DE ∥GH ;∴DE ∥平面FGH ,DE ∩BE=E;∴平面BDE ∥平面FGH ,BD ⊂平面BDE ;∴BD ∥平面FGH ;(Ⅱ)连接HE ,则HE ∥CF ;∵CF ⊥平面ABC ;∴HE ⊥平面ABC ,并且HG ⊥HC ;即可求出∴HC ,HG ,HE 三直线两两垂直,分别以这三直线为x ,y ,z 轴,建立如图所示空间直角坐标系,设HC=1,则:H (0,0,0),G (0,1,0),F (1,0,1),B (﹣1,0,0);连接BG ,根据已知条件BA=BC,G 为AC 中点;∴BG ⊥AC ;又CF ⊥平面ABC ,BG ⊂平面ABC ;∴BG ⊥CF ,AC ∩CF=C;∴BG ⊥平面ACFD ;∴向量为平面ACFD 的法向量;,则:设平面FGH 的法向量为,取z=1,则:;设平面FGH 和平面ACFD 所成的锐二面角为θ,则:cos θ=|cos |=;∴平面FGH 与平面ACFD 所成的角为60°.【点评】考查棱台的定义,平行四边形的定义,线面平行的判定定理,面面平行的判定定理及其性质,线面垂直的性质及线面垂直的判定定理,以及建立空间直角坐标系,利用空间向量求二面角的方法,平面法向量的概念及求法,向量垂直的充要条件,向量夹角余弦的坐标公式,平面和平面所成角的定义.18.(12分)(2019•山东)设数列{a n }的前n 项和为S n ,已知2S n=3+3.(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{b n },满足a n b n =log3a n ,求{b n }的前n 项和T n .n n ﹣1【分析】(Ⅰ)利用2S n =3+3,可求得a 1=3;当n >1时,2S n ﹣1=3+3,两式相减2a n =2Snn ﹣1﹣2S n ﹣1,可求得a n =3,从而可得{a n }的通项公式;(Ⅱ)依题意,a n b n =log3a n ,可得b 1=,当n >1时,b n =31﹣nn•log 33n ﹣1=(n ﹣1)×31﹣n,1﹣于是可求得T 1=b1=;当n >1时,T n =b1+b 2+…+b n =+(1×3+2×3+…+(n ﹣1)×3n﹣1﹣2),利用错位相减法可求得{b n }的前n 项和T n .n 1【解答】解:(Ⅰ)因为2S n =3+3,所以2a 1=3+3=6,故a 1=3,n ﹣1当n >1时,2S n ﹣1=3+3,n n ﹣1n ﹣1n ﹣1此时,2a n =2Sn ﹣2S n ﹣1=3﹣3=2×3,即a n =3,所以a n =.(Ⅱ)因为a n b n =log3a n ,所以b 1=,当n >1时,b n =3所以T 1=b1=;当n >1时,T n =b1+b 2+…+b n =+(1×3+2×3+…+(n ﹣1)×3所以3T n =1+(1×3+2×3+3×3+…+(n ﹣1)×3两式相减得:2T n =+(3+3+3+…+3×31﹣n﹣1﹣2﹣1﹣21﹣n•log 33n ﹣1=(n ﹣1)×31﹣n,1﹣n),0﹣1﹣22﹣n),1﹣n2﹣n﹣(n ﹣1)×3)=+﹣(n ﹣1)=﹣﹣﹣,,经检验,n=1时也适合,.所以T n =综上可得T n =【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题. 19.(12分)(2019•山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .【分析】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X 的取值为:0,﹣1,1分别求出对应的概率,即可求出分布列和期望.【解答】解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为随机变量X 的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即;,当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,7,9中选择两个数字和5进行组合,即;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从.1,3,7,9中选择1个数字,最后把3个数字进行组合,即则P (X=0)==,P (X=﹣1)=+1×=.=,P (X=1)==,EX=0×+(﹣1)×【点评】本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.20.(13分)(2019•山东)平面直角坐标系xOy 中,已知椭圆C :+=1(a >b >0)的离心率为,左、右焦点分别是F 1,F 2,以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :+=1,P 为椭圆C 上任意一点,过点P 的直线y=kx+m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||的值;(ii )求△ABQ 面积的最大值.【分析】(Ⅰ)运用椭圆的离心率公式和a ,b ,c 的关系,计算即可得到b ,进而得到椭圆C 的方程;(Ⅱ)求得椭圆E 的方程,(i )设P (x 0,y 0),|E 的方程,化简整理,即可得到所求值;(ii )设A (x 1,y 1),B (x 2,y 2),将直线y=kx+m 代入椭圆E 的方程,运用韦达定理,三角形的面积公式,将直线y=kx+m 代入椭圆C 的方程,由判别式大于0,可得t 的范围,结合二次函数的最值,又△ABQ 的面积为3S ,即可得到所求的最大值.【解答】解:(Ⅰ)由题意可知,PF 1+PF 2=2a=4,可得a=2,又=,a ﹣c =b,+y =1;2222|=λ,求得Q 的坐标,分别代入椭圆C ,可得b=1,即有椭圆C 的方程为(Ⅱ)由(Ⅰ)知椭圆E 的方程为(i )设P (x 0,y 0),|+=1,|=λ,由题意可知,Q (﹣λx 0,﹣λy 0),由于+y 0=1,2又所以λ=2,即|+|=2;=1,即(+y 0)=1,2(ii )设A (x 1,y 1),B (x 2,y 2),将直线y=kx+m 代入椭圆E 的方程,可得22222(1+4k )x +8kmx +4m ﹣16=0,由△>0,可得m <4+16k ,① 则有x 1+x 2=﹣,x 1x 2=,所以|x 1﹣x 2|=,由直线y=kx+m 与y 轴交于(0,m ),则△AOB 的面积为S=|m |•|x 1﹣x 2|=|m |•=2,设=t,则S=222,2将直线y=kx+m 代入椭圆C 的方程,可得(1+4k )x +8kmx +4m ﹣4=0,22由△≥0可得m ≤1+4k ,② 由①②可得0<t ≤1,则S=222在(0,1]递增,即有t=1取得最大值,即有S ,即m =1+4k ,取得最大值2,由(i )知,△ABQ 的面积为3S ,即△ABQ 面积的最大值为6.【点评】本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程联立,运用韦达定理,同时考查三角形的面积公式和二次函数的最值,属于中档题.21.(14分)(2019•山东)设函数f (x )=ln(x +1)+a (x ﹣x ),其中a ∈R ,(Ⅰ)讨论函数f (x )极值点的个数,并说明理由;(Ⅱ)若∀x >0,f (x )≥0成立,求a 的取值范围.【分析】(I )函数(f x )=ln(x +1)+(a x ﹣x ),其中 a ∈R ,x ∈(﹣1,+∞).22=.令g (x )=2ax+ax ﹣a +1.对a 与△分类讨论可得:(1)当a=0时,此2时f ′(x )>0,即可得出函数的单调性与极值的情况.(2)当a >0时,△=a(9a ﹣8).①当时,△≤0,②当a 时,△>0,即可得出函数的单调性与极值的情况.(3)当a <0时,△>0.即可得出函数的单调性与极值的情况.(II )由(I )可知:(1)当0≤a 断出.(2)当<a ≤1时,由g (0)≥0,可得x 2≤0,函数f (x )在(0,+∞)上单调性,即可判断出.(3)当1<a 时,由g (0)<0,可得x 2>0,利用x ∈(0,x 2)时函数f (x )单调性,即可判断出;(4)当a <0时,设h (x )=x﹣ln (x +1),x ∈(0,+∞),研究其单调性,即可判断出2【解答】解:(I )函数f (x )=ln(x +1)+a (x ﹣x ),其中a ∈R ,x ∈(﹣1,+∞).=2时,可得函数f (x )在(0,+∞)上单调性,即可判.令g (x )=2ax+ax ﹣a +1.(1)当a=0时,g (x )=1,此时f ′(x )>0,函数f (x )在(﹣1,+∞)上单调递增,无极值点.(2)当a >0时,△=a﹣8a (1﹣a )=a(9a ﹣8).①当时,△≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(﹣1,+∞)上单调递2增,无极值点.②当a ∵x 1+x 2=∴时,△>0,设方程2ax +ax ﹣a +1=0的两个实数根分别为x 1,x 2,x 1<x 2.,,..2由g (﹣1)>0,可得﹣1<x 1∴当x ∈(﹣1,x 1)时,g (x )>0,f ′(x )>0,函数 f (x )单调递增;当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减;当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,函数f (x )单调递增.因此函数f (x )有两个极值点.(3)当a <0时,△>0.由g (﹣1)=1>0,可得x 1<﹣1<x 2.∴当x ∈(﹣1,x 2)时,g (x )>0,f ′(x )>0,函数 f (x )单调递增;当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.因此函数f (x )有一个极值点.综上所述:当a <0时,函数f (x )有一个极值点;当0≤a时,函数f (x )无极值点;当a 时,函数f (x )有两个极值点.(II )由(I )可知:(1)当0≤a时,函数f (x )在(0,+∞)上单调递增.∵f (0)=0,∴x ∈(0,+∞)时,f (x )>0,符合题意.(2)当<a ≤1时,由g (0)≥0,可得x 2≤0,函数f (x )在(0,+∞)上单调递增.又f (0)=0,∴x ∈(0,+∞)时,f (x )>0,符合题意.(3)当1<a 时,由g (0)<0,可得x 2>0,∴x ∈(0,x 2)时,函数f (x )单调递减.又f (0)=0,∴x ∈(0,x 2)时,f (x )<0,不符合题意,舍去;(4)当a <0时,设h (x )=x﹣ln (x +1),x ∈(0,+∞),h ′(x )=∴h (x )在(0,+∞)上单调递增.因此x ∈(0,+∞)时,h (x )>h (0)=0,即ln (x +1)<x ,22可得:f (x )<x +a (x ﹣x )=ax+(1﹣a )x ,当x >2>0.时,ax +(1﹣a )x <0,此时f (x )<0,不合题意,舍去.综上所述,a 的取值范围为[0,1].【点评】本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了分析问题与解决问题的能力,考查了分类讨论思想方法、推理能力与计算能力,属于难题.参与本试卷答题和审题的老师有:qiss ;吕静;双曲线;maths ;刘长柏;w3239003;翔宇老师;wkl197822;wfy814;沂蒙松(排名不分先后)菁优网2019年8月29日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试(山东卷)
数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后将本试卷和答题卡一并交回
注意事项:
答题前,考生务必用0.5毫米黑色签字笔将自已的姓名、准考证号、县区和科类填写在答填写答题卡上和试卷规定的位置上。

2.第Ⅰ卷小题选出答案后,用2B 铅笔把答题卡上对应题目上的答案号涂黑;如需改动,用像皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:
锥体的体积公式:V=13
Sh,其中S 是锥体的底面各,h 是锥体的高。

如果事件A 、B 互斥,那么P(A+B)=P(A)+P (B ):如果事件A 、B 独立,那么P (AB )=P
(A )P (A )·P (B )。

(1)已知全集U R =,几何M ={}|1|2x
x -≤,则,U C M = (A )}{13x x -<< (B) }{13x x -≤≤ (C) }{13x x x <->或 (D) }{13x x x ≤-≥或
(2)已知2a i i
+=b i +(.a b R ∈),其中i 为虚数单位,则a b += (A )1- (B )1 (C )2 (D )3
(3)在空间,下列命题正确的是
(A )平行直线的平行投影重合
(B )平行于同一直线的两个平面平行
(C )垂直于同一平面的两个平面平行
(D )垂直于同一平面的两条直线平行
(4)设()f x 为定义在R 上的奇函数。

当x ≥0时,()f x =2x
+2x+b (b 为常数),则(1)f -=
(A )3 (B )1 (C )-1 (D )-3
(5).已知随机变量ξ服从正态分布N (0, 2σ),若P (ξ>2)=0.023。

则P (-2≤ξ≤2=
(A )0.447 (B )0.628
(C) 0.954 (D) 0.977
(6)样本中共有五个个体,其值分别为a ,0,1,2,3,。

若该样本的平均值为1,则样本方差为
(A ) 65 (B )65
(C) 2 (D)2 (7)由曲线2y x =,3y x =围城的封闭图形面积为
(A ) 112 (B) 14 (C) 13 (D) 712
(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有
(A )36种 (B )42种 (C )48种 (D )54种
(9)设{}n a 是等比数列,则“a a a 321 ”是“数列{}n
a 是递增数列”的 (A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
(10)设变量x ,y 满足约束条件则目标函数z=3x-4y 的最大值和最小值分别为 (A )3,-11 (B )-3,
-11 (C )11,-3 (D )11,3
(11)函数y=2x -x 2的图像大致是
(12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m ,u ),b=(p ,q ),另a ⊙b=mq-np ,下面的说法错误的是
(A )若a 与b 共线,则a ⊙b=0
(B )a ⊙b=b ⊙a
(C )对任意的λ∈R ,有(λa )⊙b=λ(a ⊙b )
(D )(a ⊙b )2+(a ·b )2=|a|2 |b|2
x-y 20
x-5y+100x+y-80+≥⎧⎪≤⎨⎪≤⎩
第Ⅱ卷(共90分)
二、填空题:本大题共4小题,每小题4分,共16分。

(13)执行右图所示的程序框图,若输入10x =,则输出
y 的值为 。

(14)若对任意0x >,231
x a x x ≤++恒成立,则a 的 取值范围是 。

(15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,
若a=2,b=2,sinB+cosB=2,则角A 的大小为
______________.
(16)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直
线l:y=x-1被圆C 所截得的弦长为22,则过圆心且与直线
l 垂直的方程为_______________.
三、解答题:本大题共6小题,共74分。

(17)(本小题满分12分)
已知函数211()sin 2sin cos cos sin()(0)222f x x x πφφφφπ=
+-+<<,其图像过点1(,)62
π。

(Ⅰ) 求φ的值;
(Ⅱ) 将函数()y f x =的图像上各点的横坐标缩短到原来的12
,纵坐标不变,得到函数()y g x =的图像,求函数()g x 在[0,]4
π上的最大值和最小值。

(18)(本小题满分12分)
已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n s 。

(Ⅰ) 求n a 及n s ;
(Ⅱ) 令*21()1
n n b n N a =
∈-,求数列{}n b 的前n 项和n T 。

(19)(本小题满分12分)
如图,在无棱锥P —ABCDE 中,PA ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC=45。

AB=22,BC=2AE=4,三角形PAB 是等腰三角形。

(Ⅰ)求证:平面PCD ⊥平面PAC ;
(Ⅱ)求直线PB 与平面PCD 所成角的大小;
(Ⅲ)求四棱锥P —ACDE 的体积。

(20)(本小题满分12分)
某学校举行知识竞赛,第一轮选拔共设有A 、B 、C 、D 四个问题,规则如下:
① 每位参加者记分器的初始分均为10分,答对问题A 、B 、C 、D 分别加1分、2分、3
分、6分,答错任一题减2分;
② 每回答一题,记分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当
累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
③ 每位参加者按问题A 、B 、C 、D 顺序作答,直至答题结束。

假设甲同学对问题A 、B 、C 、D 回答正确的概率依次为34、12、13、14
,且各题回答正确与否相互之间没有影响。

(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Εξ。

21.(本小题满分12分) 22
22
x 1a b y =(a >b >0)的离心率为22,以该椭圆上的点和椭圆的左右焦点F 1、F 2为顶点的三角形的周长为)
421。

一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线PF 1和PF 2与椭圆的焦点分别为A 、B 和C 、D 。

(Ⅰ)求椭圆和双曲线的标准方程
(Ⅱ)设直线PF 1、PF 2的斜率分别为k 1、k 2,证明:k 1·k 2=1
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值,若不存在,请说明理由。

(22)(本小题满分14分)
已知函数
(Ⅰ)当a ≤12
时,讨论f (x)的单调性: (Ⅱ)设.当a=14
时,若对任意x 1∈(0,2),存在x 2∈[]1,2,使12()()f x g x ≥,求实数b 的取值范围。

相关文档
最新文档